1.7. Stability and attractors.

Consider the autonomous differential equation

(7.1) &= f(z),

where f € C"(R?, R?),r > 1.

For notation, for any z € R%, ¢ € R, we let B(z, ¢) = {£€ e R : [¢ — | < ¢}.
Suppose that zq is an equilibrium point of (7.1). We say that xg is stable if, for any
€ > 0, there is a § > 0 such that, if £ € B(xzo, ), then ¢'(£) € B(xy, €) for t > 0. We
say that x( is unstable if it is not stable. We say that xq attracts points locally if there
exists a constant b > 0 such that, if £ € B(xg, b), then [p!(£) — 29| — 0 as t — oo;
that is, for any n > 0 and any £ € B(xq, b), there is a to(n, &) with the property that
©'(&) € B(xzg, n) for t > to(n, &). We say that zq is a local attractor if there exists
a constant ¢ > 0 such that dist (¢'(B(wo, ¢), xg) — 0 as t — oo; that is, for any
n > 0, there is a to(n) with the property that, if £ € B(xo, c), then ©'(€) € B(xg, n)
for t > tg. If o has the property that, for any bounded set B C IRd, we have dist
(¢'(B), 9) — 0 as t — oo, then we say that xq is a global attractor of (7.1).

To force us to think some about these definitions, let us consider in some detail
the stability properties of the origin for the flow depicted in Figure 7.1. We do not
write the equation, but just assume that there is an equation for which this is the
flow (it is possible to show that such an equation does exist).

Figure 7.1.

The origin attracts points locally since every solution approaches zero as t — oo.
On the other hand, the origin is not a local attractor. In fact, there is an > 0 such
that, for any sequence 71 € (0, 00), 7, — 00 as k — oo, there is a sequence of points
&k — 0 as k — oo such that ¢™ (&) ¢ B(0, n) for any k. For this same reason, the
origin is not stable.

Exercise 7.1. Give a detailed discussion of the difference between stability of an
equilibrium point xy and the continuous dependence on initial data in a neighborhood
of zg. Give an example where there is continuous dependence and not stability.

For the linear autonomous equation considered in Section 1.5, there is a simple
criterion for determining the stability properties of the origin.
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Theorem 7.1. For the linear system (5.1), & = Ax, we have the following statements:
(i) The origin is stable if and only if Re 0(A) < 0 and the eigenvalues with zero real
parts have simple elementary divisors; that is, each Jordan block has dimension one;
(ii) The origin is a global attractor for (5.1) if an only if Re o(A) < 0.

Proof. If the origin is stable, then we must have Re 0(A) < 0. Furthermore, if there
is a Jordan block of A which has dimension > 2 and corresponds to an eigenvalue of
A on the imaginary axis, then (5.3) implies that there is a solution of (5.1) which is ¢
times a periodic function, which implies that the origin is unstable. The proof of (i)
in the other direction is just as simple.

If the origin is a global attractor for (5.1), then every solution of (5.1) approaches
zero. From (5.3), this implies that Re o(A) < 0. If Re 0(A) < 0, then Lemma 5.1
implies that the origin is a global attractor.

Lemma 7.1. An equilibrium point xq of (7.1) is stable and attracts points locally if
and only if it is a local attractor.

We do not present the proof since a more general result will be given below.

In the literature, the concept the equilibrium point xy is asymptotically stable is
equivalent to xy being stable and attracting points locally.

We need also a generalization of the above concepts to invariant sets. For nota-
tion, for any set J C RY, ¢ € R, we let B(J,c)={¢€ R : dist(§, J) < ¢ }. Suppose
that J is an invariant set of (7.1). We say that J is stable if, for any € > 0, there is a
§ > 0 such that, if £ € B(J, §), then ¢'(£) € B(J, ¢€) for t > 0. We say that J is un-
stable if it is not stable. We say that J attracts points locally if there exists a constant
b > 0 such that, if £ € B(J, b), then dist(p"(£), J) — 0 as t — oo. We say that J is
a local attractor if there exists a constant ¢ > 0 such that dist (p*(B(J, ¢), J) — 0 as
t — oo; that is, for any n > 0, there is a to(n) with the property that, if £ € B(J, ¢),
then ¢'(¢) € B(J, n) for t > to. If J is a compact invariant set with the property
that, for any bounded set B ¢ R?, we have dist (¢!(B), J) — 0 as t — oo, then we
say that J is a global attractor of (7.1). From this definition, it is clear there can be
only one global attractor.

Lemma 7.2. An invariant set J is stable if and only if, for any neighborhood V' of
J, there is a neighborhood V' C V of J such that ¢*(V') C V' for t > 0.

