
1.8. Liapunov functions.

On several occassions, we have gained information about the behavior of the
solutions of a differential equation by considering the rate of change of a scalar function
along the solutions of the equation. In particular, in Exercises 4.3 and 4.4, we used
a positive definite quadratic form to determine the stability properties of the origin.
For linear systems, we have seen that the origin being a local attractor is equivalent to
the existence of a positive quadratic form along which the derivative along solutions is
negative definite. In the study of gradient systems, we showed that the scalar function
that defined the system could be used to show that the system was point dissipative
and therefore had a global attractor. There is a general theory based upon these ideas
- the theory of Lyapunov functions - which we now describe.

We concentrate at first on stability of an equilibrium point which we may assume
to be the origin.

Definition 8.1. Let U be a bounded open set of lRd containing the origin. A function
V ∈ Ck(U, lR). k ≥ 0 is said to be positive definite on U if V (0) = 0, V (x) > 0 for
x 6= 0 in U . The function V is said to be negative definite if −V is positive definite.

If f(x) is a given d-dimensional vector field and V ∈ C1(U, lR) is a given function,
we define

V̇ (x) =
∂V

∂x
f(x) ;

that is, V̇ (x(t)) is the derivative of the function V along the solutions x(t) ∈ U of the
differential equation ẋ = f(x).

Theorem 8.1. (Stability from Lyapunov functions) Suppose that x = 0 is an equi-
librium point of the d-dimensional system ẋ = f(x) and suppose that V is a positive
definite function in a neighborhood U of 0. Then V̇ (x) ≤ 0 in U implies that 0
is a stable equilibrium point and V̇ negative definite in U implies that 0 is a local
attractor.

Proof. Let ǫ > 0 be sufficiently small so that U contains the ball B(0, ǫ) ≡
{x : |x| ≤ ǫ} of center zero and radius ǫ. Since ∂B(0, ǫ) is closed and bounded, the
minimum value m of V on ∂B(0, ǫ) exists and is positive. Since V is continuous and
V (0) = 0, we can choose δ > 0 such that V (x) < m for x ∈ B(0, δ). If |x0| ≤ δ, then
the solution x(t) through x0 satisfies V (x(t)) ≤ V (x0) < m for all t ≥ 0. Therefore,
|x(t)| < ǫ for t ≥ 0 and the origin is stable.

Now let us suppose that −V̇ is positive definite in U and choose a fixed ǫ > 0 and
a corresponding δ as in the proof of stability of the origin. For any η > 0, 0 < η < δ,
there is a positive constant c such that −V̇ (x) ≥ c for η ≤ |x| ≤ ǫ. As a consequence,
if x0 ∈ B(0, δ), the solution x(t) through x0 satisfies V (x(t)) ≤ V (x0) − ct as long
as η ≤ |x(t)| ≤ ǫ. Since |x(t)| ≤ ǫ for all t ≥ 0 and V (x) ≥ 0 for all x ∈ U , there
must exist a t0 = t0(η, δ) such that |x(t0)| = η. This shows that x(t) → 0 as t → ∞.
Lemma 7.1 shows that the origin is a local attractor.
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Exercise 8.1. For a given function f ∈ Ck(lRd, lRd) and V ∈ C0(U, lR), define

V̇ (x) = lim sup
h→0+

1

h
[V (x + hf(x)) − V (x)].

With this definition of V̇ , give an appropriate generalization of Theorem 8.1.

Theorem 8.2. (Stability from linearization) If f ∈ Cr(lRd, lRd), r ≥ 1, and there is
an x0 ∈ lRd such that f(x0) = 0, and Re σ(∂f(x0)/∂x) < 0, then the equilibrium
solution x0 of the equation ẋ = f(x) is a local attractor.

