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Abstract

A SEIR model for the transmission of an infectious disease that spreads in a pop-

ulation through direct contact of the hosts is studied. The force of infection is of pro-

portionate mixing type. A threshold r is identi®ed which determines the outcome of the

disease; if r6 1, the infected fraction of the population disappears so the disease dies

out, while if r > 1, the infected fraction persists and a unique endemic equilibrium state

is shown, under a mild restriction on the parameters, to be globally asymptotically

stable in the interior of the feasible region. Two other threshold parameters r0 and r are

also identi®ed; they determine the dynamics of the population sizes in the cases when the

disease dies out and when it is endemic, respectively. Ó 1999 Elsevier Science Inc. All

rights reserved.

Keywords: Epidemic models; Endemic equilibrium; Latent period; Global stability;
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1. Introduction

Studies of epidemic models that incorporate disease caused death and
varying total population have become one of the important areas in the
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mathematical theory of epidemiology and they have largely been inspired by
the works of Anderson and May (see [1,2]). Most of the research literature on
these types of models assume that the disease incubation is negligible so that,
once infected, each susceptible individual (in the class S) instantaneously be-
comes infectious (in the class I) and later recovers (in the class R) with a
permanent or temporary acquired immunity. A compartmental model based
on these assumptions is customarily called a SIR or SIRS model. Many dis-
eases, however, incubate inside the hosts for a period of time before the hosts
become infectious. Models that are more general than the SIR or SIRS types
need to be studied to investigate the role of incubation in disease transmission.
Using a compartmental approach, one may assume that a susceptible indi-
vidual ®rst goes through a latent period (and is said to become exposed or in
the class E) after infection before becoming infectious. The resulting models are
of SEIR or SEIRS type, respectively, depending on whether the acquired im-
munity is permanent or otherwise.

We assume the population has a homogeneous spatial distribution and the
mixing of hosts follow the law of `mass action'. More speci®cally, we assume
that the local density of the total population is a constant though the total
population size N�t� � S�t� � E�t� � I�t� � R�t� may vary with time. Here
S�t�;E�t�; I�t� and R�t� denote the sizes of the S;E; I and R classes at any time
t, respectively. The per capita contact rate k, which is the average number of
e�ective contacts with other individual hosts per unit time, is then a constant.
A fraction I�t�=N�t� of these contacts is with infectious individuals and thus
the average number of relevant contacts of each individual with the infectious
class is kI�t�=N�t�. The total number of new infections at a time t is given by
kI�t�S�t�=N�t�. This form of mixing term has been used in the literature under
di�erent names. Busenberg and van den Driessche [3] call it proportionate
mixing, a term which they attribute to Nold [4]; Mena-Lorca and Hethcote
[5] call it standard incidence; de Jong et al. [6] call it true mass-action inci-
dence. This incidence form should not be confused with another form
bI�t�S�t� that is often called the simple mass-action incidence (it is called
pseudo mass-action incidence in [6]). The recovered hosts are assumed to
acquire a permanent immunity so that they will not become susceptible again.
This is a technical assumption aimed to reduce the complexity of the
mathematical analysis, but is nonetheless a plausible approximation in
the case of many viral infections such as in measles, smallpox and rubella.
The rate of removal � of individuals from the exposed class is assumed to be
a constant so that 1=� can be regarded as the mean latent period. In the
limiting case, when �!1, the latent period is negligible and a SEIR model
reduces to a SIR model.

The vital dynamics include exponential natural death with rate constant d
and exponential birth with rate constant b. We assume that the infectious
individuals su�er a disease-caused mortality with a constant rate a. The
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equation for the total population size is N 0 � �bÿ d�N ÿ aI . If b� d and
a � 0, N�t� remains a constant and can be normalized to 1. This leads to a
SEIR model with constant total population and bilinear incidence rate,
which is known to possess a sharp threshold r � k�=��� b��c� b�, some-
times called the contact number (see [7]). If r6 1 the disease-free equilibrium
(1,0,0,0) is globally asymptotically stable, namely, the disease dies out irre-
spective of the initial con®guration; if r > 1, there exists a unique endemic
equilibrium which is globally asymptotically stable in the interior of the
feasible region and the disease persists, if it initially exists, at an endemic
equilibrium state. We refer the reader to [7,8] for references on SEIRS
models with constant total population and to [9] for the proof of the global
stability of a unique endemic equilibrium of a SEIR model. In the general
case, N�t� may vary with time and the dynamical behavior of the model
become more intricate; there is an interplay between the dynamics of the
disease and that of the total population. This interplay has been studied in
earlier SIR and SIRS models (see [1,3,5,10,11]), and is one of the primary
concerns in the present paper.

Research on epidemic models of SEIR or SEIRS type with varying total
populations are scarce in the literature. To the authors' knowledge, the
present paper is the ®rst that gives a rigorous treatment of the global
stability of an unique endemic equilibrium for the fractions of sub-popu-
lations and the global dynamics of �S�t�;E�t�; I�t�;R�t��. Several new
methods are employed in the present paper to overcome mathematical
di�culties that are not present in SIR models. The existence and uniqueness
of the endemic equilibrium P� is established without solving explicitly for its
coordinates. This makes the veri®cation of the Routh±Hurwitz stability
condition a very technical matter. We develop in Lemma 5.1 a new criteria
of linear stability using ideas from multilinear algebra. This new criteria is
then used to show the local asymptotical stability of P�. The most chal-
lenging task is the proof of the global stability of P�. Epidemic models of
this type are notorious for the fact that the method of Lyapunov functions
has rarely worked for the proof of the global stability of the endemic
equilibrium. In the present paper, the global stability is proved by em-
ploying the theory of monotone dynamical systems together with a stability
criterion for periodic orbits of multidimensional autonomous systems due to
Muldowney [12]. This approach is also used in [9] for a SEIR model with
constant total population.

Greenhalgh [8] recently studied a class of SEIRS models that incorporate
density dependence in the contact rate and natural death rate. Global stability
of the disease-free equilibrium and the existence, uniqueness and local as-
ymptotic stability of the endemic equilibrium are proved in [8]. The global
stability of the endemic equilibrium, when it is unique, is unresolved in [8]. The
model studied in the present paper is a special case of those considered in [8].
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We prove the global stability of the unique endemic equilibrium for our model
under the restriction a < �. In addition, we present a new method for proving
the local stability of the unique endemic equilibrium. Compared with the
traditional approach of using Routh±Hurwitz conditions (see, for example,
[8]), our method is less technical and more manageable for systems of large
number of equations. Our treatment of the disease-free equilibrium and the
existence and uniqueness of the endemic equilibrium is standard for models of
this type. Similar methods are also used in [8]. Since our model is simpler than
those in [8], we are also able to obtain a complete stability analysis for the
disease-free equilibrium P0 when r6 1, while in [8], this analysis is done only
for r < 1.

