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Abstract

This paper analyzes the role of neutral viruses in the phenomenon of local immunodefi-
ciency. We show that, even in the absence of altruistic viruses, neutral viruses can support
the existence of persistent viruses, and thus local immunodeficiency. However, in all such
cases neutral viruses can maintain only bounded (relatively small) concentration of per-
sistent viruses. Moreover, in all such cases the state of local immunodeficiency could only
be marginally stable, while it is known that altruistic viruses can maintain stable local im-
munodeficiency. We also present an absolutely minimal cross-immunoreactivity network
where a stable and robust state of local immunodeficiency can be maintained. It is now a
challenge to synthetic biology to build such small networks with stable local immunode-
ficiency. Another important challenge for biology is to understand which types of viruses
can play a role of persistent, altrustic and neutral ones, and whether a role which a given
virus plays depends on the structure (topology) of a given cross-immunoreactivity net-
work.

Keywords: cross-immunoreactivity network, local immunodeficiency, neutral , altruistic
and persistent viruses

1. Introduction

Local immunodeficiency (LI) is a recently discovered phenomenon [1] that appears in
diseases characterised by cross-immunoreactivity of the corresponding pathogens (viruses).
Examples of such diseases include Hepatitis C, HIV, dengue, influenza, etc [2, 3, 4, 5, 6, 7,
8, 9]. The phenomenon of local immunodeficiency means that some persistent antigens
(viruses) manage to escape immune response because they are protected by altruistic
viruses that take virtually all the response of the host’s immune system on themselves.
This discovery was made through the (numerical) analysis of a new model of Hepatitis
C dynamics (evolution) that explained clinical and experimental observations that previ-
ous evolution models (and theory) of Hepatitis C failed to explain. Remarkably this new
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mathematical model has fewer (types of) variables than the previous ones [6]. Yet this
new model makes much more delicate exploration of the well-known phenomenon of
cross-immunoreactivity than all previous evolution models of infectious diseases, includ-
ing the fundamental dynamics model of HIV [7, 8, 9]. Namely, the new model does not
assume that all cross-immunoreactivity interactions between different antigens (viruses)
have the same (equal) strength. This was experimentally verified for Hepatitis C in the
Center for Disease Control and Prevention (CDC) [3, 2] before a final structure of a new
model was created [1]. It is important to emphasize that all previous models of various
diseases with cross-immunoreactivity always used the so called mean-field approxima-
tion where the strengths of interactions between all antigens (viruses) were assumed to
be equal to one and the same constant.

A striking discovery made in analyzing the dynamics of the new model was that
in equilibrium state all intrahost viruses fall into one of three classes. The first class
consists of persistent viruses that have the highest concentrations but the immune re-
sponse against them is virtually zero. Therefore the host’s immune system ”does not
see” persistent viruses and thus demonstrates immunodeficiency against them . The sec-
ond class of so called altruistic viruses is characterized by extremely low (virtually zero)
concentrations. However almost all strength of the host’s immune response goes against
these altruistic viruses. This situation becomes possible because of special locations and
structure of connections between persistent and altruistic viruses in the intrahost cross-
immunoreactivity (CR) network of viruses (antigens) [1]. Each of these two types of
viruses comprise a very small (a few percent) part of all intrahost viruses. The rest of
viruses (which comprise about 90% of all) are called neutral. It is important to mention
that such structure of cross-immunoreactivity networks appeared in all several hundred
numerical experiments with our model [1]. Therefore it seems to be an extremely stable
and robust phenomenon.

The host’s immune system demonstrates immunodeficiency against persistent viruses
because of their special positions (locations) within the intrahost CR network (CRN) and
because of the structure of their connections to altruistic viruses [1]. This is where the
term ”local immunodeficiency” comes from. A central biological question in this area is
to determine which types of viruses can play a role of persistent and/or altruistic viruses.
Indeed, it’s very interesting biologically and important for public health policies on how
to handle the diseases with cross-immunoreactivity

Paper [10] shows that the phenomenon of local immunodeficiency is typically stable
and robust under various realistic conditions. Moreover, it was proved in this paper that
stable and robust local immunodeficiency can already occur in very small CR networks
consisting of just three nodes. We already know diseases like Hepatitis C have large CR
networks, now we have shown small CR networks can also have stable local immunode-
ficiency. These results are very interesting in general and have attracted experimentalists.
For example, the recent paper [11] studied a social structure of population of viruses in
an experimental framework. Interestingly, their results showed a different type of altru-
ism. Indeed, true altruists should sacrifice themselves for others (as [1] demonstrated)
but the viruses called altruistic in [11] help themselves and also some other viruses. It is
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not quite altruism as it is usually understood.
In the present paper we analyze the role of neutral viruses in CR networks and their

ability to maintain persistent viruses, i.e. to generate local immunodeficiency. The ques-
tion whether and why neutral viruses are needed to create and maintain local immun-
odeficiency remained unanswered in previous studies. We show that an answer to this
natural question is nontrivial and unexpected (as is essentially everything in the studies
of the phenomenon of local immunodeficiency so far). Namely we show that neutral
viruses (without the presence of altruistic viruses) could maintain only marginally stable
state of a local immunodeficiency. Moreover, without altruistic viruses the population of
persistent viruses can not be large and is bounded from above by exact computed values.
This contrasts with the results of [10] that in the presence of altruistic viruses there is no
upper bound on the population size of persistent viruses.

Another fundamental question is whether some viruses may play different roles be-
coming persistent, altruistic or neutral depending on the structure of a smaller subnet-
work that belongs to a (large) cross-immunoreactivity network. Also altruistic viruses
should be a primary target of public health policies.