Proof. Without loss of generality, we can take x0 = 0. If f(x) = Ax + g(x), where
g(0) = 0, ∂g(0) = 0/∂x, then Re σ(A) < 0. From Section 1.5, there is a positive
definite matrix B such that A∗B + BA = −I. If we let V (x) = x∗Bx, then there are
positive constants m < M such that mx∗x ≤ V (x) ≤ Mx∗x for all x. Also, there is a
positive constant b such that V̇ (x) along the solutions of the equation ẋ = Ax + g(x)
is given by

V̇ (x) = −x∗x + 2x∗Bg(x) ≤ −
1

2
x∗x ≤ −

m

2
V (x)

for |x| < b. Therefore,

mx∗(t)x(t) ≤ V (x(t)) ≤ e−
m

2
tV (x(0)) ≤ Me−

m

2
tx∗(0)x(0)

as long as |x(t)| ≤ b. If we choose δ so that Mδ2 ≤ b2, then |x(0)| ≤ δ implies that
the above inequality holds for all t ≥ 0. This proves the corollary.

Exercise 8.2. Suppose that V (x1, x2) = x2
2e

−x1 for (x1, x2) ∈ lR2 and that, relative
to some planar autonomous differential equation, we have V̇ (x1, x2) = −x2

2V (x1, x2).
Is it possible to say anything about the solutions of the original differential equation?
If not, why?

It is possible to give a generalization of Theorem 8.1 which is valid for nonau-
tonomous equations and time dependent Lyapunov functions. We leave the precise
formulation for the reader.

If we exploit the autonomous character of our equation and especially the invari-
ance of the ω-limit set, it is possible to give a very general result on the limit set of
any bounded orbit

Theorem 8.3. (The Invariance Principle) Suppose that V ∈ C1(lRd, lR), U = {x ∈
lRd : V (x) < k} and suppose that V̇ ≤ 0 on U . Let

S = {x ∈ Ū : V̇ (x) = 0}

and let M be the largest set in S which is invariant for the equation ẋ = f(x). Then
every positive orbit in U which is bounded has its ω-limit set in M .
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Corollary 8.1. Suppose that the conditions of Theorem 8.3 are satisfied and, in
addition, U is bounded and V̇ < 0 on ∂U . Then there is a compact invariant set A
in U such that A is the local attractor for U ; that is, A attracts U .

Proof. The hypotheses imply that there is a closed bounded set W in U such that the
ω-limit set of any orbit in U belongs to W . We now use the same type of argument
as in the proof of Theorem 7.3.

Exercise 8.3. Prove Theorem 8.3.

Example 8.1. Consider the second order scalar equation

(8.1) ẍ + f(x)ẋ + h(x) = 0,

where xh(x) > 0, x 6= 0, f(x) > 0, x 6= 0, and H(x) ≡
∫ x

0
h(s)ds → ∞ as |x| → ∞.

The equivalent system is

(8.2) ẋ1 = x2, ẋ2 = −h(x1) − f(x1)x2.

If V (x1, x2) = x2
2 + H(x1), the total energy of the system, then V̇ = −f(x1)x

2
2. For

any positive number ρ, the function V is a Lyapunov function on the bounded set
U = {(x1, x2) : V (x1, x2) < ρ}. Also, the set S where V̇ = 0 belongs to the union of
the x1-axis and the x2-axis. From (8.2), this implies that the largest invariant set M
in S is given by M = {(0, 0)}. Therefore, Theorem 8.3 implies that every solution of
(8.2) approaches the origin. Since this implies that the system is point dissipative,
Theorem 7.3 asserts that (8.2) has a global attractor A. Since the global attractor is
invariant and the only invariant set of (8.2) is the origin, it follows that the origin is
a global attractor.

Exercise 8.4. Consider the system

ẋ1 = x2, ẋ2 = −2x1 − 3x2
1 − ax2,

where a > 0. Use the energy function V (x1, x2) = x2
2/2+x2

1 +x3
1 to discuss the stable

manifold of the origin.

