
1.6. Autonomous systems.

A differential equation is said to be autonomous if the vector field does not
depend upon the independent variable t. In this section, we give a few general but
very important properties of autonomous systems.

If U ⊂ lRd is an open set, f ∈ Cr(U, lRd), r ≥ 1, we consider the autonomous
differential equation

(6.1) ẋ = f(x) .

Since we are assuming that f is at least C1, Theorem 3.1 implies that, for any τ ∈ lR,
ξ ∈ U , there is a unique solution x(t, τ, ξ) of (6.1) satisfying x(τ, τ, ξ) = ξ.

Since the differential equation (6.1) remains invariant under translation in the
independent variable, it follows that, for any τ ∈ lR, x(t− τ, 0, ξ) is a solution. Thus,
x(t− τ, 0, ξ) and x(t, τ, ξ) are solutions of the equation (6.1) with the same values at
the initial time t = τ . It follows from the uniqueness of the solution of the initial
value problem that x(t, τ, ξ) = x(t−τ, 0, ξ) for all t for which the solution is defined.
Therefore, there is no loss in generality in assuming that the initial time is 0. We
denote by ϕt(ξ) the maximal solution of (6.1) satisfying ϕ0(ξ) = ξ on the interval Iξ.

If x is a solution of (6.1) on a maximal interval I, the trajectory of x is the set in
lR× lRd defined by { (t, x(t)) : t ∈ I }. The orbit γ(x) of x is the set in lRd defined by
γ(x) = { x(t) : t ∈ I }. We also designate the orbit of x sometimes as γ(ξ) where ξ is a
point in γ(x). The phase space for (6.1) is the subset U of lRd and thus the orbit γ(x)
is the projection along lR in lR× lRd of the trajectory of x into the phase space. The
orbit of x is uniquely defined. However, there are many natural parametrizations of
γ(x). In fact, γ(x(·)) = γ(x(·+ c)) for any real number c.

Theorem 6.1. For any ξ ∈ U, the function ϕt(ξ) satisfies the following properties
for t, s, t+ s ∈ Iξ:
(i) ϕ0(ξ) = ξ

(ii) ϕt(ϕs(ξ)) = ϕt+s(ξ)
(iii) ϕt(ξ) is a Cr-function in x and a Cr+1-function in t if f ∈ Cr(U, lRd) .

Proof. (i) is by definition, (ii) is a consequence of the uniqueness of solutions and
(iii) follows from Theorem 3.1.

We refer to the collection of orbits of (6.1) together with the sense of direction in
time along these orbits as the flow defined by (6.1). If (6.1) has the property that there
is an interval I such that, for each (0, ξ) ∈ U , we have ϕt(ξ) defined for all t ∈ I, then
we say that (6.1) defines a Cr-dynamical system on I. The most interesting dynamical
systems are those for which the interval I is either [0, ∞) or (−∞, ∞). The collection
{ϕt, t ∈ I } of maps is called a group of transformations if I = (−∞, ∞) and and a
semigroup of transformations if I = [0, ∞). In the literature, a dynamical system on
[0, ∞) is sometimes referred to as a semidynamical system.
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In Section 1.5, we have discussed in some detail the special case of (6.1) corre-
sponding to case where f(x) is the linear vector field Ax, where A is a d× d constant
matrix. Each solution of the equation is defined for all t ∈ (−∞, ∞). The mappings
{ϕt, t ∈ I } are given by the family of matrices { eAt, t ∈ I } and represent a group
of transformations on lRd.

If γ(ξ) = { ξ }, then ξ is called a critical point or equilibrium point. It is clear
that ξ is a critical point if and only if f(ξ) = 0. A point in U is said to be regular if
it is not a critical point.

Exercise 6.1. Prove the following fact: If f ∈ Cr(U, lRd), r ≥ 1, x0 is a critical
point and ϕt(ξ) ξ 6= x0 tends to x0 with increasing (or decreasing) t, then it must be
that t→ ∞ (or t→ −∞).

A closed curve (or Jordan curve) in lRd is the homeomorphic image of a circle
in lRd. If γ(ξ) is a closed curve, then it is called a periodic orbit. It is easy to see
that γ(ξ) is a periodic orbit if and only if ϕt(ξ) is defined for all t ∈ lR and there is a
constant p > 0 such that ϕt+p(ξ) = ϕt(ξ) for t ∈ lR and ϕt(ξ) 6= ξ for t ∈ (0, p). We
call such a solution periodic of minimal period p.