Cook and van den Driessche [13] introduced and studied SEIRS models
with two delays. Greenhalgh [8] studied Hopf bifurcations in models of SEIRS
type with density dependent contact and death rates. A recent survey on SEIRS
models is given in [8].

2. Model formulation

A population of size N�t� is partitioned into subclasses of individuals who
are susceptible, exposed (infected but not yet infectious), infectious and re-
covered, with sizes denoted by S�t�; E�t�; I�t� and R�t�, respectively. The sum
E�t� � I�t� is the total infected population. Our assumptions on the dynamical
transfer of the population are demonstrated in the diagram

The parameter b > 0 is the rate for natural birth and d > 0 that of natural
death. It is assumed that all newborns are susceptible and vertical transmission
can be neglected. The parameter a is the rate for disease-related death, c is the
rate for recovery and � is the rate at which the exposed individuals become
infective so that 1=� is the mean latent period. The recovered individuals are
assumed to acquire permanent immunity; there is no transfer from the R class
back to the S class. The force of infection is kI=N , where k is the e�ective per
capita contact rate of infective individuals and the incidence rate is kIS=N . In
the limit when �!1, or equivalently, when the mean latent period 1=�! 0,
the SEIR model becomes a SIR model.

The following di�erential equations are derived based on the basic as-
sumptions and using the transfer diagram:
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S0 � bN ÿ dS ÿ kIS=N ;

E0 � kIS=N ÿ ��� d�E;
I 0 � �E ÿ �c� a� d�I ;
R0 � cI ÿ dR:

�2:1�

The total population size N�t� can be determined by N�t� � S�t� � E�t� �
I�t� � R�t� or from the di�erential equation

N 0 � �bÿ d�N ÿ aI ; �2:2�
which is derived by adding the equations in (2.1). Let s � S=N ; e � E=N ; i �
I=N and r � R=N denote the fractions of the classes S; E; I and R in the
population, respectively. It is easy to verify that s, e, i and r satisfy the system
of di�erential equations

s0 � bÿ bsÿ kis� ais;

e0 � kisÿ ��� b�e� aie;

i0 � �eÿ �c� a� b�i� ai2;

r0 � ciÿ br � air;

�2:3�

subject to the restriction s� e� i� r � 1. Note that the total population size
N�t� does not appear in (2.3); this is a direct result of the homogeneity of the
system (2.1). Also observe that the variable r does not appear in the ®rst three
equations of (2.3). This allows us to attack (2.3) by studying the subsystem

s0 � bÿ bsÿ kis� ais;

e0 � kisÿ ��� b�e� aie;

i0 � �eÿ �c� a� b�i� ai2;

�2:4�

and determining r from r � 1ÿ sÿ eÿ i or

r0 � ciÿ br � air: �2:5�
From biological considerations, we study (2.4) in the closed set

C � f�s; e; i� 2 R3
� j 06 s� e� i6 1g; �2:6�

where R3
� denotes the non-negative cone of R3 including its lower dimensional

faces. It can be veri®ed that C is positively invariant with respect to (2.4). We
denote by oC and C

�
the boundary and the interior of C in R3, respectively.

The point P0 � �1; 0; 0� 2 C is the disease-free equilibrium of (2.4) and it
exists for all non-negative values of its parameters. Any equilibrium in C

�

corresponds to the disease being endemic and is named an endemic equilibrium.
In the rest of this section, we establish that (2.4) is a competitive system

when k > a, a property that plays an important role in the study of the global
dynamics when the disease persists. Let x7!f �x� 2 Rn be a smooth vector ®eld
de®ned for x in an open set D � Rn. The di�erential equation

x0 � f �x�; x 2 D; �2:7�
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is said to be competitive in D if, for some diagonal matrix H � diag��1; . . . ; �n�
where each �i is either 1 or ÿ1, H�of =ox�H has non-positive o�-diagonal ele-
ments for all x 2 D. If D is convex, the ¯ow of a competitive system preserves,
for t < 0, the partial ordering in Rn de®ned by the orthant K � f�x1; . . . ; xn� 2
Rn: �ixi P 0; i � 1; . . . ; ng (see [14], p. 34). The concept of competitiveness used
above is more general than the one in [15] in that the partial ordering is not
necessarily de®ned by the standard orthant of Rn. However, by a linear change
of variables y � Hx, a competitive system as de®ned above can be transformed
into a system that is `competitive' in the sense of [15].

By examining its Jacobian matrix and choosing the matrix H as
H � diag�ÿ1; 1;ÿ1�, one can verify that, when k > a, the system (2.4) is
competitive in the convex region C

�
with respect to the partial ordering de®ned

by the orthant f�s; e; i� 2 R3: s6 0; e P 0; i6 0g. An important characteristic of
a three-dimensional competitive system is the following Poincar�e±Bendixson
property.

Theorem 2.1. Assume that n� 3 and D is convex. Suppose that (2.7) is
competitive in D and that L is a non-empty compact omega limit set of (2.7). If L
contains no equilibria, then L is a closed orbit. (cf. [14], Chapter 3, Theorem 4.1)

Remark. A proof of Theorem 2.1 under the assumption that (2.7) is irreducible
is given in [16]. A proof without the irreducibility requirement is ®rst given in
[15].

3. The disease-free equilibrium and its global stability

Let r � k�=��� b��c� a� b�. Following [5], r will be called the modi®ed
contact number; see Section 7 for more discussion of r. In the following result,
the stability of P0 should be understood in the sense of Lyapunov.

Theorem 3.1. The disease-free equilibrium P0 � �1; 0; 0� of (2.4) is globally
asymptotically stable in C if r6 1; it is unstable if r > 1, and the solutions of
(2.4) starting su�ciently close to P0 in C move away from P0 except that those
starting on the invariant s-axis approach P0 along this axis.

Remark. By Theorem 3.1, the disease-free equilibrium P0 is globally stable in C
if and only if r6 1. An earlier result of Greenhalgh ([8], Theorem 2.3) proved
the global stability of P0 when r < 1.

The following lemma will be used in the proof of Theorem 3.1.

