No books or notes allowed. No laptop or wireless devices allowed. Write clearly.

Name:		
maine.		

Question:	1	2	3	4	5	6	Total
Points:	10	20	20	20	10	20	100
Score:							

$$\mathbf{r}(t) = \cos(t^2)\mathbf{i} + \sin(t^2)\mathbf{j} + t^2\mathbf{k}$$

for t > 0. Compute $\mathbf{T}(t)$, $\mathbf{N}(t)$ and $\mathbf{B}(t)$. Compute the curvature $\kappa(t)$.

Solution: We first compute the derivative

$$\dot{\mathbf{r}}(t) = -2t\sin(t^2)\mathbf{i} + 2t\cos(t^2)\mathbf{j} + 2t\mathbf{k}$$

so that we get

$$\frac{\mathrm{d}s}{\mathrm{d}t} = \sqrt{4t^2 \sin(t^2)^2 + 4t^2 \cos(t^2)^2 + 4t^2} = 2\sqrt{2}t$$

and

$$\mathbf{T}(t) = \frac{-\sin(t^2)\mathbf{i} + \cos(t^2)\mathbf{j} + \mathbf{k}}{\sqrt{2}}$$

We then have

$$\dot{\mathbf{T}}(t) = -\frac{2}{\sqrt{2}}t\cos(t^2)\mathbf{i} - \frac{2}{\sqrt{2}}t\sin(t^2)\mathbf{j}$$

and

$$||\dot{\mathbf{T}}(t)|| = \frac{2}{\sqrt{2}}t$$

so that

$$\mathbf{N}(t) = -\cos(t^2)\mathbf{i} - \sin(t^2)\mathbf{j}.$$

Finally

$$\mathbf{B}(t) = \frac{\sin(t^2)\mathbf{i} - \cos(t^2)\mathbf{j} + \mathbf{k}}{\sqrt{2}}$$

For the curvature we get

$$\kappa(t) = \frac{\|\dot{\mathbf{T}}(t)\|}{\|\dot{\mathbf{r}}(t)\|} = \frac{1}{2}$$

Consider the vector field

$$\mathbf{B}(x, y, z) = \frac{y}{x^2 + y^2}\mathbf{i} + \frac{-x}{x^2 + y^2}\mathbf{j}$$

and the curve traced by the vector function

$$\mathbf{r}(t) = \cos(t)\mathbf{i} + \sin(t)\mathbf{j} + t\mathbf{k}$$

(a) (10 points) Show that

$$\ddot{\mathbf{r}}(t) = \mathbf{B}(\mathbf{r}(t)) \times \dot{\mathbf{r}}(t) = \mathbf{F}(\mathbf{r}(t))$$

Solution:

We have

$$\dot{\mathbf{r}}(t) = -\sin(t)\mathbf{i} + \cos(t)\mathbf{j} + \mathbf{k}$$

and

$$\ddot{\mathbf{r}}(t) = -\cos(t)\mathbf{i} - \sin(t)\mathbf{j}.$$

Since

$$\mathbf{B}(\mathbf{r}(t)) = \sin(t)\mathbf{i} - \cos(t)\mathbf{j}$$

we get

$$\mathbf{B}(\mathbf{r}(t)) \times \dot{\mathbf{r}}(t) = -\cos(t)\mathbf{i} - \sin(t)\mathbf{j}.$$

(b) (10 points) Compute

$$\int_0^1 \mathbf{F}(\mathbf{r}(t)) d\mathbf{r}(t)$$

Solution: Since $\mathbf{F}(\mathbf{r}(t)) = \mathbf{B}(\mathbf{r}(t)) \times \dot{\mathbf{r}}(t)$ is always orthogonal to $\dot{\mathbf{r}}(t)$ we have

$$\int_0^1 \mathbf{F}(\mathbf{r}(t)) d\mathbf{r}(t) = 0.$$

$$\mathbf{F}(x, y, z) = (xyz + 1)e^{xyz}\mathbf{i} + x^2ze^{xyz}\mathbf{j} + x^2ye^{xyz}\mathbf{k}.$$

(a) (10 points) Show that **F** is conservative.