We want to reemphasize the difference between an orbit and a trajectory by using
a periodic orbit as an example. If γ is a periodic orbit, then we can define a cylinder
Cγ ≡ lR × γ in lR × lRd. For any point ξ on γ, if ϕt(ξ) is the solution through ξ at
initial time 0, then ϕt(ξ) is periodic of minimal period p and the trajectory is a curve
on the cylinder Cγ and it goes around the cylinder. If we move to another point on
γ, say a point ζ = ϕc(ξ) for some real c ∈ (0, p), then the trajectory corresponding
to the solution ϕt+c(ξ) through ζ at initial time 0 is a different curve on Cγ . These

two curves on the cylinder project onto the same orbit γ in lRd. See Figure 6.1.

Figure 6.1. Periodic orbit vs periodic trajectory.

Since the sense of direction in time is lost when we look at orbits rather than
trajectories, we use a pictorial convention by placing an arrow on the orbit to designate
the direction that a particular solution is moving along the orbit as time increases.
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Example 6.1. Consider the equation ẋ = −x. The solution x = 0 is an equilibrium
point and therefore an orbit. If ξ > 0, then γ(ξ) = {ϕt(ξ), t ∈ lR } = (0,∞) and, if
ξ < 0, then γ(ξ) = (−∞, 0). The solution is decreasing on (0, ∞) and increasing on
(−∞, 0).

Exercise 6.2. For each of the following equations, list all of the orbits and sketch
them in the phase space:

(i)ẋ = x(1 − x) ,

(ii)ẋ = x(1 − x2) ,

(iii)ẋ1 = x2, ẋ2 = −x1 ,

(iv)ẋ1 = x2(x
2
2 − x2

1), ẋ2 = −x1(x
2
2 − x2

1) .

Exercise 6.3. Discuss the orbits and phase portrait for the equation

ẋ1 = −x2 + x1(1 − r2), ẋ2 = x1 + x2(1 − r2) ,

where r2 = x2
1 + x2

2. Hint: Let x1 = r cos θ, x2 = r sin θ.

Exercise 6.4. On the circle, consider the equation θ̇ = a + sin θ (mod 2π), where a
is a positive constant. Show that every solution is periodic if |a| > 1. If |a| < 1, show
that there are two eqiulibrium points. Draw the flows.

A torus is the homeomorphic image of the cross product of two circles. If we
suppose that ϕ, ψ, 0 ≤ ϕ, ψ ≤ 2π, are the angles describing the circles, then a
point on the torus is represented by a coordinate pair (ϕ, ψ). A differential equation
on a torus is given by a relation ϕ̇ = A(ϕ, ψ), ψ̇ = B(ϕ, ψ) , where A, B are 2π-
periodic functions of both variables. The flow on the torus also can be depicted in the
(ϕ, ψ)-plane if we identify each of the lines { (ϕ, 2πk) }, k an integer, with the line
{ (ϕ, 0) } and each of the lines { (2πk, ψ) }, k an integer, with the line { (0, ψ) }. In
this coordinate system, it is sometimes easier to see the manner in which orbits rotate
around a torus. The following exercise is concerned with the simplest flow possible
on the torus and yet it illustrates that the flow may be complicated.

Exercise 6.5. Suppose that ϕ, ψ are the angles describing a torus and suppose that
we have a differential equation on the torus for which the angles satisfy the differential
equation ϕ̇ = 1, ψ̇ = ω , where ω is a fixed constant. An orbit goes around the torus
traversing the angle ϕ with period 2π and the angle ψ with period 2π

ω
. If ω is rational,

prove that every orbit is periodic. If ω is irrational, prove that every orbit is dense in
the torus.

We now turn to the important topic which is concerned with the limits of orbits.
In addition to the notation for an orbit γ(ξ), we need the positive orbit γ+(ξ) =
{ϕt(ξ) : t ≥ 0 } and the negative orbit γ−(ξ) = {ϕt(ξ) : t ≤ 0 }. If we do not want
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to distinguish a particular point on the orbit, we will write γ, γ+, γ− for the orbit,
positive orbit, negative orbit, respectively.