Lemma 3.2. Let D � f�x; y� 2 R2
� j 06 x� y6 1g and
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h�x; y� � �a1 ÿ b1�x� �c1 ÿ b1�y � b1:

Then, for any positive constants a1; b1 and c1,

max
�x;y�2D

h�x; y� � maxfa1; b1; c1g:

Proof. The a�nity of h implies that its maximum in the closed set D is achieved
at the extremal points of the boundary oD. The proof is now a straightforward
evaluation of h on the three vertices of the triangular set D. h

Proof of Theorem 3.1. Set L � �e� ��� b�i. Then

L0 � i�k�sÿ ��� b��c� a� b� � a�e� a��� b�i�
6 i�k��1ÿ eÿ i� ÿ ��� b��c� a� b� � a�e� a��� b�i�

� i�h�e; i� ÿ ��� b��c� a� b��; �3:1�
where h�e; i� � �a�ÿ k��e� �a��� b� ÿ k��i� k�. Applying Lemma 3.2 to
h�e; i� leads to

L06 i�maxfa�; k�; a��� b�g ÿ ��� b��c� a� b��
6 0 if r6 1:

If L0 � 0 and i 6� 0, then

maxfa�; k�; a��� b�g � ��� b��c� a� b�
and (3.1) becomes an equality. Thus, L0 � 0 only if either (1) i� 0, or (2) r � 1
and s� e� i � 1. The maximum invariant set in f�s; e; i� 2 C j L0 � 0g is the
singleton fP0g. The global stability of P0 when r6 1 follows from LaSalle's
Invariance Principle ([17], Chapter 2, Theorem 6.4).

If r > 1, then L0 > 0 for s su�ciently close to 1 except when e � i � 0.
Solutions starting su�ciently close to P0 leave a neighborhood of P0 except
those on the invariant s-axis, on which (2.4) reduces to s0 � bÿ bs and thus
s�t� ! 1, as t!1. This establishes the theorem. h

Theorem 3.1 completely determines the global dynamics of (2.4) in C for the
case r6 1. Its epidemiological implication is that the infected fraction (the sum
of the latent and the infectious fractions) of the population vanishes in time so
the disease dies out. In the rest of this section, we show that the disease persists
when r > 1. We say the disease is endemic if the infected fraction of the pop-
ulation persists above a certain positive level for su�ciently large time. The
endemicity of disease can be well captured and analyzed through the notion of
uniform persistence. System (2.4) is said to be uniformly persistent (see
[11,18,19]) if there exists a constant 0 < c < 1 such that any solution
�s�t�; e�t�; i�t�� with �s�0�; e�0�; i�0�� 2 C

�
satis®es

minflim inf
t!1

s�t�; lim inf
t!1

e�t�; lim inf
t!1

i�t�gP c: �3:2�
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The disease is endemic if (2.4) is uniformly persistent. In this case, both the
infective and the latent fractions persist above a certain positive level. Weaker
notions of persistence have been de®ned and used in the literature of popula-
tion dynamics (see [19]). One may choose to de®ne endemicity of the disease
using one of the weaker notions of persistence. However, as the following result
shows, persistence of (2.4) in any reasonable sense is equivalent to the uniform
persistence de®ned above.

Proposition 3.3. System (2.4) is uniformly persistent in C
�

if and only if r > 1.

Proof. The necessity of r > 1 follows from Theorem 3.1 and the fact that the
asymptotic stability of P0 precludes any kind of persistence. The su�ciency of
the condition r > 1 follows from a uniform persistence result, Theorem 4.3, in
[20]. To demonstrate that (2.4) satis®es all the conditions of Theorem 4.3 in [20]
when r > 1, choose X � R3 and E � C. The maximal invariant set N on the
boundary oC is the singleton fP0g and is isolated. Thus, the hypothesis (H) of
[20] holds for (2.4). The proposition is proved by observing that, in the setting
of (2.4), the necessary and su�cient condition for uniform persistence in
Theorem 4.3 of [20] is equivalent to P0 being unstable. h

Remark. Theorem 3.1 and Proposition 3.3 establish the modi®ed contact
number r as a sharp threshold parameter; if r6 1 the disease dies out, if r > 1
the disease remains endemic.

4. Existence and uniqueness of an endemic equilibrium P*

Global stability of P0 in C when r6 1 precludes the existence of equilibria
other than P0; the study of endemic equilibria is restricted to the case r > 1. We
remark that r > 1 implies k > a. This relation will be assumed throughout this
and the next two sections.

The coordinates of an equilibrium P � � �s�; e�; i�� 2 C
�

satisfy

bÿ bsÿ kis� ais � 0;

kisÿ ��� b�e� aie � 0;

�eÿ �c� a� b�i� ai2 � 0

�4:1�

and also s� > 0, e� > 0 and i� > 0. Adding the above equations leads to

�bÿ ai���1ÿ s� ÿ e� ÿ i�� � ci�;

which gives the following range of i�

0 < i� < min 1; b=af g: �4:2�
Eliminating s and e from (4.1), we see that i� satis®es
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f �i�� � r; �4:3�
where

f �i� � 1

�
ÿ a
�� b

i
�

1

�
ÿ a

c� a� b
i
�

1

�
� kÿ a

b
i
�

�4:4�
and r � k�=��� b��c� a� b� is the modi®ed contact number de®ned in Sec-
tion 3. Furthermore, s� and e� can be uniquely determined from i� by

s� � b
b� ki� ÿ ai�

and e� � c� a� bÿ ai�

�
i�; �4:5�

respectively. Eq. (4.3) is cubic and the existence as well as the uniqueness of
i� 2 �0; b=a� have to be established without being able to solve for i� explicitly;
this technical di�culty later forces us to develop a new method for the proof of
the local stability of P� in the next section.

The three roots of f �i� are i1 � ��� b�=a; i2 � �c� a� b�=a and
i3 � ÿb=�kÿ a�. They all lie outside �0; b=a� when r > 1. Furthermore, f �0� �
1 and f �b=a� � r��a� c�=a� > r. If b > a, then f �1�P r��c� b�=b� > r.
These observations lead to the conclusion that, when r > 1, the line y � r has
exactly one intersection �i�; f �i��� with the graph of f �i� that satis®es (4.2) (see
Fig. 1). We thus have established the following result.

Theorem 4.1. Suppose that r > 1. Then (2.4) has a unique interior equilibrium
P � � �s�; e�; i�� and its coordinates satisfy (4.3)±(4.5).

Remark. The results in Theorem 4.1 are also obtained in [8], Theorem 2.3 (ii)
by a similar method. However, the method is more clearly illustrated in our
simpler model.