Proof. If J is stable and V is a neighborhood of J, then there is a neighborhood W
of J such that o'(W) C V for t > 0. If V' = T(W), then o' (V') C V' for ¢t > 0. The

converse is clear.

Theorem 7.2. If J is a compact invariant set of (7.1), then J is stable and attracts
points locally if and only if it is a local attractor.

Proof. If J is a local attractor, then there is a positive constant ¢ such that, for any
e > 0, there is a to such that ¢*(B(J, ¢)) C B(J, €) for t > . From continuity with
respect to initial data, we can choose 0 < 6 < ¢ so that ¢*(B(J, 6)) C B(J, €) for
0 <t <ty. Therefore, J is stable. Obviously, J attracts points locally.
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Conversely, if J is stable and attracts points locally, then there is a bounded
open neighborhood W of J such that dist (¢*(£), J) — 0 as t — oo for every & € W.
From Lemma 7.2, we may assume that @' (W) C W for t > 0. Let U C W be
an arbitrary neighborhood of J and let H be an arbitrary compact set in W. We
only need to show that there is a T(H, U) such that p'(H) C U for t > T(H, U).
Without loss in generality, we also can take ¢'(U) C U, t > 0, from Lemma 7.2.
For any £ € H, there is a tg = to(&, U) such that ¢'(£) € U for t > to. Since ¢' is
continuous, there is a neighborhood O¢ of € such that ¢ (O¢) C U. If welet { O¢,, j =
1,2 ..., p} be a finite cover of H, T(H, U) = max; to(§;, U) and V(H, U) = U;O¢,,
then ©'(V(H, U)) C U fort > T(H, U). If we choose H = B(J, b) C W and, for any
n > 0, if we choose U = B(J, ), then we have shown that J is a local attractor.

Example 7.2. For the equation, & = z(1 — z), the equilibrium points are 0, 1, with
0 being unstable and the point 1 being stable and attracts points locally. Therefore,
the point 1 is a local attractor. There is no global attractor on IR.

Example 7.3. For the equation, & = z(1 — x2), the equilibrium points are 0, %1,
with 0 being unstable and the points +1 being stable and attracts points locally.
Therefore, each of the points +1 is a local attractor. The line segment [—1, 1] is a
global attractor.

Example 7.4. For the equation,
i1 =—xa+z1(1—71%), do=uax1+a2(1—1%),

with r2 = 27 + 23, the only equilibrium point is (0, 0) and it is unstable. The periodic
orbit 72 = 1 is a local attractor. The global attractor is the closed disk B((0, 0), 1).

We present now a general result on the existence of a global attractor. To do
so, we need another concept. We say that (7.1) is point dissipative if there exists
a bounded set B ¢ R? such that, for any ¢ € R?, there is a to(¢£) > 0 such that
©'(&) € B for t > tg(€). To say that (7.1) is point dissipative is the same as saying
that there is a bounded set B that attracts points globally. The following statement
is a fundamental result in the theory of dissipative systems.

Theorem 7.3. If (7.1) is point dissipative, then there exists a global attractor for
(7.1). Furthermore, there is an equilibrium point of (7.1).

Proof. Let B be a bounded open set such that, for any ¢ € R?, there is a to(€)
such that ¢f(£) € B for t > to(€). We show first that, for any compact set H C R,
we have 7T (H) bounded. As in the proof of Theorem 7.2, there is a finite cover
{O¢,,j=1,2..., p} of H with the property that ¢*(O¢,) C B for t = ty(¢;). Define
T(H) = IMax; to(fj). If K =ClB and K = UOStST(K)th(K), then th(B> C K for
t > 0 and, thus, ¢*(H) C K for t > T(H). Therefore, v (H) is bounded and it will
have the its w-limit set contained in K. On the other hand, vt (K) is bounded and
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so w(K) exists. Since w(H) C w(K) for every compact set H, we know that w(K) is
the global attractor of (7.1).

From the asymptotic fixed point theorem (Theorem A.1.6), for any 7 > 0, there
is an x, such that ©7 (z,) = z,. The function ’(z,) is thus a 7-periodic solution of
(7.1). This periodic solution must lie in the global attractor which is compact. The
existence of an equilibrium point of (7.1) is obtained by using the argument used in
the proof of Theorem 6.4. This completes the proof of the theorem.

Remark 7.1. It is possible but nontrivial to give an example of a differential equation
in R? for which all solutions are bounded and yet there is no equilibrium point.