The ω-limit set ω(ξ) and α-limit set α(ξ) of an orbit γ containing ξ are defined
by the following relations:

ω(ξ) = ∩τ≥0∪t≥τϕt(ξ)

α(ξ) = ∩τ≤0∪t≤τϕt(ξ) .

These sets also can be defined by using sequences. For example, if we assume
that the solution through ξ is defined for all t ∈ lR, then it is easy to see that a point
y ∈ ω(ξ) (or α(ξ)) if and only if there is a sequence of real numbers { tk }, tk → ∞
(or −∞) as k → ∞ such that ϕtk(ξ) → y as k → ∞.

If B is a bounded set in lRd, then we define ϕt(B) = ∪ξ∈Bϕ
t(ξ) and the ω-limit

set of B, ω(B), and the α-limit set of B, α(B), by the relations

ω(B) = ∩τ≥0∪t≥τϕt(B)

α(B) = ∩τ≤0∪t≤τϕt(B)

An equivalent formulation of these definitions will involve double sequences. In fact,
if we assume that all solutions are defined for all t ≥ 0, then it is possible to show
that y ∈ ω(B) if and only if there are sequences of real numbers tk → ∞ as k → ∞
and points xk ∈ B such that ϕtk(xk) → y as k → ∞. A similar definition holds for
α(B).

Exercise 6.6. Give a complete proof that the definition of ω(B), α(B) in terms of
double sequences is equivalent to the original one.

It might have seemed reasonable to take the definition of ω(B) to be the set
∪ξ∈Bω(ξ) . It is clear that ω(B) ⊃ ∪ξ∈Bω(ξ) . On the other hand, it is possible to give
an example so that

(6.2) ω(B) 6= ∪ξ∈Bω(ξ) .

In fact, this latter situation is to expected except in the most trivial types of problems.
We give an example of a scalar equation for which (6.2) is satisfied. Consider

the equation ẋ = x − x3 . There are three equilibrium points 0, ±1 and, for any
ξ ∈ (−∞, ∞), we have that ω(ξ) is one of these three points. On the other hand, if
B is the interval (−2, 2), then ω(B) = [−1, 1] and (6.2) is not satisfied. By taking
the union of the ω-limit sets of points, we discover all of the equilibrium points, but
this set does not reveal the fact that the equilibrium points are connected by orbits.
This information is contained in the above definition of ω(B).

Exercise 6.7. For the equation ẋ1 = x1 − x3
1, ẋ2 = −x2, determine ∪ξ∈lR2ω(ξ) . If

B is the interval { (x1, x2) : x2 = 1, −0.5 < x1 < 0.5 }, determine ω(B). If B is
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the interval { (x1, x2) : x2 = 1, −2 < x1 < 2 }, determine ω(B). If B is the interval
{ (x1, x2) : x2 = 0, −0.5 < x1 < 0.5 }, determine ω(B).

A set A ⊂ lRd is an invariant set of (6.1) if ϕt(A) = A for all t ≥ 0. A set A ⊂ lRd

is a positively invariant set of (6.1) if ϕt(A) ⊂ A for all t ≥ 0. A set A ⊂ lRd is a
negatively invariant set of (6.1) if ϕt(A) ⊂ A for all t ≤ 0.

Exercise 6.8. If B is a closed positively invariant set, show that

ω(B) = ∩t≥0ϕ
t(B) .

Exercise 6.9. For each of the examples in Exercises 6.2, 6.3 and 6.5, discuss the
ω-limit sets and α-limit sets of all orbits. What is the largest bounded invariant set
in each of these examples? Is this largest bounded invariant set the ω-limit set of
some bounded set B? What are some positively invariant sets which are bounded?

To state the next result, we need some additional notation. If B is a set in lRd

and x is a point in lRd, define the distance dist(x,B) from x to B as dist (x,B) =
infb∈B |x− b|. If A,B are sets in lRd, we define the distance dist(A,B) from A to B
as

dist(A,B) = sup
a∈A

dist(a,B) = sup
a∈A

inf
b∈B

|a− b|.

Notice that dist(A,B) 6= dist(B,A) in general.