Fig. 1. The existence and uniqueness of i� in the interval [0, b/a].
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5. Local asymptotic stability of the endemic equilibrium P*

Throughout this section, the relation k > a is assumed since we are con-
cerned only with the interior equilibrium P�.

To show the asymptotic stability of the equilibrium P�, we use the method of
®rst approximation. The Jacobian matrix of (2.4) at a point P � �s; e; i� 2 C is

J�P � �
ÿbÿ ki� ai 0 ÿ ks� as

ki ÿ ��� b� � ai ks� ae
0 � ÿ �c� a� b� � 2ai

24 35: �5:1�

We prove that the matrix J�P �� is stable, namely, all its eigenvalues have
negative real parts. This is routinely done by verifying the Routh±Hurwitz
conditions. Since the explicit coordinates of P� are not available, veri®cation of
the inequalities in the Routh±Hurwitz conditions for J�P �� is technically very
di�cult. We ®rst develop a new criteria for the stability of matrices.

Using the spectral properties of the second compound matrices (see the
Appendix A), we prove the following result.

Lemma 5.1. Let A be an m� m matrix with real entries. For A to be stable, it is
necessary and su�cient that
1. the second compound matrix A�2� is stable,
2. �ÿ1�m det�A� > 0.

Proof. The necessity of the conditions 1. and 2. follows directly from the
proposition in the Appendix A. Furthermore, by the same proposition, the
stability of A�2� implies that at most one eigenvalue of A can have a non-
negative real part. It is then simple to see that the determinant condition
�ÿ1�m det�A� > 0 preludes the case of exactly one non-negative eigenvalue.
This completes the proof. h

Theorem 5.2. If r > 1, then (2.4) has a unique equilibrium P � in C
�

and P � is
asymptotically stable.

Remark. The local stability of the unique P � is also proved for a more general
model in [8], Theorem 2.3 using the Routh±Hurwitz conditions.

Proof. It remains to show that J�P �� satis®es the conditions (1) and (2) of
Lemma 5.1. The second compound matrix J �2��P � of the Jacobian matrix J�P�
is (see the Appendix A)

ÿ2bÿ kiÿ �� 2ai ks� ae ksÿ as
� ÿ 2bÿ kiÿ cÿ a� 3ai 0
0 ki ÿ 2bÿ �ÿ cÿ a� 3ai

24 35:
�5:2�
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For P � � �s�; e�; i�� and the diagonal matrix E � diag�i�; e�; s��, the matrix
J �2��P �� is similar to EJ �2��P ��Eÿ1

ÿ2bÿ ki� ÿ �� 2ai� ki�s�
e� � ai� ki� ÿ ai�

�e�
i� ÿ 2bÿ ki� ÿ cÿ a� 3ai� 0
0 ki�s�

e� ÿ 2bÿ �ÿ cÿ a� 3ai�

24 35:
The matrix J �2��P �� is stable if and only if EJ �2��P ��Eÿ1 is stable, for similarity

preserves the eigenvalues. Since the diagonal elements of the matrix
EJ �2��P ��Eÿ1 are negative, an easy argument using Ger�sgorin discs shows that it
is stable if it is diagonally dominant in rows. For a proof of Ger�sgorin's the-
orem, we refer the reader to [21]. Set l � maxf� � �g, where

g1 � ÿ2bÿ �� 2ai� � ki�s�

e�
;

g2 � ÿ2bÿ ki� ÿ cÿ a� 3ai� � �e
�

i�
;

g3 � ÿ2bÿ �ÿ cÿ a� 3ai� � ki�s�

e�
:

�5:3�

Eq. (4.1) can be rewritten as

b
s�
� b� ki� ÿ ai�;

ki�s�

e�
� ��� b� ÿ ai�;

�e�

i�
� c� a� bÿ ai�:

�5:4�

Substituting (5.4) into (5.3) yields

l � maxfÿb� ai�; ÿbÿ ki� � 2ai�; ÿbÿ cÿ a� 2ai�g:
Then, using (4.2) and the relation k < a, we have l < 0, which implies the di-
agonal dominance as claimed and thus veri®es the ®rst condition of Lemma 5.1.

Using (5.1) and (5.4), we have

det�J�P ��� �
ÿ b

s� 0 bs�ÿb
i�

ki� ÿ ki�s�
e� ks� � ae�

0 � ÿ �e�
i� � ai�

�������
�������

�ÿ kb��1ÿ s�� � kbi�
ai�

e�
� ba� e�

s�

�ÿ kb��1ÿ s�� � kb�i�
ai�

�e�
� kb�e�

a
ks�

6ÿ kb��1ÿ s� ÿ i� ÿ e�� < 0;

since �e�=i� � c� a� bÿ ai� > a and ks� � �c� a� bÿ ai����� bÿ ai��=�
> a. This veri®es the second condition of Lemma 5.1 and completes the
proof. h
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6. Global stability of the endemic equilibrium P*

In this section, we establish that all solutions of (2.4) in C
�

converge to P�

when r > 1, which, together with the local stability of P�, implies that P� is
globally asymptotically stable in C

�
. Note that the relation k > a holds when

r > 1 and thus (2.4) is competitive from Section 2. The following strong
Poincar�e±Bendixson property follows from Theorem 2.1. Its proof is the same
as that of Theorem 4.2 of [9] and thus is omitted.

Theorem 6.1. Suppose that r > 1. Then any non-empty compact omega limit set
of (2.4) in C

�
is either a closed orbit or the endemic equilibrium P �.

In the absence of closed orbits, by Theorem 6.1, all trajectories in C
�

con-
verge to P � when r > 1. This leads to the following result.

Corollary 6.2. Assume that r > 1. Then the unique endemic equilibrium P � is
globally asymptotically stable in C

�
if (2.4) has no non-constant periodic solutions.

The key to verifying the global stability of P� is to rule out the existence of
periodic solutions. This is achieved by showing that any periodic solution to
(2.4) is orbitally asymptotically stable. A periodic solution x � p�t� to the
autonomous system (2.7) in Rn with least period x > 0 and orbit O �
fp�t�: 06 t < xg is said to be orbitally stable if, for each � > 0, there exists d >
0 such that any solution x�t�, for which the distance of x�0� from O is less than
d, remains at a distance less than � from O for all t P 0. It is asymptotically
orbitally stable with asymptotic phase if it is orbitally stable and there exists b >
0 such that, any solution, for which the distance of x�0� from O is less than b,
satis®es jx�t� ÿ p�t ÿ s�j ! 0 as t!1 for some s which may depend on x�0�
(see [22]). The following stability criterion for periodic solutions of a general
autonomous system (2.7) is given by Muldowney [12]. Let of �2�=ox denote the
second additive compound matrix of the Jacobian matrix of =ox.