We also present here a new minimal (three-node) CRN with a stable and robust state
of a local immunodeficiency. This new one and the one found in [10] are the only two
CRNs with just three types of viruses which maintain a stable and robust local imunn-
odeficiency. However, the three viruses network presented here is in fact the absolutely
minimal because it contains just two edges, the minimal number of edges in any network
with three nodes. It would be very interesting to create small cross-immunoreactivity
networks which demonstrate stable and robust phenomenon of local immunodeficiency.
This seems to be a natural challenge to synthetic biology, and the absolutely minimal
network presented in this paper is the first candidate to be considered in such studies
because it has the the minimal number of elements (nodes) and the simplest possible
structure (topology) of a network.

2. Model of evolution of a disease with heterogeneous CR network

In this section we define the model of the Hepatitis C (HC) evolution introduced
in [1]. It is important to note that this model is applicable to any disease with cross-
immunoreactivity.

Consider a system which contains a population of n viral antigenic variants xi induc-
ing n immune responses ri in the form of antibodies (Abs). The viral variants exhibit
cross-immunoreactivity which results in a CR network. The latter can be represented as
a directed graph GCRN = (V, E), with vertices corresponding to viral variants and directed
edges connecting CR variants. Because not all interactions with Ab lead to neutraliza-
tion, we consider two sets of weight functions for the CRN. These functions are defined
by immune neutralization and immune stimulation matrices U = (ui j)n

i, j=1 and V = (vi j)n
i, j=1,

where 0 ≤ ui j, vi j ≤ 1; ui j represents the binding affinity of Ab to j (r j) with the i-th variant;
and vi j reflects the strength of stimulation of Ab to j (r j) by the i-th variant. The immune
response ri against variant xi is neutralizing; i.e., uii = vii = 1. The resulting evolution
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of the antigens (viruses) and antibodies populations is given by the following system of
ordinary differential equations [1, 10].

ẋi = fixi − pxi

n∑
j=1

u jir j, i = 1, . . . , n,

ṙi = c
n∑

j=1

x j
v jiri∑n

k=1 v jkrk
− bri, i = 1, . . . , n.

(1)

In this model the viral variant xi replicates at the rate fi and is eliminated by the im-
mune responses r j at the rates pu jir j, where p is a constant. The immune responses ri

are stimulated by the j-th variant at the rates cg jix j, where g ji =
v jiri∑n

k=1 v jkrk
represents the

probability of stimulation of the immune response ri by the variant x j and c is a constant.
This model [1] allows us to incorporate the phenomenon of the original antigenic sin
[12, 13, 14, 15, 16, 17], which states that xi preferentially stimulates preexisting immune
responses capable of binding to xi. The immune response ri decays at rate b in the absence
of stimulation.

As in [1, 10] we consider the situation where the immune stimulation and neutraliza-
tion coefficients are equal to constants α and β, respectively. To be more specific, both the
immune neutralization and stimulation matrices are completely defined by the structure
of the CR network, i.e.,

U = Id + βAT ,V = Id + αA,

where A is the adjacency matrix of GCRN . In the absence of CR among viral variants the
system reduces to the model developed in [4] for a heterogeneous viral population. Be-
cause the neutralization of an antigen may require more than one antibodies, we assume
that 0 < β = αk < α < 1 [1]. It is important to mention that we analyze a more general
model here than the one studied in [1], where it was assumed that all viruses replicate at
the same rate , i.e. all the fi’s are equal to each other. Here, as in [10] we allow the fi’s to
be different and consider all possible values of them as long as they make sense, i.e. are
positive.

3. An absolutely minimal network with stable local immunodeficiency

In this section we present a minimal cross-immunoreactivity network with stable and
robust state of local immunodeficiency.

Recall that an equilibrium solution to a system of differential equations is called sta-
ble if the solution to the system under any perturbation of the initial condition converges
with time to this solution. A solution is robust if there is a solution to the system under
small perturbations of its parameters (coefficients) with dynamics analogous to the solu-
tion of the unperturbed system.

As in [10] we will consider ”extreme” stable fixed points (equilibrium solutions) with
local immunodeficiency. This means that we assume the immune response against a
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persistent virus is zero and the concentration of an altruistic virus is also identically zero.
Of course, these may sound like unrealistic assumptions. Observe, however, that the
right hand side of system (1) depends on parameters continuously (and even smoothly);
under small perturbations of parameters there will be a stable fixed point close to the
extreme one with stable local immunodeficiency (LI) in the unperturbed system of ODEs
(see e.g. [18]).

Certainly these stable solutions should make (biological) sense, i.e. both the concen-
trations of altruistic viruses and the immune response against persistent viruses have to
be positive. Both these values will be close to zero under small perturbations of parame-
ters of system (1). Fixed points that make sense do exist because a neighborhood of zero
(here the fixed points depend continuously on parameters of the system) always contains
a subset with only positive values for all coordinates.

Observe also that in reality a system is never exactly at a fixed point but close to it
because of ever-present small perturbations/fluctuations. The dynamics always pushes
the sate of the system closer to the steady state. Therefore a real system will evolve
towards a fixed point. This evolution takes infinite time and the steady state will never
be achieved although (in absence of random perturbations) the current state of the system
will become closer and closer to this stable fixed point with time.

It is worthwhile to mention here that in numerical simulations one must set a (pos-
itive) threshold such that if the population size of some virus becomes less than this
threshold then this virus is considered to be eliminated. For instance, simulations of
system (1) in [1] assumed that a virus gets eliminated by the immune system if its con-
centration becomes lower than the initial concentration of this virus.