Solution: We call $P(x, y, z) = (xyz + 1)e^{xyz}$, $Q(x, y, z) = x^2ze^{xyz}$ and $R(x, y, z) = x^2ye^{xyz}$. We compute curl **F**:

$$\frac{\partial R(x,y,z)}{\partial y} - \frac{\partial Q(x,y,z)}{\partial z} = (x^2 + x^3yz)e^{xyz} - (x^2 + x^3yz)e^{xyz} = 0$$

$$\frac{\partial P(x,y,z)}{\partial z} - \frac{\partial R(x,y,z)}{\partial x} = (x^2y^2z + 2xy)e^{xyz} - (x^2y^2z + 2xy)e^{xyz} = 0$$

$$\frac{\partial P(x,y,z)}{\partial y} - \frac{\partial Q(x,y,z)}{\partial x} = (x^2yz^2 + 2xz)e^{xyz} - (x^2yz^2 + 2xz)e^{xyz} = 0$$

so that

$$\operatorname{curl} \mathbf{F}(x, y, z) = 0$$

and $\mathbf{F}(x, y, z)$ is conservative.

(b) (10 points) Find a potential function V for \mathbf{F} , that is find a function V(x, y, z) such that grad $V(x, y, x) = \mathbf{F}(x, y, z)$

Solution: A general solution for

$$\frac{\partial V(x, y, z)}{\partial z} = x^2 y e^{xyz}$$

is given by

$$V(x, y, z) = xe^{xyz} + \phi(x, y)$$

It is easy to see that $\phi \equiv 0$ gives a potential for **F**.

Assume the Earth is a perfect sphere. The boundaries of the states of Colorado and Wyoming are "spherical rectangles". Colorado is bounded by the lines of longitude 102°W and 109°W and the lines of latitude 37°N and 41°N. Wyoming is bounded by the lines of longitude 104°W and 111°W and the lines od latitude 41°N and 45°N. Find the ratio between the surface area of Colorado and the surface area of Wyoming.(**Hint**: Assume that the radius of the Earth is *R* and project the two states on the equatorial plane.)

Solution: Assume that the radius of the Earth is R. The projection of the surface of the North Emisphere is the disk of radius R centered at the origin. The projection of a meridian of longitude ϕ° is the radius at an angle $2\pi\phi/360$ respect to the projection of the Greenwich meridian. Finally the projection of a parallel of latitude ψ° is the cicle of radius $R\cos(2\pi\psi/360)$.

Thus, in polar coordinates (θ, r) , Colorado project to

$$C = \{1.78 < \theta < 1.90, 0.75R < r < 0.80R\}$$

and Wyoming

$$W = \{1.81 < \theta < 1.93, 0.71R < r < 0.75R\}$$

while the area element on the surface of the earth is

$$dS = R \frac{r dr d\theta}{\sqrt{R^2 - r^2}}$$

We get

$$A(\text{Colorado}) = R \int_{0.75R}^{0.8R} \int_{1.78}^{1.90} \frac{r dr d\theta}{\sqrt{R^2 - r^2}} = R^2 0.12 \left(\sqrt{1 - 0.75^2} - \sqrt{1 - 0.8^2} \right)$$

while

$$A(\text{Wyoming}) = R \int_{0.71R}^{0.75R} \int_{1.81}^{1.93} \frac{r dr d\theta}{\sqrt{R^2 - r^2}} = R^2 0.12 \left(\sqrt{1 - 0.71^2} - \sqrt{1 - 0.75^2} \right)$$

Finally

$$\frac{A(\text{Colorado})}{A(\text{Wyoming})} = \frac{\sqrt{1 - 0.75^2} - \sqrt{1 - 0.8^2}}{\sqrt{1 - 0.71^2} - \sqrt{1 - 0.75^2}} = 1.44$$

$$\bar{x} = \frac{1}{A} \oint_C xy \, \mathrm{d}x + \frac{1}{A} \oint_C x^2 \, \mathrm{d}y$$

(**Hint**: use Green's Theorem.)

Solution: If $\mathbf{F}(x, y) = xy\mathbf{i} + x^2\mathbf{j}$ then curl $\mathbf{F}(x, y) = x$ so that

$$\frac{1}{A} \oint xy \, dx + \frac{1}{A} \oint_C x^2 \, dy = \frac{1}{A} \iint_R x \, dx dy = \bar{x}$$

(a) (10 points) Compute

$$\iint_{S} (\operatorname{curl} \mathbf{F}) \cdot \mathbf{n} \, \mathrm{d}S$$

without using Stoke's Theorem.