Exercise 8.5. Consider the third order system

ẋ = y, ẏ = z − ay, ż = −cx − F (y),

where F (0) = 0, a > 0, c > 0, aF (y)/y > c > 0 for y 6= 0 and
∫ y

0
[F (s)− cs/a]ds → ∞

as |s| → ∞. If F (y) = ky, where k > c/a, verify that the characteristic roots of the
linear system have negative real parts. Show that the origin is a global attractor even
for the nonlinear function F satisfying the above properties.
Hint: Choose a Lyapunov function V as a quadratic form plus the term

∫ y

0
F (s)ds.
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Exercise 8.6. Suppose that f ∈ Cr(lRd, lRd), r ≥ 1, and that there is a positive
definite matrix Q such that J ′(x)Q + QJ(x) is negative definite for all x 6= 0, where
J ′(x) is the Jacobian matrix of f(x). If f(0) = 0, prove that the origin is a global
attractor for the system ẋ = f(x).

Hint: Prove and make use of the fact that f(x) =
∫ 1

0
J(sx)ds.

We state another important theorem concerning instability by using Lyapunov
functions.

Theorem 8.4. (Ĉetaev’s Instability Theorem) Consider the differential equation ẋ =
f(x) and suppose that 0 is an equilibrium point. Let U be a bounded neighborhood
of 0. If there exist an open set Ω and a function V ∈ C1(Ω̄, lR) such that

(i) 0 ∈ ∂Ω;
(ii) V (x) = 0 for all x ∈ U ∩ ∂Ω;
(iii) V (x) > 0 and V̇ (x) > 0 for all x ∈ Ω ∩ Ū ;

then the origin is an unstable equilibrium point.

Proof. If x0 ∈ (Ω ∩ U) \ {0} and the solution x(t) through x0 remains in U for all
t ≥ 0, then it must have an ω-limit set ω(x0) in Ū . As in the proof of Theorem 8.3,
this implies that V̇ = 0 on ω(x0). Our hypotheses imply that ω(x0) = {0}, which is
a contradiction since V > 0 on ω(x0).

Using Theorem 8.4, we can obtain the following result about instability of an
equilibrium point based on the linear approximation.

Theorem 8.5. (Instability from linearization) If f ∈ Cr(lRd, lRd), r ≥ 1, f(x0) = 0,

A = ∂f(x0)
∂x

, Re σ(A) 6= 0 and there is a λ ∈ σ(A) such that Re λ > 0, then x0 is
unstable.

Proof. If we let A = ∂f(x0)
∂x

, y = x−x0 and g(y) = f(y+x0)−Ay, then g(y) = o(|y|)
as y → 0; that is, for any ǫ > 0, there is a δ > 0 such that |g(y)| ≤ ǫ|y| for |y| ≤ δ.
Also, y is a solution of the differential equation

ẏ = Ay + g(y) .

Without loss of generality, we may suppose that A = diag (A+, A−) where the eigen-
values of A+ (resp. A−) have real parts > 0 (resp. < 0). If we let y = col (u, v), g =
col (U, V ), then the differential equation becomes

(8.3)
u̇ = A+u + U(u, v)

v̇ = A−v + V (u, v) .

Let B+ (resp. B−) be a positive definite matrix such that −A∗
+B+ − B+A+ = −I

(resp. A∗
−B− + B−A− = −I). These matrices exist by Exercise 1.5.4. If we define

W (u, v) = u∗B+u − v∗B−v, then

Ẇ (u, v) = u∗u + v∗v + 2u∗B+U(u, v)− 2v∗B−V (u, v).
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Since g(y) = o(y) as y → 0, for any ǫ ∈ (0, 1), there is a neighborhood Ω = Ωǫ of
(u, v) = (0, 0) such that

Ẇ (u, v) ≥ (1 − ǫ)(|u|2 + |v|2) for (u, v) ∈ Ω.

The set W+ = {(u, v) : W (u, v) > 0} is an open set whose boundary ∂W+ is a cone;
that is, if (u, v) ∈ ∂W+, then (ku, kv) ∈ ∂W+ for all k ∈ lR. Thus, (0, 0) ∈ ∂W+. If
we choose (u0, v0) ∈ Ω ∩ W+, then the solution (u(t), v(t)) of (8.3) through (u0, v0)
must remain in Ω∩W+ for all t as long as (u(t), v(t)) remains in Ω. Since Ẇ (u, v) > 0
if (u, v) 6= 0, it follows that (u(t), v(t)) ∈ ∂Ω for some finite time t. Since the closure
of the set W+ contains the origin, this proves instability of the origin. The proof of
the theorem is complete.