Consider the following network with 3 types of viruses.

1 2 3

Figure 1: Symmetric CRN

Although this network looks rather similar to the three viruses network with stable
and robust local immunodeficiency found in [10], it actually has fewer edges. We will
show that this smaller cross-immunoreactivity network is also able to support stable and
robust local immunodeficiency.

The adjacency matrix and the corresponding neutralization and stimulation matrices
of this network are

A =

0 1 0
0 0 0
0 1 0

 ,U =
1 0 0
β 1 β
0 0 1

 ,V =
1 α 0
0 1 0
0 α 1

 .
All our networks are finite simple graphs, therefore the adjacency matrix has 0-1 entries
indicating whether there is an edge going from node i to node j.
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The model of population evolution for this network is given by the following differ-
ential equations 

ẋ1 = f1x1 − px1(r1 + βr2),
ẋ2 = f2x2 − px2r2,

ẋ3 = f3x3 − px3(βr2 + r3),
ṙ1 = c x1r1

r1+αr2
− br1,

ṙ2 = c( αx1r2
r1+αr2

+ x2r2
r2
+ αx3r2

αr2+r3
) − br2,

ṙ3 = c x3r3
αr2+r3

− br3.

The Jacobian of this model is

J =
(
AJ B
C D

)
, where AJ =

 f1 − p(r1 + βr2) 0 0
0 f2 − pr2 0
0 0 f3 − p(βr2 + r3)

 ,
B =

−px1 −pβx1 0
0 −px2 0
0 −pβx3 −px3

 ,C =


cr1
r1+αr2

0 0
cαr2

r1+αr2
c cαr2

αr2+r3

0 0 cr3
αr2+r3

 ,
D =


cx1αr2

(r1+αr2)2 − b −
cαx1r1

(r1+αr2)2 0
−

cαx1r2
(r1+αr2)2

cαx1r1
(r1+αr2)2 +

cαx3r3
(αr2+r3)2 − b −

cαx3r2
(αr2+r3)2

0 −
cαx2r3

(αr2+r3)2
cx3αr2

(αr2+r3)2 − b

 .
Based on the observation that altruistic nodes should have the highest in-degree [1, 10],
we will be looking for a fixed point with local immunodeficiency where node 2 is altruis-
tic (no virus concentration but high immune response, i.e. xi = 0, ri > 0). Since the nodes
1 and 3 are symmetric, without loss of generality we pick either one of them to be persis-
tent (high virus concentration but no immune response, i.e. xi > 0, ri = 0) and the other
one to be neutral (positive virus concentration and immune response, i.e. xi > 0, ri > 0) ,
i.e.

x2 = 0, r2 > 0, x1 > 0, r1 = 0, x3 > 0, r3 > 0.

The virus populations and corresponding antibody populations at such a fixed point
(steady state) with local immunodeficiency are

r1 = 0, r2 =
f1

pβ
, r3 =

f3 − f1

p
> 0, f3 > f1.

x1 = (br2 −
cαx3r2

αr2 + r3
)
r1 + αr2

cαr2
=

b
c

r2(1 − α), x2 = 0, x3 =
b
c

(αr2 + r3).

To see whether this fixed point with local immunodeficiency we just found is stable,
we consider the Jacobian of the system at this point.

AJ =

0 0 0
0 f2 − pr2 0
0 0 0

 , B =
 −px1 −pβx1 0

0 0 0
0 − pβx3 −px3

 ,
6



C =


0 0 0
c c cαr2

αr2+r3

0 0 cr3
αr2+r3

 ,D =


cx1
αr2
− b 0 0
−

cx1
αr2

cαx3r3
(αr2+r3)2 − b −

cαx3r2
(αr2+r3)2

0 −
cαx3r3

(αr2+r3)2
cx3αr2

(αr2+r3)2 − b

 ,

J =



0 0 0 −px1 −pβx1 0
0 f2 − pr2 0 0 0 0
0 0 0 0 −pβx3 −px3

0 0 0 b
α
− 2b 0 0

c c cαr2
αr2+r3

b − b
α

bαr3
αr2+r3

− b −
bαr2
αr2+r3

0 0 cr3
αr2+r3

0 −
bαr3
αr2+r3

−
br3

αr2+r3


.

If all the eigenvalues of the Jacobian are negative, or complex with negative real parts,
then the fixed point has stable local immunodeficiency. Since the eigenvalues are the
roots of the characteristic polynomial, we need to compute the characteristic polynomial
of the Jacobian matrix.

Let λ1 = f2 − pr2 = f2 − f1/β, λ2 =
b
α
− 2b.

det(J − λI) = (λ − λ1)(λ − λ2)

∣∣∣∣∣∣∣∣∣∣∣∣
−λ 0 −pβx1 0
0 −λ −pβx3 −px3

c cαr2
αr2+r3

bαr3
αr2+r3

− b − λ −
bαr2
αr2+r3

0 cr3
αr2+r3

−
bαr3
αr2+r3

−
br3

αr2+r3
− λ

∣∣∣∣∣∣∣∣∣∣∣∣
= (λ − λ1)(λ − λ2)P(λ).

Detailed computation of P(λ) is shown in the appendix. The result is

P(λ) = αb f1λ
2+b f1(1−α)(λ2+

br3

αr2 + r3
λ+bpr3)+λ2(λ+b)(λ+

br3(1 − α)
αr2 + r3

)+px3λ[
cr3

αr2 + r3
λ+

bcr3(1 − α)
αr2 + r3

].

