
2.2. Liouville’s Theorem.

We recall a few elementary facts from linear algebra. If B = (bij) is a d × d

matrix, let λ1, λ2, . . . , λd be the not necessarily distinct eigenvalues of B. Then we
know that det B =

∏d

j=1 λj and Tr B = Σd
j=1bjj = Σd

j=1λj . Also, if A, B are d × d

matrices, then det AB = det A det B and if, in addition, det B 6= 0, then Tr A = Tr
B−1AB.

If ξ1, . . . , ξd are given vectors in lRd, then the parallelepiped with these edges is
the set consisting of all points of the form x1ξ1 + · · ·+xdξd, 0 ≤ xj ≤ 1, j = 1, . . . , d.

The determinant of a matrix A is the oriented volume of the parallelepiped whose
edges are given by the columns of A. In this section, we derive a formula in terms of
the coefficients of the matrix A(t) for det X(t) where X(t) is a fundamental matrix
solution of (1.1). For any set B ⊂ lRd, we can define the image of this set under (1.1)
by the relation X(t)B = {X(t)ξ : ξ ∈ B }. Using the formula for det X(t), we see
how the volume of the set X(t)B changes with t. If this determinant is < 1 (resp.,
> 1) for all t, then the volume is decreasing (resp., increasing). If det X(t) = 1 for
all t, the volume remains constant and we say that (1.1) is volume preserving.

We need first a lemma on matrices depending on a parameter.

Lemma 2.1. If A(ǫ) is a C1 d × d matrix function of ǫ for ǫ ∈ (−ǫ0, ǫ0), satisfying
A(0) = I, d

dǫ
A(ǫ)ǫ=0 = A0, then

(2.1)
d

dǫ
det A(ǫ)ǫ=0 = TrA0 .

Proof. Since A(0) = I, we may change coordinates and assume that A(ǫ) = I+A0ǫ+
o(ǫ) and A0 is in Jordan canonical form. If 1+λ1(ǫ), . . . , 1+λd(ǫ) are the eigenvalues
of A(ǫ) and λ10, . . . , λd0 are the eigenvalues of A0, then λj(ǫ) = ǫλj0 + o(ǫ) as ǫ → 0
for each j = 1, . . . , d, and

det A(ǫ) =

d
∏

j=1

(1 + λj(ǫ)) = 1 + ǫΣλ0j + o(ǫ) = 1 + ǫTrA0 + o(ǫ)

as ǫ → 0. This relation implies the conclusion in the lemma.

Theorem 2.1. (Liouville’s Theorem) If A ∈ C(lR, lRd×d) is a d×d matrix and X(t)
is a matrix solution of (1.1), then

(2.2) det X(t) = det X(τ)e

∫

t

τ

TrA(s) ds
.

Proof. If det X(τ) = 0, then (2.2) is clearly satisfied from Proposition 1.1. Therefore,
we assume that det X(τ) 6= 0. Since X(t) is a C1-function, we have det X(t) is a
C1-function. For any s ∈ lR, since X(t) is a matrix solution of (1.1), we know that

X(t)[X(s)]−1 = I +

∫ t

s

A(τ)X(τ)[X(s)]−1dτ.
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If we let ǫ = t − s, B(ǫ) = X(ǫ + s)[X(s)]−1 ≡ X(t)[X(s)]−1, then B(0) = I,
d
dǫ

B(ǫ)ǫ=0 = A(s) and Lemma 2.1 implies that d
dǫ

det B(ǫ)ǫ=0 = TrA(s). Since the
determinant of a product is the product of the determinants, we have

(
d

dt
det X(t)) det[X(s)]−1 =

d

dt
det (X(t)[X(s)]−1).

Using this fact and the relation d
dǫ

det B(ǫ) = d
dt

det (X(t)[X(s)]−1), we deduce that

(
d

dt
det X(t)t=s) det[X(s)]−1 = TrA(s) ,

or equivalently the function u(s) = det X(s) is a solution of the scalar equation
u̇ = TrA(s)u, u(τ) = det X(τ). An integrating of this equation yields (2.2).

Example 2.1. (Abel’s formula) Consider the second order equation

(2.3) ü + p(t)u̇ + q(t)u = 0,

where p, q are continuous functions on lR. This equation is equivalent to a two di-
mensional system (1.1) with

A(t) =

[

0 1
−q(t) −p(t)

]

.

For any two scalar functions u, v, the Wronskian W (u, v, t) of u, v is defined to be

W (u, v, t) = det

[

u(t) v(t)
u̇(t) v̇(t)

]

.

If u, v are two solutions of the second order equation, then

X(t) =

[

u(t) v(t)
u̇(t) v̇(t)

]

is a matrix solution of the second order system. As a consequence of Liouville’s
Theorem, we conclude that

W (u, v, t) = W (u, v, τ)e
−

∫

t

τ

p(s) ds
,

which is Abel’s formula.
If we suppose that p(t) = 0 for all t, then (2.3) is area preserving. If p(t) > 0 for

all t, then the area of any set is decreasing.
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Exercise 2.1. Make an appropriate definition of a Wronskian and extend the previous
example to an nth order scalar equation.

From Liouville’s Formula (2.2), if Tr A(t) < 0, we know that the volume of
the image of any d-dimensional set in lRd obtained through a fundamental matrix
solution of (2.1) is decreasing in time. We need to notice that this does not say
that the solutions of (2.1) approach zero. For example, consider the system ẋ1 =
−2x1, ẋ2 = x2. In this case, we have Tr A = −1 and so the area of a set is decreasing
in time. The rectangle { 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1 } is mapped to the rectangle
{ 0 ≤ x1 ≤ e−2t, 0 ≤ x2 ≤ et }, which becomes very long and thin.

Exercise 2.2. For the equation ẋ1 = −2x1, ẋ2 = x2, and for various types of sets
which do not contain the origin, draw the images under the fundamental matrix eAt.
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