In a later section, we will see that the conclusion of instability remains true even
if we do not assume the hyperbolicity of the linear approximation near the equilibrium
point. However, the proof is more difficult.

The following result also is very important and gives a very geometric picture of
the meaning of a local attractor.

Theorem 8.6. (Converse Theorem of Lyapunov) If A is a local attractor for the
d-dimensional system ẋ = f(x), then there exists a neighborhood U of A ∈ lRd and
a Lipschitz continuous function V on U such that V is positive on U \ A, V = 0 on
A, and V̇ is negative on U \ A. More precisely, there exist a positive constant r0, a
positive definite function b(r), a positive function c(r), 0 ≤ r ≤ r0, and a Lipschitz
continuous function V (x) defined for x ∈ lRd, |x| ≤ r0, such that

(8.4)
(a) dist (x,A) ≤ V (x) ≤ b(dist (x,A)),

(b) V̇ (x) ≤ −c(dist (x,A))V (x) ≤ −dist (x,A)c(dist (x,A)),

In particular, when the local attractor is the origin, we have the converse of
Theorem 8.1, which is stated as

Theorem 8.7. If 0 is a local attractor for the d-dimensional system ẋ = f(x), then
there exists a neighborhood U of 0 ∈ lRd and a Lipschitz continuous function V on U
such that V is positive definite and V̇ is negative definite on U . More precisely, there
exist a positive constant r0, a positive definite function b(r), a positive function c(r),
0 ≤ r ≤ r0, and a Lipschitz continuous function V (x) defined for x ∈ lRd, |x| ≤ r0,
such that

(8.5)
(a) |x| ≤ V (x) ≤ b(|x|),

(b) V̇ (x) ≤ −c(|x|)V (x) ≤ −|x|c(|x|).

We only indicate the proof for a special case; namely, the case in which the
differential equation is linear, the local attractor is the origin and the solution x(t, x0)
satisfies the inequality

(8.6) |x(t, x0) ≤ Ke−αt|x0|, t ≥ 0,
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for all x0 ∈ lRd and k, α are positive constants. The other situation is a little more
complicated but uses similar ideas.

We define

V (x0) = sup
τ≥0

|x(τ, x0)|e
ατ .

From (8.6), it is clear that V (x0) is defined for all x0 ∈ lRd and satisfies (8.5)(a). To
show that V is Lipzchitzian, we observe that

|V (x0) − V (y0)| ≤ sup
τ≥0

[|x(τ, x0) − x(t, y0)|e
ατ

= sup
τ≥0

|x(τ, x0 − y0)|e
ατ

= V (x0 − y0) ≤ K|x0 − y0|.

The proof of (8.5)(c) procceds as follows:

V̇ (x0) = lim sup
h→0+

1

h
[sup
τ≥0

|x(τ + τ, x0)|e
ατ − sup

τ≥0
|x(τ, x0)|e

ατ ]

= lim sup
h→0+

1

h
[sup
τ≥h

|x(τ + τ, x0)|e
α(τ−h) − sup

τ≥0
|x(τ, x0)|e

ατ ]

≤ lim sup
h→0+

1

h
[sup
τ≥0

|x(τ + τ, x0)|e
α(τ−h) − sup

τ≥0
|x(τ, x0)|e

ατ ]

= lim sup
h→0+

1

h
sup
τ≥0

|x(τ + τ, x0)|e
ατ (e−αh − 1)

= −αV (x0).

This completes the proof for this special case.
We conclude this section with some remarks about how local attractors may

change when the differential equation is subjected to perturbations. More precisely,
consider the family of differential equations

(8.7)ǫ ẋ = f(x, ǫ),

where ǫ is a parameter in a Banach space E and f(x, ǫ) and Dxf(x, ǫ) are continuous
in x, ǫ for (x, ǫ) ∈ lRd × E.