Observe that all coefficients of the polynomial P(λ) are positive. Therefore it cannot have
positive real roots. Combining all conditions on the parameters f3 > f1, λ1 = f2 − f1/β <
0, λ2 = b/α − 2b < 0, one gets β f2 < f1 < f3, α > 1/2.

We present now some numerical examples where the LI is stable. These numerical
values are consistent with the ranges of the corresponding parameters considered in the
literature [4, 19, 20, 1, 10].

1. f1 = 2, f2 = 3, f3 = 3, p = 2, c = 1, b = 3, α = 2/3, β = 4/9. With these parameters,
λ1 = λ2 = −1.5, the polynomial P(λ) has 2 pairs of complex roots, both with negative
real parts.

2. f1 = 2, f2 = 2, f3 = 3, p = 2, c = 1, b = 1, α = 3/4, β = 9/16. Under such parameters,
λ1 = −14/9 < 0, λ2 = −2/3 < 0, P(λ) has 2 pairs of complex roots, both with negative
real parts.

By continuity this fixed point is stable on a positive measure set in the parameter
space. This means that this fixed point is physically observable, i.e. there is a positive
probability (real life chance) to generate (e.g. numerically) a system with the CRN in
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Fig. 1 which has a stable and robust steady state of local immunodeficiency. It (positive
measure in parameter space) also means that there is a real chance to generate a biological
CR viral network with stable local immunodeficiency.

Observe that we only computed one fixed point. Certainly there are other stable fixed
points with local immunodeficiency that are stable and robust under perturbation of ini-
tial conditions and parameters. For example, there is at least one other fixed point where
we switch the roles of node 1 and 3. Also small variations of parameters result in a ”shift”
of a fixed point. Such fixed points will remain stable in view of continuity of the coeffi-
cients of the system of differential equations under study.

Compare this network in Fig. 1 to the network with stable and robust local immun-
odeficiency found in [10] (Fig. 2).

1 2 3

Figure 2: branch-cycle CRN

It is easy to see that the new network in Fig. 1 is really simpler than the branch-
cycle CRN. Indeed both networks contain three types of viruses but the symmetric CRN
contains fewer edges. This shows that the removal of an edge going out of an altruistic
node (virus) may not destroy the state of stable local immunodeficiency.

4. A role of neutral viruses in CR networks

In this section we will analyze the role of neutral viruses in local immunodeficiency,
i.e. whether neutral viruses alone, without altruistic viruses, can sustain stable local im-
munodeficiency. Recall that persistent nodes represent types of viruses whose concentra-
tion is high but immune response against them is zero, and neutral nodes are the ones
where both the virus and the antibody population are positive. From now on we will
use the light pink color to represent persistent nodes and the dark green color for neutral
nodes in CR networks.

Consider first the simplest CR network consisting of just one persistent and one neu-
tral node. It is an asymmetric network, where the persistent node is connected to the
neutral one. Dynamics equations for evolution of this system are

1 2

Figure 3: size 2 CRN


ẋ1 = f1x1 − px1(r1 + βr2)
ẋ2 = f2x2 − px2r2

ṙ1 = cx1
r1

r1+αr2
− br1

ṙ2 = c(x1
αr2

r1+αr2
+ x2) − br2

8



A family of fixed points where node 1 is persistent and node 2 is neutral is given by the
following relations.

f1 = β f2, 0 < x1 <
b f2

cp
, x2 =

b f2

cp
− x1, r1 = 0, r2 =

f2

p

Notice that this represents infinitely many numbers of fixed points (equilibrium states)
that vary continuously on a line segment. To study the stability of these fixed points we
need to find the eigenvalues of the Jacobian. The Jacobian of the system is

J =


f1 − p(r1 + βr2) 0 −px1 −pβx1

0 f2 − pr2 0 −px2
cr1

r1+αr2
0 cx1αr2

(r1+αr2)2 − b −
cx1αr1

(r1+αr2)2
cαr2

r1+αr2
c −

cx1αr2
(r1+αr2)2

cx1αr1
(r1+αr2)2 − b

 ,
At those fixed points the Jacobian becomes

J =


0 0 −px1 −pβx1

0 0 0 −px2

0 0 cx1
αr2
− b 0

c c −
cx1
αr2

−b

 .
Let λ1 =

cx1
αr2
−b. The detailed computation of the characteristic polynomial of the Jacobian

is shown in the appendix, the result is

det(J − λI) = λ(λ − λ1)[λ2 + bλ + cp(x2 + βx1)] = λ(λ − λ1)P(λ),

where
λ1 =

cx1

αr2
− b =

cp
α f2

x1 − b <
b
α
− b.

All coefficients of the quadratic polynomial P(λ) are positive. Therefore its roots are either
real, negative or complex with negative real parts. Depending on the value of x1 the
eigenvalue λ1 could be positive or negative. And for every fixed point in the family, the
Jacobian has a 0 eigenvalue. This means that the corresponding state (fixed point with
local immunodeficiency) is never stable but it could be marginally stable (because of the
zero eigenvalue). However in this case the concentration of persistent viruses cannot
exceed some fixed value.

Indeed for this family of fixed points, when x1 is small (x1 < αb f2
cp ) the fixed points

are stable on the subspace f1 = β f2; and when x1 is big (α b f2
cp < x1 <

b f2
cp ) the fixed points

are unstable. It should be contrasted with the results of [10] where, in the presence of an
altruistic node, the state of local immunodeficiency can be stable (rather than marginally
stable) and there is no bound on the concentration of persistent viruses.