Theorem 6.3. A su�cient condition for a periodic orbit O � fp�t�: 06 t < xg of
(2.7) to be asymptotically orbitally stable with asymptotic phase is that the
periodic linear system

z0�t� � of
ox

�2�
�p�t��z�t�; �6:1�

is asymptotically stable.

Applying Theorem 6.3 to system (2.4) we can prove the following result.

Proposition 6.4. Any non-constant periodic solution to (2.4), if one exists, is
asymptotically orbitally stable with asymptotic phase provided that a6 �.

202 M.Y. Li et al. / Mathematical Biosciences 160 (1999) 191±213



Proof. Using the matrix J �2��P � in (5.2), we can write the second compound
system (6.1) for (2.4) with respect to a solution �s�t�; e�t�; i�t�� as

X 0 � ÿ�2b� ki� �ÿ 2ai�X � �ks� ae�Y � �ksÿ as�Z;
Y 0 � �X ÿ �2b� ki� c� aÿ 3ai�Y ;
Z 0 � kiY ÿ �2b� �� c� aÿ 3ai�Z:

�6:2�

Let

V �X ; Y ; Z; s; e; i� � sup jX j; e
i
jY j
��

� kÿ a
k
jZj
��

: �6:3�

Suppose that the solution �s�t�; e�t�; i�t�� is periodic of least period x > 0 and
that �s�0�; e�0�; i�0�� 2 C

�
. Then its orbit O is at a positive distance from the

boundary oC; there exists a constant c > 0 such that

V �X ; Y ; Z; s; e; i�P cj�X ; Y ; Z�j; �6:4�
for all �X ; Y ; Z� 2 R3 and �s; e; i� 2 O. Let �X �t�; Y �t�; Z�t�� be a solution to (6.2)
and V �t� � V �X �t�; Y �t�; Z�t�; s�t�; e�t�; i�t��. The right-hand derivative of V �t�
exists and its calculation is described in [23]. Direct calculations lead to the
following di�erential inequalities:

D�jX �t�j 6 ÿ �2b� ki� �ÿ 2ai�jX �t�j
� ks� � ae�jY �t�j � ks� ÿ as�jZ�t�j

� ÿ �2b� ki� �ÿ 2ai�jX �t�j � ksi
e

�
� ai

�
e
i
jY �t�j

� �kÿ a� si
e

e
i
jZ�t�j; �6:5�

and

D�jY �t�j6 �jX �t�j ÿ �2b� ki� c� aÿ 3ai�jY �t�j; �6:6�

D�jZ�t�j6 kijY �t�j ÿ �2b� �� c� aÿ 3ai�jZ�t�j: �6:7�
Using (6.6) and (6.7), as well as the relations a6 � and i < 1, we have

D�
e
i
jY �t�j
�

� kÿ a
k
jZ�t�j

�
� e0

e

�
ÿ i0

i

�
e
i
jY �t�j
�

� kÿ a
k
jZ�t�j

�
� e

i
D� jY �t�j
�

� kÿ a
k
jZ�t�j

�
6 �e

i
jX �t�j � e0

e

�
ÿ i0

i
ÿ 2bÿ cÿ a� 2ai

�
e
i
jY �t�j
�

� kÿ a
k
jZ�t�j

�
: �6:8�

Relations (6.6) and (6.8) lead to

D�V �t�6 maxfg1�t�; g2�t�gV �t�; �6:9�
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where

g1�t� � ÿ2bÿ kiÿ �� 3ai� ksi
e
; �6:10�

g2�t� � e0

e
ÿ i0

i
ÿ 2bÿ cÿ a� 2ai� �e

i
: �6:11�

Rewriting (2.4), we ®nd that

ksi
e
� ai � e0

e
� �� b; �6:12�

�e
i
� ai � i0

i
� c� a� b: �6:13�

Moreover, the periodic function r�t� � 1ÿ s�t� ÿ e�t� ÿ i�t� satis®es (2.5) which
leads to

r0

r
� ci

r
ÿ b� ai: �6:14�

From (6.10)±(6.14),

maxfg1�t�; g2�t�g6 e0�t�
e�t� �

r0�t�
r�t� ÿ

ci�t�
r�t� ;

and thusZx
0

maxfg1�t�; g2�t�g dt 6 log e�t� x
0

�� � log r�t���x
0
ÿ
Zx

0

ci�t�
r�t� dt � ÿcC

by the periodicity of e�t� and r�t�, where C � R x
0
�i�t�=r�t�� dt > 0. This and

(6.9), imply that V �t� ! 0 as t!1, and in turn that �X �t�; Y �t�; Z�t�� ! 0 as
t!1 by (6.4). As a result, the second compound system (6.2) is asymptoti-
cally stable and the periodic solution �s�t�; e�t�; i�t�� is asymptotically orbitally
stable with asymptotic phase by Theorem 6.3. h

Now, we are ready to prove the global stability of the endemic equilibrium
P�.

Theorem 6.5. Suppose that r > 1. Then the unique endemic equilibrium P � is
globally asymptotically stable in C

�
provided that a6 �. Moreover, P � attracts all

trajectories in C except those on the invariant s-axis which converge to P0 along
this axis.

Proof. By inspecting the vector ®eld given by (2.4), we see that all trajectories
originating from the boundary oC enter C

�
except those on the s-axis which

converge to P0 along this invariant axis. It remains to show that P � attracts all
points in C

�
. Let U � C

�
be the set of points that are attracted by P �. Then U is
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an open subset of C
�

by the asymptotic stability of P �. The theorem is proved if
we establish that C

� � U . Assume the contrary; then the boundary oU of U has
a non-empty intersection I with C

�
. Since both U and its closure U are

invariant and U is open, oU � U ÿ U is also invariant. As the intersection of
oU with the positively invariant C

�
, I is positively invariant and thus I

contains a non-empty compact omega limit set X. By the uniform persistence,
we must have X \ oC � ;. Since it contains no equilibria, by Theorem 6.1 and
Proposition 6.4, X is a closed orbit and is asymptotically orbitally stable. We
thus obtain a contradiction since X belongs to the alpha limit set of a trajectory
in U. This completes the proof. h

Under the condition a6 �, Theorem 6.5 describes the global dynamics of
(2.4) when the disease is endemic. Together with Theorem 3.1, this completely
determines the global dynamics of (2.4) and establish the modi®ed contact
number r as a sharp threshold parameter. When r6 1, the disease dies out in
the way that the infected fractions vanish, whereas when r > 1, the disease
becomes endemic so that the infected fractions approach a positive constant
level. The condition a6 � holds in both limiting cases when �!1 or a � 0.
Theorem 6.5 thus contains, as special cases, the global stability results of SIR
models with varying population in [3,5] and of SEIR models with constant
population in [9].