Theorem 8.8. If (8.7)0 has a local attractor A0, then there is a positive number δ
such that, for 0 ≤ |ǫ| < δ, the system (8.7)ǫ has a local attractor Aǫ and the family
of sets {Aǫ, 0 ≤ |ǫ| < δ} is upper semicontinuous at ǫ = 0; that is,

lim
ǫ→0

dist (Aǫ,A0) = 0.
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Proof. We will make use of Theorem 8.6 even though a simple proof can be given
directly (see Exercise 8.7). From Theorem 8.6, there is a neighborhood U of A0 ∈ lRd

and a function V ∈ C1(U, lR) such that V is positive on U \A0, V = 0 on A0, and V̇
is negative on U \ A0. If we let V −1(c) = {x ∈ lRd : dist (x,A0) < c}, then we can
choose c and γ > 0 so that V −1(c) is a bounded set and V̇ ≤ −γ on ∂V −1(c). From
the hypotheses of continuity of f(x, ǫ), there is a δ0 > 0 such that, for 0 ≤ |ǫ| < δ0,
we have V̇(8.7)ǫ

≤ −γ/2 on ∂V −1(c), where V̇(8.7)ǫ
denotes the derivative of V along

the solutions of (8.7)ǫ. Therefore, the bounded set V −1(c) has an ω-limit set Aǫ in
V −1(c) with respect to the flow defined by (8.7)ǫ and it is a local attractor for V −1(c).
It remains to show the property of upper semicontinuity. For any η < c, there is a
t0 = t0(c, η) such that, for any ξ ∈ V −1(c), the solution ϕt

0(ξ) of (8.7)0 belongs to
V −1(η/2) for t ≥ t0. Choose η̄ = η̄(η) > 0 so that ξ̄ ∈ V −1(η) if ξ ∈ V −1(η/2) and
|ξ̄ − ξ| < η̄. We can find a δη > 0 such that, for 0 ≤ |ǫ| < δη, the solution ϕt

ǫ of (8.7)ǫ

satisfies |ϕt
ǫ(ξ) − ϕt

0(ξ)| < η̄ for ξ ∈ V −1(c), 0 ≤ t ≤ t0. Since ϕt
0(ξ) ∈ V −1(η/2)

for all t ≥ t0, this implies that ϕt
ǫ(ξ) ∈ V −1(η) for ξ ∈ V −1(c), t ≥ t0. Therefore,

Aǫ ⊂ V −1(η) for 0 ≤ |ǫ| < min{δ, δη}. Since η is an arbitrary positive number, we
may let η → 0 and obtain the upper semicontinuity of the local attractors.

Exercise 8.7. Prove theorem 8.8 without using the converse theorem of Liapunov.

Let Aǫ be the local attractors given in Theorem 8.8. We say that the family of
sets {Aǫ, o ≤ |ǫ| < δ} is lower semicontinuous at ǫ = 0 if

lim
ǫ→0

dist (A0,Aǫ) = 0.

Without further hypotheses about the flow on the attractor A0, we may not have
lower semicontinuity. In fact, consider the simple example

ẋ = −(x + 1)(x2 + |ǫ|).

If ǫ = 0, the attractor is the line segment [−1, 0]. If |ǫ| 6= 0, the attractor is the
singleton {−1}.

Exercise 8.8. For a scalar differential equation depending continuously upon a pa-
rameter ǫ, give conditions on the vector field at ǫ = 0 which will ensure that local
attractors are lower semicontinuous at ǫ = 0.

Exercise 8.9. Suppose that 0 is a local attractor for the equation ẋ = f(x) and
consider the perturbed equation

(8.8) ẋ = f(x) + g(x).

Use Theorem 8.7 to conclude that, in a neighborhood of the origin, there is a positive
constant K such that

(8.9) V̇(8.8)(x) ≤ −αV (x) + K|g(x)|.

Use this result to give another proof of Theorem 8.8 for the case where the local
attractor A consists only of the origin.

7



æ

8