Consider now a larger network with one persistent and two neutral nodes.
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1 23

Figure 4: size 3 CRN

The adjacency matrix, neutralization and stimulation matrices for this CR network are

A =

0 1 1
0 0 0
0 0 0

 ,U =
1 0 0
β 1 0
β 0 1

 ,V =
1 α α
0 1 0
0 0 1

 .
The population growth equations for this system are

ẋ1 = f1x1 − px1(r1 + βr2 + βr3)
ẋ2 = f2x2 − px2r2

ẋ3 = f3x3 − px3r3

ṙ1 = cx1
r1

r1+αr2+αr3
− br1

ṙ2 = cx1
αr2

r1+αr2+αr3
+ cx2 − br2

ṙ3 = cx1
αr3

r1+αr2+αr3
+ cx3 − br3

A family of fixed points for this network is given via the following relations

f1 = β( f2 + f3), 0 < x1 <
b
c

(r2 + r3), x2 =
b
c

r2 − x1
r2

r2 + r3
, x3 =

b
c

r3 − x1
r3

r2 + r3
,

r1 = 0, r2 =
f2

p
, r3 =

f3

p
.

Again this is a group of steady states with local immunodeficiency (node 1 is persistent
with positive virus population but 0 antibody population) that vary continuously on a
line segment. The Jacobian of the system is

J =



f1 − p(r1 + βr2 + βr3) 0 0 −px1 −pβx1 −pβx1

0 f2 − pr2 0 0 −px2 0
0 0 f3 − pr3 0 0 −px3

cr1
r1+αr2+αr3

0 0 cx1α(r2+r3)
(r1+αr2+αr3)2 − b −

cx1αr1
(r1+αr2+αr3)2 −

cx1αr1
(r1+αr2+αr3)2

cαr2
r1+αr2+αr3

c 0 −
cx1αr2

(r1+αr2+αr3)2
cx1α(r1+αr3)

(r1+αr2+αr3)2 − b −
cx1α

2r2
(r1+αr2+αr3)2

cαr3
r1+αr2+αr3

0 c −
cx1αr3

(r1+αr2+αr3)2 −
cx1α

2r3
(r1+αr2+αr3)2

cx1α(r1+αr2)
(r1+αr2+αr3)2 − b


.

At the fixed points under analysis we have

J =



0 0 0 −px1 −pβx1 −pβx1

0 0 0 0 −px2 0
0 0 0 0 0 −px3

0 0 0 cx1
α(r2+r3) − b 0 0

cr2
r2+r3

c 0 −
cx1r2

α(r2+r3)2
cx1r3

(r2+r3)2 − b −
cx1r2

(r2+r3)2
cr3

r2+r3
0 c −

cx1r3
α(r2+r3)2 −

cx1r3
(r2+r3)2

cx1r2
(r2+r3)2 − b


.
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We compute the characteristic polynomial of the Jacobian for stability analysis of the
fixed points. Let λ1 =

cx1
α(r2+r3) − b < b

α
− b, detailed computation is put in the appendix and

the characteristic polynomial is

|J − λI| = (λ − λ1)[λD1(λ) + px2D2(λ)],

where

D1(λ) = λ(λ + b −
cx1

r2 + r3
)[λ2 + bλ + cpβx1] + cpx3[λ2 + (b −

cx1r3

(r2 + r3)2 )λ + cpβx1
r2

r2 + r3
],

D2(λ) = cλ[λ2 + (b −
cx1r2

(r2 + r3)2 )λ + cpx3] + cpβx1λ
cr3

r2 + r3
.

So, in this case again 0 is an eigenvalue. Another eigenvalue λ1 can be positive or negative
depending on the value of x1. The rest of the eigenvalues are the roots of a degree four
polynomial whose coefficients are all positive.

Therefore for small values of x1, namely if x1 < α
b
c (r2+r3), the fixed points are stable on

positive measure subsets of the subspace f1 = β( f2+ f3). If x1 has larger values α b
c (r2+r3) <

x1 <
b
c (r2 + r3) then the fixed points are unstable.

In general, for any size network to have fixed points with only persistent and neutral
nodes (viruses), the parameters fi’s have to satisfy some condition that forms a positive
codimension subspace [10]. And based on the previous two examples, it is natural to
assume that there is a family of fixed points, where the Jacobian has a 0 eigenvalue, and
an eigenvalue whose sign depends on the size of the viral population of the persistent
node. The rest of the eigenvalues are the roots of a polynomial with positive coefficients.

Consider now a CR network with one persistent node and any (finite) number of
neutral nodes to support it. Without loss of generality we assume that the persistent
node is node 1, and the nodes 2 through n are neutral (Figure 5). There is an edge going
from the persistent node to each of the neutral nodes.

1 2

3
4

5

6

7 n
·· ·

Figure 5: size n CRN
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The adjacency matrix of such a network is

A =


0 1 · · · 1
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 .
Then

U = Id + βAT =


1 0 · · · 0
β 1 · · · 0
...

...
. . .

...
β 0 · · · 1

 ,V = Id + αA =


1 α · · · α
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 .
The evolution equations for this system are

ẋ1 = f1x1 − px1(r1 + β
∑n

j=2 r j),

ẋi = fixi − pxiri, 2 ≤ i ≤ n;

ṙ1 = c
x1r1

r1 + α
∑n

j=2 r j
− br1,

ṙi = c
αx1ri

r1 + α
∑n

j=2 r j
+ cxi − bri, 2 ≤ i ≤ n.

Let Nr =
∑n

j=2 r j. Consider the Jacobian of this system.

J =
(
AJ B
C D

)
, AJ =


f1 − p(r1 + βNr) 0 · · · 0

0 f2 − pr2 · · · 0
...

...
. . .