7. The dynamics of the population sizes

We now turn to the dynamics of �S�t�;E�t�; I�t�;R�t�� and
N�t� � S�t� � E�t� � I�t� � R�t�, which are governed by systems (2.1) and (2.2).
The fact that R does not appear in the ®rst three equations in (2.1) allows us to
study the equivalent system

S0 � bN ÿ dS ÿ kIS=N ;

E0 � kIS=N ÿ ��� d�E;
I 0 � �E ÿ �c� a� d�I ;

N 0 � �bÿ d�N ÿ aI ;

�7:1�

in its feasible region

R � f�S;E; I ;N� 2 R4
� j 06 S � E � I 6Ng:

If b < d and a P 0, or if b6 d and a > 0, (7.1) implies that N�t� ! 0 mono-
tonically as t!1 for all solutions with E�0� � I�0� > 0, namely, when the
disease is initially present. If b � d and a � 0, N�t� remains constant so that
(7.1) reduces to a SEIR model with constant population whose dynamics have
been completely determined in [9]. In the rest of this section, we assume that
b > d and a > 0.
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Let

f �x� � 1

�
ÿ a
�� b

x
�

1

�
ÿ a

c� a� b
x
�

1

�
� kÿ a

b
x
�
; �7:2�

be the cubic function de®ned in (4.4). Set r � f ��bÿ d�=a� and
r0 � k�=��� d��c� a� d�. Both parameters r and r0 play key roles in the
dynamics of the population sizes. In the limiting case when �!1, r0 takes the
form k=�c� a� d� which is called the contact number in the literature (it is
denoted by h in [5]), since it can be regarded as the average number of e�ective
contacts of an infective during the death modi®ed mean infectious period
1=�c� a� d�. For the same reason, r0 will be called the contact number and
r � k�=��� b��c� a� b� the modi®ed contact number for our SEIR model.
As mentioned above, if a � 0 and b � d, the total population remains a con-
stant, and subsequently, r0 and r are identical and agree with the contact
number de®ned for SEIR models with constant total population, see [7,8].

Proposition 7.1. System (7.1) has only one equilibrium (0,0,0,0) if r 6� r and has a
line of equilibria ��N �=r0�; ��c� d � a��bÿ d�=�a���N �; ��bÿ d�=a�N �;N �� if
r � r, where N � is an arbitrary positive number.

Proof. An equilibrium �S�;E�; I�;N �� with positive entries exists if and only if
the entries satisfy

S�

N �
� ��� d��c� a� d�

k�
;

E�

N �
� c� a� d

�

I�

N �
;

I�

N �
� bÿ d

a
;

and

bÿ d
S�

N �
ÿ k

I�

N �
S�

N �
� 0:

Eliminating S�; I� and N � from these equations leads to the following condi-
tion

��� d��c� a� d�
k�

d
�
� k

a
�bÿ d�

�
� b;

which is equivalent to

r � f
bÿ d

a

� �
� 1

�
ÿ bÿ d
�� b

�
1

�
ÿ bÿ d

c� a� b

�
1

�
� �kÿ a��bÿ d�

ba

�
� r;

completing the proof. h

Remark. In the limiting case when �!1, the condition r � r reduces to the
condition / � 1 in [5] with d � 0.
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If the modi®ed contact number r6 1, then the infected fractions of the
population vanish. The disease does not suppress the natural growth of the
host population so that N�t� and S�t� grow to in®nity exponentially at an ex-
ponential rate bÿ d as t!1. The dynamics of the infected population
�E�t�; I�t�� depend on the contact number r0, as we demonstrate in the fol-
lowing theorem.

Theorem 7.2. Suppose r6 1. Then N�t�; S�t� ! 1 exponentially with exponen-
tial rate bÿ d as t!1. In addition, �E�t�; I�t�;R�t�� ! �0; 0; 0� or �1;1;1� if
r0 < 1 or r0 > 1, respectively.

Proof. From Theorem 3.1, r6 1 implies that �s�t�; e�t�; i�t�; r�t�� ! �1; 0; 0; 0�
exponentially as t!1. The claim on the exponential growth of N�t� follows
from

N 0�t� � ��bÿ d� ÿ ai�t��N�t�;
and the fact that i�t� ! 0 as t!1 (see [22]). The behavior of S�t� follows from
the fact that s�t� � S�t�=N�t� ! 1 as t!1, independent of the contact
number r0. To see the behavior of E�t�; I�t� and R�t�, consider the equations for
E, I and R

E
I
R

24 350 � ÿ��� d� k 0
� ÿ �c� a� d� 0
0 c ÿ d

24 350@
�

0 k�sÿ 1� 0
0 0 0
0 0 0

24 351A E
I
R

24 35; �7:3�

which is a perturbation of a linear system. The solutions to the principal part of
(7.3) behave as claimed in the theorem, as do those for the perturbed system
(7.3) since the perturbation decays exponentially as t!1 (see [22], Chapter 3,
Theorem 2.3). h

If the modi®ed contact number r > 1, the disease becomes endemic as the
infected fraction approaches a constant level. The extent to which the disease
suppresses the natural growth of the host population is determined by the ratio
r=r, as we prove in the following theorem.

Theorem 7.3. Suppose r > 1. Assume that a6 �. Then �S�t�;E�t�; I�t�;R�t�;N �
�t�� ! �1;1;1;1;1� or �0; 0; 0; 0; 0� depending on whether r < r or r > r,
respectively. If r � r, the line of equilibria �S�;E�; I�;N �� described in Theorem
7.1 exists and is foliated with ®bres of 3-dimensional stable manifolds.