Solution: If $P(x, y, z) = 2xy^2z$, $Q(x, y, z) = 2x^2yz$ and $R(x, y, z) = x^2y^2 - 6x$ we have

$$\frac{\partial R(x, y, z)}{\partial y} - \frac{\partial Q(x, y, z)}{\partial z} = 0$$

$$\frac{\partial P(x, y, z)}{\partial z} - \frac{\partial R(x, y, z)}{\partial x} = 6$$

$$\frac{\partial Q(x, y, z)}{\partial x} - \frac{\partial P(x, y, y)}{\partial y} = 0$$

so that $\operatorname{curl} \mathbf{F} = -6\mathbf{j}$ while

$$\mathbf{n} = -\frac{1}{\sqrt{2}}\mathbf{j} + \frac{1}{\sqrt{2}}\mathbf{k}.$$

Moreover we clearly have $dS = \sqrt{2}dxdy$ so that

$$\iint_{S} (\operatorname{curl} \mathbf{F}) \cdot \mathbf{n} = \iint_{x^2 + y^2 < 1} 6 \, \mathrm{d}x \mathrm{d}y = -6\pi$$

(b) (10 points) Compute

$$\iint_{S} (\operatorname{curl} \mathbf{F}) \cdot \mathbf{n} \, \mathrm{d}S$$

using Stoke's Theorem. (**Hint**: since $\cos(\pi - t) = -\cos(t)$ we have that $\int_0^{2\pi} \cos^m(t) \sin^n(t) = 0$ if m is ... and n is ...)

Solution: Let *C* be the cuve traced by

$$\mathbf{r}(t) = \cos(t)\mathbf{i} + \sin(t)\mathbf{j} + \sin(t)\mathbf{k}$$

fot $0 < t < 2\pi$. By Stoke's Theorem we have

$$\iint_{S} (\operatorname{curl} \mathbf{F}) \cdot \mathbf{n} = \oint \mathbf{F}(\mathbf{r}) \, d\mathbf{r}$$

and since

$$d\mathbf{r} = -\sin(t)\mathbf{i} + \cos(t)\mathbf{j} + \cos(t)\mathbf{k}$$

we get

$$\oint \mathbf{F}(\mathbf{r}) d\mathbf{r} = \int_0^{2\pi} (-2\cos(t)\sin^4(t) + 3\cos^3(t)\sin^2(t) - 6\cos^2(t)) dt$$

Observe that, since $cos(\pi - t) = -cos(t)$, we have

$$\int_0^{2\pi} \cos(t) \sin^4(t) dt = \int_0^{2\pi} \cos^3(t) \sin^2(t) dt = 0$$

so that

$$\oint \mathbf{F}(\mathbf{r}) d\mathbf{r} = -6 \int_0^{2\pi} \cos^2(t) dt = -6\pi$$

Useful Formulas

Geometry of curves:

$$\frac{\mathrm{d}s}{\mathrm{d}t} = ||\dot{\mathbf{r}}||$$

$$T = \frac{d\mathbf{r}}{ds}$$

$$\mathbf{N} = \frac{\dot{\mathbf{T}}}{||\dot{\mathbf{T}}|}$$

$$\mathbf{B} = \mathbf{T} \times \mathbf{N}$$

$$\frac{\mathrm{d}s}{\mathrm{d}t} = ||\dot{\mathbf{r}}|| \qquad \mathbf{T} = \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}s} \qquad \mathbf{N} = \frac{\dot{\mathbf{T}}}{||\dot{\mathbf{T}}||} \qquad \mathbf{B} = \mathbf{T} \times \mathbf{N} \qquad \kappa = \left\| \frac{\mathrm{d}\mathbf{T}}{\mathrm{d}s} \right\|$$

Vector Fields: F is conservative on R if curl $\mathbf{F} = 0$ and R is simply connected.

Integrals: If S is the surface described by z = f(x, y) then

$$dS = \sqrt{1 + f_x^2 + f_y^2} \, \mathrm{d}x \mathrm{d}y$$

Stoke's Theorem:

$$\iint \operatorname{curl} \mathbf{F} \cdot \mathbf{n} \, \mathrm{d}S = \oint \mathbf{F}(\mathbf{r}) \mathrm{d}\mathbf{r}$$

Centroid of *R***:**

$$\frac{1}{A} \iint_{R} x \, \mathrm{d}x \mathrm{d}y = \bar{x}$$

where A is the area of R