...
0 0 · · · fn − prn

 ,

B =


−px1 −pβx1 · · · −pβx1

0 −px2 · · · 0
...

...
. . .

...
0 0 · · · −pxn

 ,C =

c r1

r1+αNr
0 · · · 0

c αr2
r1+αNr

c · · · 0
...

...
. . .

...
c αrn

r1+αNr
0 · · · c

 ,

D =


cx1(r1+αNr−r1)

(r1+αNr)2 − b −
cx1r1α

(r1+αNr)2 · · · −
cx1r1α

(r1+αNr)2

−
cαx1r2

(r1+αNr)2
cαx1(r1+αNr−αr2)

(r1+αNr)2 − b · · · −
cα2 x1r2

(r1+αNr)2

...
...

. . .
...

−
cαx1rn

(r1+αNr)2 −
cα2 x1rn

(r1+αNr)2 · · ·
cαx1(r1+αNr−αrn)

(r1+αNr)2 − b

 .
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The fixed points, where the node 1 is persistent and all other nodes are neutral, are

xi > 0, 1 ≤ i ≤ n, r1 = 0, ri > 0, 2 ≤ i ≤ n.

From these conditions we get

f1 = pβNr = β

n∑
j=2

f j, fi = pri, 0 < x1 <
b
c

Nr, xi =
b
c

ri −
ri

Nr
x1, 2 ≤ i ≤ n.

So these fixed points belong to the subspace f1 = β
∑n

j=2 f j. At each fixed point,

AJ = 0,C =


0 0 · · · 0

cr2
Nr

c · · · 0
...

...
. . .

...
crn
Nr

0 · · · c

 ,D =


cx1
αNr
− b 0 · · · 0

−
cx1r2
αN2

r

cx1(Nr−r2)
N2

r
− b · · · −

cx1r2
N2

r
...

...
. . .

...

−
cx1rn
αN2

r
−

cx1rn
N2

r
· · ·

cx1(Nr−rn)
N2

r
− b

 .
The matrix B is an upper triangular matrix with negative diagonal entries. Assume now
that the Jacobian is invertible. Then we get(

AJ B
C D

) (
E F
G H

)
=

(
0 B
C D

) (
E F
G H

)
=

(
BG BH

CE + DG CF + DH

)
=

(
I 0
0 I

)
.

Then
BG = I,G = B−1; BH = 0,H = 0; CE + DG = 0; CF + DH = CF = I.

Observe that C is a lower triangular matrix with diagonal entries 0, c, c, . . . , c. This matrix
is not invertible because there is no F such that CF = I. Therefore we have shown that
the Jacobian is not invertible. Hence it has a zero eigenvalue at any fixed point of the
considered family.

Now we compute the eigenvector which corresponds to the eigenvalue 0.(
0 B
C D

) (
u
v

)
=

(
Bv

Cu + Dv

)
=

(
0
0

)
.

Bv = 0⇒ v = 0; Cu + Dv = Cu = 0, u =
(
Nr −r2 −r3 · · · −rn

)T
.

Therefore the eigenspace corresponding to eigenvalue 0 is such that all ri’s are fixed
(since v = 0), but all the xi’s can move along the the u direction. The xi values at the fixed
points are 0 < x1 <

b
c Nr, xi =

b
c ri −

x1
Nr

ri, 2 ≤ i ≤ n, and the ri values are r1 = 0, ri = fi/p, 2 ≤
i ≤ n. So all the fixed points lie on the eigenspace of eigenvalue zero.

Clearly there is only one nonzero entry in the (n + 1)-th row of the Jacobian at the
fixed points. It is the (n + 1)-th element cx1

αNr
− b and it is an eigenvalue of the Jacobian.

Thus this eigenvalue λ1 =
cx1
αNr
− b is negative when x1 < α b

c Nr and it is positive when
α b

c Nr < x1 <
b
c Nr.
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Therefore, as we have shown, neutral viruses can support the existence of persistent
viruses. However, in contrast to altruistic viruses, neutral viruses can only support the
existence of bounded concentrations of persistent viruses, while altruistic viruses can
support any concentrations of persistent viruses [10]. Moreover, without the presence of
altruistic viruses the states with persistent viruses could only be marginally stable, while
in the presence of altruistic viruses the state of local immunodeficiency can be stable [10].

5. Attaching minimal networks to large CR networks with random structure (topol-
ogy)

Figure 6: Attaching the minimal network to a random network

We have found two minimal CR networks with three types of viruses (nodes) each. In
this section we analyze whether these networks can maintain the state of local immun-
odeficiency in their persistent viruses if we attach them to a large random CR network.

This question is important for understanding what may happen when CR networks
are growing, particularly when some interactions between two hosts result in transmis-
sion of some CR subnetwork from one host to the other. In this section we discuss results
of our numerical experiments attempting to address this question.

Shown in Fig. 6 is a 100-node network that looks like a dandelion or a ball with a
tail. The ball consists of nodes 0 through 97 and edges between them. The edges are
generated by a 98 × 98 random matrix with 0-1 entries. The (i,j) entry of the matrix being

14



1 means there is an edge from node i-1 to node j-1 and 0 means no edge. The tail is built
by identifying nodes 97, 98 and 99 with nodes 1, 2 and 3 from the branch-cycle CRN (Fig.
2), i.e. there is an edge from node 97 to 98, an edge from node 98 to 99 and an edge
from node 99 back to node 98. Node 97 is where our minimal network, the tail, attaches
to a large network, the ball. Since the edges inside of the ball are randomly generated,
all nodes are equally important, attaching the minimal network to node 97 is as good as
attaching it to any other node in the ball.