For a scalar differential equation, it is easy to determine if it is point dissipative.
In fact, if f is a scalar vector field, then a necessary and sufficient condition that (7.1)
be point dissipative is that there is an ro > 0 such that zf(z) < 0 for || > 9. The
global attractor is the interval I = [z, x1], where z¢ (resp., 1) is the smallest (resp.,
largest) zero of f which is larger that —rg (smaller that o). The pictorial situation
is shown in Figure 7.2.

Figure 7.2. One dimensional dynamics.

This one dimensional example is a special case of a more general class of differ-
ential equations on R? called gradient systems.

Example 7.5. (Gradient systems) If F € C"(R%, R), » > 1, and VF denotes the
gradient of F', then the equation

(7.2) & =—VF(z)

is called a gradient system.
The set E of equilibrium points of (7.2) coincides with the set of extreme points
of the function F'. Furthermore, we have the following relation:

d

(7.3) S F@©) = —[VE(e"(€)? <0

for all ¢ € R?, where |z|> = z - z. This implies that
(7.4) F(¢'(€)) < F(¢) for all t > 0.

If ©'(¢) is defined and bounded for all ¢ > 0, then we know that w(&) is a
nonempty, compact and invariant set. Since F(¢'(£)),t > 0, is bounded below,

4



F(p'(€)) — alimit as ¢ — oco. This implies that, for any ¢ € w(£), we have F(¢'(¢)) =
F(¢) for all t € R. Therefore, £ F(¢'(¢)) =0 for all t € R. From (7.3), this implies
that VF(¢'(¢)) =0 for all t € R and w(§) C E.

If we assume that the function F' satisfies the additional property that

(7.5) F(x) — o0 as |z| — oo,

then (7.4) implies that p!(¢) is defined and bounded for ¢ > 0. As a consequence, we
have proved the following result.

Theorem 7.4. If v (&) is a bounded orbit of the gradient system (7.2), then w(§)
belongs to the set of equilibrium points. If, in addition, each equilibrium point of
(7.2) is isolated, then w(§) is a single point. Finally, if (7.5) is satisfied, then each
vt (&) is bounded.

Proof. We only need to prove that w(§) is a single point if each equilibrium point is
isolated. This follows from the fact that the w-limit set is connected.

Remark 7.2. In most applications of gradient systems, we have w(§) is a single
point. On the other hand, it is possible to give an example in the plane for which this
is not true. It is instructive to try to construct such an example.

The structure of the flow on the global attractor for a gradient system can be
described in terms of the unstable set of equilibrium points. If £ is an equilibrium
point of (7.2), we define the unstable set of £ as

WU (&) = {x: p'(x) exists on (—oo, 0], ¢’ () — East — —oc0 }.
In the same way, we define the unstable set of the set E of equilibrium points as
WY(E) = {x: ' (x) exists on (—oo, 0], ¢'(x) — East — —oco0}.

Theorem 7.5. Suppose that (7.2) has a global attractor A. Then A = W*(E). If,
in addition, the equilibrium points are isolated, then

A = UgegW"(§).

Proof. If x € A, then ¢!(z) exists on (—oo, 0] and is bounded. Therefore, to prove
the theorem, we only need to show that a(x) € E. If y € a(z), then there exists a
sequence t, — —00 as n — 0o so that @' (x) — y as t — oco. Choose the t,, so that
tn—1—tn > 1for all n. Then, for any ¢ € (0, 1), we have from (7.4) that F(¢'»—1(z)) <
F(pinTt(z)) < F(p'(z)) for all n and thus F(e'"T(z)) — F(y) as n — oo. Since
F(p'(z)) also converges to F(pt(y)) as n — oo, it follows that F(o!(y)) = F(y)
for all ¢ € [0, 1) and therefore for all ¢ € R. Relation (7.4) implies that y € E and
A = WH"(E). If E consists only of isolated points, then W*(E) = UgcgW*(§) and
the theorem is proved.



Exercise 7.2. Show that every one dimensional autonomous differential equation is
a gradient system.

Exercise 7.3. Prove the following result: If the set of equilibrium points of the
gradient system (7.2) is bounded and (7.5) is satisfied, show that there is a global
attractor for (7.2).

Exercise 7.4. Give an example of a gradient system for which (7.5) is satisfied and
yet there is no global attractor.

Exercise 7.5. Show that the following equations are gradient systems and prove
that there is a global attractor:

(a)iy = 2(xo — 1) + 21(1 — 23), @9 = —2(z2 — 1) + 22(1 — 23),

. 3 2 . 3 2
(D)1 = —x] — br1xs +x1, @9 = —x5 —brixre + X2.

Exercise 7.6. Suppose that A is a compact invariant set that is a local attractor
and, for any ¢ € R?, we have w(&) C A. Prove that A is a global attractor.