Proof. Since r � f ��bÿ d�=a� and r � f �i��, using the graph of f that is
rigorously established at the end of Section 4 (see Fig. 1), we see that r > r (or
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r < r) is equivalent to the relation bÿ d ÿ ai� > 0 �or bÿ d ÿ ai� < 0�. The
®rst statement of the theorem follows from the global stability of �s�; e�; i�; r��
in Theorem 6.5 and the equation

N 0�t� � ��bÿ d ÿ ai�� ÿ a�i�t� ÿ i���N�t�:
If r � r, then bÿ d ÿ ai�t� � ÿa�i�t� ÿ i�� ! 0 exponentially by the asymp-
totic stability of �s�; e�; i��. This implies the convergence of the integral

R1
0
�bÿ

d ÿ ai�t�� dt and hence that N�t� ! N � as t!1, where N � depends on N(0).
Replacing N by N� in the ®rst three equations of (7.1) and scaling N� to 1 by
considering s � S=N ; e � E=N and i � I=N , we arrive at a system that is the
same as (2.4) for �s; e; i� with r > 1. This proves the last claim of the theorem.
The replacement of N(t) by N� is guaranteed by the theory of asymptotically
autonomous systems (see [24,25]). h

Remark. From the proof of Theorem 7.3, we see that the relation r > r is
equivalent to bÿ d ÿ ai� > 0. Biologically, Theorem 7.3 implies that an
endemic disease suppresses the natural growth of the host population and the
extent of this suppression is directly related to i�, the level of the infectious
fraction in the population. If i� is high compared with the natural growth rate,
more speci®cally, if i� > �bÿ d�=a, then the disease can suppress the population
growth enough to cause it to decline to zero; if i� is su�cient low, then it can
only manage to lower the exponential growth rate of the population; if
i� � �bÿ d�=a, then the disease can regulate an otherwise exponentially growing
population so that the total population settles to a constant level. In Fig. 2,
trajectories from numerical solutions are depicted for the case i� � �bÿ d�=a.

8. Discussion

This paper has considered a SEIR model that incorporates exponential
natural birth and death, as well as disease-caused death, so that the total

Fig. 2. A Mathematica plot showing that the solutions I(t) and N(t) of (7.1) converge to ®nite

limits, when r � r. The parameter values are a � 6; b � 0:5; � � 4; c � 1:5; k � 20;
d � 0:18; r � r � 2:22 > 1.
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population size may vary in time. The incidence rate is of the proportionate
mixing type frequently used in the literature. The asymptotic behavior of this
multidimensional model has been determined as a function of the basic pa-
rameters of the system.

The homogeneity of the vector ®eld of the model suggests the way of ana-
lyzing the global dynamics; the global behavior of the derived system for the
fractions �s; e; i; r� is analyzed, which in turn determines the behavior of the
population sizes �S;E; I ;R� and N. For epidemic models with varying total
population, the endemicity of the disease can be understood as the infected
population remains above a positive level in actual size or in fraction and thus
needs to be clearly de®ned. In the present paper, the endemicity has been de-
®ned using the infected fraction of the population. For a disease with non-
negligible latency, the infected fraction includes both the latent and infectious
fractions. Three threshold parameters have been identi®ed: they are the mod-
i®ed contact number r � k�=��� b��c� a� b�, the contact number
r0 � k�=��� d��c� a� d�, and the parameter r � f ��bÿ d�=a�. The modi®ed
contact number r determines whether the disease can become endemic. If
r6 1, the disease dies out in the sense that the infected fraction disappears
from the population. In this case, the contact number r0 determines the dy-
namics of the population size. Note that if r0 > 1, then the infected population
grows exponentially in size but approaches zero in fraction. If r > 1, then the
disease becomes endemic. In this case, the parameter r determines the extent
that disease can regulate the growth of the host population. The technical
condition a6 � used in Theorem 6.4 is satis®ed if the disease has a low virulence
or causes a short latent period. This condition includes both limiting cases
when a � 0 and �!1; thus the results in the present paper include as special
cases the earlier results on SIR and SEIR models with constant population and
SIR models with varying population and proportionate mixing term. The
threshold parameters r; r0 and r generalize the relevant threshold parameters
used in these earlier models.

As indicated earlier, some of the results here can be deduced from the paper
of Greenhalgh [8] who considered a more general model. The global stability of
the disease-free equilibrium P0 for the fractions is proved under the condition
r < 1 in [8]; for our model, we are able to include the case when r � 1. The
existence and uniqueness of the endemic equilibrium P� for the fractions are
obtained in [8] using a similar method. The local stability for P� is proved in [8]
using Routh±Hurwitz criteria. In the present paper, the local stability of P� is
proved using a new stability criterion. Veri®cation of our stability conditions is
less technical and more manageable, especially when the number of equations
is large, than the Routh±Hurwitz conditions used in [8]. Using a new method
developed in [26], the global stability of P�, which was unresolved in [8], is
proved in the present paper under the restriction a6 �. The same method has
also been successfully applied in [9] to a SEIR model with constant population.
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It seems very hopeful that this method can be applied to a wider class of non-
linear models.

The epidemiological and demographical phenomena as well as their inter-
action as observed in our model is reminiscent of those discussed in earlier SIR
models with similar incidence rate and varying total population (see [3,5]). For
instance, no periodic solutions exist. This is proved in this paper under the
restriction that a6 �. Numerical simulations carried out for system (2.4) (see
Fig. 3) seem to suggest that Theorem 6.5 holds without such a restriction. Our
®ndings seem to concur with the earlier observation that the contact rate seems

Fig. 3. A Mathematica 3D plot showing that the trajectories of (2.4) converge to the unique en-

demic equilibrium P�. The parameter values are a � 6; b � 0:5; � � 4; c � 1:5; k � 20. Note that

a > � and r � 2:22 > 1.
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to be a more reliable source for more complicated dynamics such as periodic
solutions to occur. For instance, periodic contact rates can lead to periodic
solutions (see [27,28]) as can certain non-linear incidences (see [7,29]).
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Appendix A. Compound matrices

An m� m matrix A with real entries will be identi®ed with the linear op-
erator on Rm that it represents. Let ``^'' denote the exterior product in Rm.
With respect to the canonical basis in the exterior product space ^2Rm, the
second additive compound matrix A�2� of A represents a linear operator on ^2Rm

whose de®nition on a decomposable element u1 ^ u2 is

A�2��u1 ^ u2� � A�u1� ^ u2 � u1 ^ A�u2�:
De®nition over all of ^2Rm is through linear extension. The entries in A�2� are
linear relations of those in A. Let A � �aij�. For any integer i � 1; . . . ; m

2

ÿ �
, let

�i� � �i1; i2� be the ith member in the lexicographic ordering of integer pairs
such that 16 i1 < i26m. Then, the entry in the ith row and the jth column of
Z � A�2� is

zij �

ai1i1 � ai2i2 if �i� � �j�;

�ÿ1�r�saisjr if exactly one entry is of �i� does not

occur in �j� and jr does not occur in �i�;

0 if �i� differs from �j� in two or more entries:

8>>>>>>>><>>>>>>>>:
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For any integer 16 k6m, the kth additive compound matrix A�k� of A is de®ned
canonically. For discussions of compound matrices, the reader is referred to
[12,30]. Pertinent to our purpose is a spectral property of A�2� given in the
following proposition. Let r�A� � fki: i � 1; . . . ;mg be the spectrum of A.