After building a randomly generated ball and attaching a minimal network to it as
a tail, we build the evolution model (1) on this 100-node network. Then we solve it
numerically by the forward Euler method. In each numerical experiment, we randomly
generate a set of parameters. The parameters fi’s are allowed to be different, and they
are generated as a random vector with entry values between 0 and 1. The ranges for all
parameters are listed below (2). Initial conditions for virus and antibody populations are
also randomly generated.

fi ∼ U(0, 1), f98 ∼ U(1, 2), p ∼ U(0, 1), b, c ∼ U(0, 5),

α ∼ U(0.5, 1), β = α2, xi(0), ri(0) ∼ U(0, 0.1).
(2)

Here fi ∼ U(0, 1) means that fi is a uniformly distributed random number in the interval
(0, 1). The ranges of these parameters are consistent with the ones accepted in literature
[4, 19, 20, 1, 10].

We repeated this numerical experiment multiple times. The results were consistent
in all simulations, even though the structure of the large network (the ball) changes ev-
ery time (since it’s randomly generated), and the parameters are different and randomly
generated each time as well. We always observed local immunodeficiency at equilibrium
on the tail (i.e. the attached minimal network).

We also repeated the same numerical experiments for the new minimal symmetric
CRN (Fig. 1). Again, we consistently observed local immunodeficiency at equilibrium
on the tail. In conclusion, both minimal networks (one from [10] and the new one from
the present paper) maintain local immunodeficiency after being attached to a large CR
network.

6. Discussion

[10] proved that local immunodeficiency discovered in [1] is a stable and robust phe-
nomenon which may already appear in CRNs with just three viruses. Therefore LI should
likely be present in all diseases that demonstrate cross-immunoreactivity. Indeed, it is not
necessary for CRNs to be large, which is typical for Hepatitis C [1], to have local immun-
odeficiency. We also rigorously demonstrated in [10] that there that there are easy ways
to build larger networks with several persistent nodes (viruses) which remain invisible
to the host’s immune system because of their positions in the CRN.
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In the present paper we prove that the simplest cross-immunoreactivity network with
three nodes (viruses) and just two edges can have a state of stable and robust local im-
munodeficiency. It is truly the smallest network of this type because no network with
three nodes can have fewer than two edges. (It is worthwhile to mention that [10] showed
no CRN with two nodes can maintain stable local immunodeficiency). These results
raise a natural question whether it is possible to experimentally build such small cross-
immunoreactivity networks with stable and robust local immunodeficiency.

We also analyze here the role of neutral viruses in the creation of local immunodefi-
ciency. It turns out that, in the absence of altruistic viruses, neutral viruses (even when
any number of them is present to help a persistent node) can maintain local immunodefi-
ciency only as a marginally stable state. Moreover, if only neutral and persistent viruses
are present then the population of persistent viruses cannot exceed a relatively small
value in a sharp contrast to the situation when altruistic viruses are also present and then
population of persistent viruses becomes virtually unbounded [1, 10].

Lastly we also showed numerically that small networks with stable LI can be attached
to large CR networks and keep the state of stable local immunodeficiency.

Overall, it is shown that local immunodeficiency will likely be present in all diseases
with cross-immunoreactivity. Indeed, we proved that very small CR networks may have
a stable state with local immunodeficiency. Moreover, if such a small network is attached
to another CR network this small sub-network may retain its stable LI state. All these
results call for future numerical, analytic and, first of all, biological studies. The most
important and pressing question is which types of viruses can play a role of persistent
and/or altruistic ones [11]. Another question is whether one and the same virus may
become persistent, altruistic or, perhaps, neutral depending on the structure (topology)
of the corresponding cross-immunoreactivity network.

Appendix A. Computation of P(λ) from the characteristic polynomial of the Jacobian
for Fig. 1

P(λ) = −λ

∣∣∣∣∣∣∣∣∣
−λ −pβx3 −px3
cαr2
αr2+r3

bαr3
αr2+r3

− b − λ −
bαr2
αr2+r3

cr3
αr2+r3

−
bαr3
αr2+r3

−
br3

αr2+r3
− λ

∣∣∣∣∣∣∣∣∣ − pβx1

∣∣∣∣∣∣∣∣∣
0 −λ −px3

c cαr2
αr2+r3

−
bαr2
αr2+r3

0 cr3
αr2+r3

−
br3

αr2+r3
− λ

∣∣∣∣∣∣∣∣∣
= −λ

∣∣∣∣∣∣∣∣∣
−λ −pβx3 −px3
cαr2
αr2+r3

bαr3
αr2+r3

− b − λ −
bαr2
αr2+r3

c −b − λ −b − λ

∣∣∣∣∣∣∣∣∣ + cpβx1

∣∣∣∣∣∣ −λ −px3
cr3

αr2+r3
−

br3
αr2+r3

− λ

∣∣∣∣∣∣
= cpβx1(λ2 +

br3

αr2 + r3
λ +

pcx3r3

αr2 + r3
) + λ2

∣∣∣∣∣∣ bαr3
αr2+r3

− b − λ −
bαr2
αr2+r3

−b − λ −b − λ

∣∣∣∣∣∣
−λpβx3

∣∣∣∣∣∣ cαr2
αr2+r3

−
bαr2
αr2+r3

c −b − λ

∣∣∣∣∣∣ + λpx3

∣∣∣∣∣∣ cαr2
αr2+r3

bαr3
αr2+r3

− b − λ
c −b − λ

∣∣∣∣∣∣
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= b f1(1 − α)(λ2 +
br3

αr2 + r3
λ + bpr3) + λ2(−b − λ)(

bαr3

αr3 + r3
− b − λ +

bαr2

αr2 + r3
)

−λpβx3(−
cαr2

αr2 + r3
λ −

bcαr2

αr2 + r3
+

bcαr2

αr2 + r3
) + λpx3(−

cαr2

αr2 + r3
λ −

bcαr2

αr2 + r3
−

bcαr3

αr2 + r3
+ bc + cλ)

= b f1(1 − α)(λ2 +
b f3

αr2 + r3
λ + bpr3) + λ2(λ + b)(λ + b −

bα(r2 + r3)
αr2 + r3

) + λpβx3
cαr2

αr2 + r3
λ

+px3λ[
cr3

αr2 + r3
λ +

bcr3(1 − α)
αr2 + r3

]

= b f1(1−α)(λ2+
br3

αr2 + r3
λ+bpr3)+λ2(λ+b)(λ+

br3(1 − α)
αr2 + r3

)+λ2 pβαr2b+px3λ[
cr3

αr2 + r3
λ+

bcr3(1 − α)
αr2 + r3

]

= αb f1λ
2+b f1(1−α)(λ2+

br3

αr2 + r3
λ+bpr3)+λ2(λ+b)(λ+

br3(1 − α)
αr2 + r3

)+px3λ[
cr3

αr2 + r3
λ+

bcr3(1 − α)
αr2 + r3

].

Appendix B. Computation of the characteristic polynomial of the Jacobian for Fig. 3

Let λ1 =
cx1
αr2
− b,

det(J − λI) = det


−λ 0 −px1 −pβx1

0 −λ 0 −px2

0 0 λ1 − λ 0
c c −

cx1
αr2

−b − λ

 = (λ1 − λ) det

−λ 0 −pβx1

0 −λ −px2

c c −b − λ


= (λ − λ1)[λ(λ2 + bλ + cpx2) + pβx1cλ] = λ(λ − λ1)[λ2 + bλ + cp(x2 + βx1)]

= λ(λ − λ1)P(λ),

Appendix C. Computation of the characteristic polynomial of the Jacobian for Fig. 4

Let λ1 =
cx1

α(r2+r3) − b < b
α
− b, then

|J − λI| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−λ 0 0 −px1 −pβx1 −pβx1

0 −λ 0 0 −px2 0
0 0 −λ 0 0 −px3

0 0 0 λ1 − λ 0 0
cr2

r2+r3
c 0 −

cx1r2
α(r2+r3)2

cx1r3
(r2+r3)2 − b − λ −

cx1r2
(r2+r3)2

cr3
r2+r3

0 c −
cx1r3

α(r2+r3)2 −
cx1r3

(r2+r3)2
cx1r2

(r2+r3)2 − b − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(r6→r5+r6)
=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−λ 0 0 −px1 −pβx1 −pβx1

0 −λ 0 0 −px2 0
0 0 −λ 0 0 −px3

0 0 0 λ1 − λ 0 0
cr2

r2+r3
c 0 −

cx1r2
α(r2+r3)2

cx1r3
(r2+r3)2 − b − λ −

cx1r2
(r2+r3)2

c c c −
cx1

α(r2+r3) −b − λ −b − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.
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By expanding along the fourth row we get

|J − λI| = (λ1 − λ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−λ 0 0 −pβx1 −pβx1

0 −λ 0 −px2 0
0 0 −λ 0 −px3

cr2
r2+r3

c 0 cx1r3
(r2+r3)2 − b − λ −

cx1r2
(r2+r3)2

c c c −b − λ −b − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Expanding now along the second row we obtain

|J − λI| = (λ − λ1)[λD1(λ) + px2D2(λ)],

where

D1(λ) =

∣∣∣∣∣∣∣∣∣∣∣
−λ 0 −pβx1 −pβx1

0 −λ 0 −px3
cr2

r2+r3
0 cx1r3

(r2+r3)2 − b − λ −
cx1r2

(r2+r3)2

c c −b − λ −b − λ

∣∣∣∣∣∣∣∣∣∣∣
= −λ

∣∣∣∣∣∣∣∣∣
−λ −pβx1 −pβx1
cr2

r2+r3

cx1r3
(r2+r3)2 − b − λ −

cx1r2
(r2+r3)2

c −b − λ −b − λ

∣∣∣∣∣∣∣∣∣ − px3

∣∣∣∣∣∣∣∣∣
−λ 0 −pβx1
cr2

r2+r3
0 cx1r3

(r2+r3)2 − b − λ
c c −b − λ

∣∣∣∣∣∣∣∣∣
= −λ

∣∣∣∣∣∣∣∣∣
−λ 0 −pβx1
cr2

r2+r3

cx1
r2+r3
− b − λ −

cx1r2
(r2+r3)2

c 0 −b − λ

∣∣∣∣∣∣∣∣∣ + cpx3[λ2 + (b −
cx1r3

(r2 + r3)2 )λ + cpβx1
r2

r2 + r3
]

= λ(λ + b −
cx1

r2 + r3
)[λ2 + bλ + cpβx1] + cpx3[λ2 + (b −

cx1r3

(r2 + r3)2 )λ + cpβx1
r2

r2 + r3
],

D2(λ) =

∣∣∣∣∣∣∣∣∣∣∣
−λ 0 0 −pβx1

0 0 −λ −px3
cr2

r2+r3
c 0 −

cx1r2
(r2+r3)2

c c c −b − λ

∣∣∣∣∣∣∣∣∣∣∣ = cλ[λ2 + (b −
cx1r2

(r2 + r3)2 )λ + cpx3]

+cpβx1λ
cr3

r2 + r3
.
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