Proposition. The spectrum of A�2�; r�A�2�� � fki1 � ki2 : 16 i1 < i26mg.

For m� 2,3 and 4, the second additive compound matrix A�2� of an m� m
matrix A � �aij� is, respectively,

m � 2: a11 � a22 �� tr�A��;

m � 3:

a11 � a22 a23 ÿ a13

a32 a11 � a33 a12

ÿa31 a21 a22 � a33

264
375;

m � 4:

a11 � a22 a23 a24 ÿ a13 ÿ a14 0

a32 a11 � a33 a34 a12 0 ÿ a14

a42 a43 a11 � a44 0 a12 a13

ÿa31 a21 0 a22 � a33 a34 ÿ a24

ÿa41 0 a21 a43 a22 � a44 a23

0 ÿ a41 a31 ÿ a42 a32 a33 � a44

2666666664

3777777775
:

References

[1] R.M. Anderson, R.M. May, Population biology of infectious diseases I, Nature 180 (1979)

361.

[2] R.M. May, R.M. Anderson, Population biology of infectious diseases II, Nature 280 (1979)

455.

[3] S.N. Busenberg, P. van den Driessche, Analysis of a disease transmission model in a

population with varying size, J. Math. Biol. 28 (1990) 257.

[4] A. Nold, Heterogeneity in disease-transmission modeling, Math. Biosci. 52 (1980) 227.

[5] J. Mena-Lorca, H.W. Hethcote, Dynamic models of infectious diseases as regulator of

population sizes, J. Math. Biol. 30 (1992) 693.

[6] M.C.M. de Jong, O. Diekmann, H. Heesterbeek, How does transmission of infection depend

on population size? in: Denis Mollison (Ed.), Epidemic Models: Their Structure and Relation

to Data, Publications of the Newton Institute, vol. 5, Cambridge University, Cambridge,

1995, p. 84.

[7] W.-M. Liu, H.W. Hethcote, S.A. Levin, Dynamical behavior of epidemiological models with

non-linear incidence rate, J. Math. Biol. 25 (1987) 359.

[8] D. Greenhalgh, Hopf bifurcation in epidemic models with a latent period and non-permanent

immunity, Math. Comput. Modelling 25 (1997) 85.

212 M.Y. Li et al. / Mathematical Biosciences 160 (1999) 191±213



[9] M.Y. Li, J.S. Muldowney, Global stability for the SEIR model in epidemiology, Math. Biosci.

125 (1995) 155.

[10] D. Greenhalgh, R. Das, Modeling epidemics with variable contact rates, Theoret. Popu. Biol.

47 (1995) 129.

[11] H. Thieme, Epidemic and demographic interaction in the spread of potentially fatal diseases in

growing populations, Math. Biosci. 111 (1992) 99.

[12] J.S. Muldowney, Compound matrices and ordinary di�erential equations , Rocky Mount. J.

Math. 20 (1990) 857.

[13] K.L. Cook, P. van den Driessche, Analysis of an SEIRS epidemic model with two delays, J.

Math. Biol. 35 (1996) 240.

[14] H.L. Smith, Monotone dynamical systems, an introduction to the theory of competitive and

cooperative systems, Am. Math. Soc., Providence (1995).

[15] M.W. Hirsch, Systems of di�erential equations which are competitive or cooperative IV:

Structural stability in three dimensional systems SIAM, J. Math. Anal. 21 (1990) 1225.

[16] H.L. Smith, Periodic orbits of competitive and cooperative systems, J. Di�erent. Eq. 65 (1986)

361.

[17] J.P. LaSalle, The stability of dynamical systems, Regional Conference Series in Applied

Mathematics, SIAM, Philadelphia, 1976.

[18] G.J. Butler, P. Waltman, Persistence in dynamical systems, Proc. Am. Math. Soc. 96 (1986)

425.

[19] P. Waltman, A brief survey of persistence, in: S. Busenberg, M. Martelli (Eds.), Delay

Di�erential Equations and Dynamical Systems, Springer, New York, 1991, p. 31.

[20] H.I. Freedman, M.X. Tang, S.G. Ruan, Uniform persistence and ¯ows near a closed

positively invariant set, J. Dynam. Di�. Equat. 6 (1994) 583.

[21] R.A. Usmani, Applied Linear Algebra, Marcel Dekker, New York, 1987.

[22] J.K. Hale, Ordinary Di�erential Equations, Wiley, New York, 1969.

[23] R.H. Martin Jr., Logarithmic norms and projections applied to linear di�erential systems,

J. Math. Anal. Appl. 45 (1974) 432.

[24] L. Markus, Asymptotically autonomous di�erential systems, Contributions to the Theory of

Non-linear Oscillations, vol. 3, Princeton University, Princeton, NJ, 1956, p. 17.

[25] H. Thieme, Convergence results and a Poincar�e±Bendixson trichotomy for asymptotically

autonomous di�erential equations, J. Math. Biol. 30 (1992) 755.

[26] M.Y. Li, Geometrical studies on the global asymptotic behaviour of dissipative dynamical

systems, PhD thesis, University of Alberta, 1993.

[27] H.W. Hethcote, S.A. Levin, Periodicity in epidemiological models, in: L. Gross, S.A. Levin

(Eds.), Applied Mathematical Ecology, Springer, New York, 1989, p. 193.

[28] H.W. Hethcote, H.W. Stech, P. van den Driessche, Periodicity and stability in epidemic

models: A survey, in: K.L. Cook (Ed.), Di�erential Equations and Applications in Ecology,

Epidemics and Population Problems, Academic Press, New York, 1981, p. 65.

[29] H.W. Hethcote, P. van den Driessche, Some epidemiological models with non-linear

incidence, J. Math. Biol. 29 (1991) 271.

[30] M. Fiedler, Additive compound matrices and inequality for eigenvalues of stochastic matrices,

Czech. Math. J. 99 (1974) 392.

M.Y. Li et al. / Mathematical Biosciences 160 (1999) 191±213 213