Theorem 6.2. Suppose that B ⊂ lRd is nonempty, bounded and ϕt(B) is defined
for t ≥ 0(resp., t ≤ 0). If γ+(B) (resp., γ−(B)) is bounded, then ω(B) (resp.,
α(B)) is nonempty, compact, invariant and dist(ϕt(B), ω(B)) → 0 as t → ∞ (resp.,
dist(ϕt(B), α(B)) → 0 as t→ −∞). If, in addition, B is connected, then ω(B) (resp.,
α(B)) is connected.

Proof. We prove the theorem only for ω(B) since the other case is similar. From
the definition, it is clear that ω(B) is nonempty and compact. We now prove that
dist(ϕt(B), ω(B)) → 0 as t → ∞. If this is not the case, then there is an ǫ > 0, a
sequence tj → ∞ as j → ∞ and a sequence yj ∈ B such that dist(ϕtj (yj), ω(B)) > ǫ

for j = 1, 2 . . . . Since the set {ϕtj (B), j ≥ 1 } belongs to a compact set, there is a
convergent subsequence of the {ϕtjyj } which we label the same. Since the limit of
this sequence must belong to ω(B), we obtain a contradiction.

Using an argument very similar to the one in the previous paragraph, it is easy
to show that dist(ϕt(B), ω(B)) → 0 as t→ ∞ implies that ω(B) is connected if B is
connected.

It remains to show that ω(B) is invariant. From the fact that ϕt is continuous
in t, we can deduce that ϕt(ω(B)) ⊂ ω(B). In fact, suppose that y ∈ ω(B). Then
there is a sequence tj → ∞ as j → ∞ and a sequence yj ∈ B such that ϕtj (yj) → y

as j → ∞. For any fixed t ∈ (−∞, ∞), there is an integer n0 such that t+ tj ≥ 0 for
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j ≥ n0. Therefore, ϕt+tj (B) is defined for j ≥ n0. Also, ϕt+tj (yj) → ϕt(y) as j → ∞.

This shows that the orbit through y belongs to ω(B). From the definition, it follows
immediately that ω(B) ⊂ ϕt(ω(B)) and thus ω(B) is invariant. This completes the
proof of the theorem.

Remark 6.2. We want to emphasize that ω(B) is invariant and so ϕt(ω(B)) is
defined for all t ∈ (−∞, ∞) even though we may not have ϕt(B) defined for all
t ∈ (−∞, ∞). Therefore, (6.1) may define a dynamical system only on the interval
[0, ∞) and yet the sets ω(B) are invariant.

An important special case of Theorem 6.2 is the following statement.

Corollary 6.1. If B = { ξ } for a fixed ξ ∈ lRd and γ+(ξ) (respectively, γ−(ξ)) is
bounded, then ω(ξ) (respectively, α(ξ)) is nonempty, compact and connected.

Exercise 6.10. Give an example of a two dimensional system which has an orbit
whose ω-limit set is not empty and disconnected.

In later sections, we need the following important concept. A set J is said to be
a minimal set of (6.1) if J is closed, invariant and, if J1 ⊂ J is a closed invariant set,
then J1 = J.

Theorem 6.3. If E is a nonempty compact invariant of (6.1), then there exists a
minimal set in E.

Proof. Let E = {S ⊂ E : S is a nonempty compact invariant set }. Define a partial
ordering on E as follows: S1 ≤ S2 if and only if S1 ⊂ S2. If E0 ⊂ E is totally ordered
and J = ∩s∈E0

S, then J is a compact invariant set. The family E0 has the finite
intersection property. Indeed, if S1, S2 are in E0, then either S1 < S2 or S2 < S1

and, in either case, S1 ∩ S2 is nonempty compact invariant and belongs to E0. The
same holds true for any finite collection of sets of E0. Thus, J is a nonempty compact
invariant set and J is a least element. Since each totally ordered subfamily of E has
a least element, it follows from Zorn’s lemma that there is a minimal element of E .
This completes the proof.

The properties of the flow of a differential equation can be used sometimes to
assert the existence of a zero of a vector valued function.

Theorem 6.4. If K is a positively invariant compact set of (6.1) and K is homeo-
morphic to the unit ball in lRd, then there is at least one equilibrium point of (6.1)
in K.

Proof. For any τ1 > 0, consider the mapping ξ 7→ ϕτ1(ξ). From The Brouwer Fixed
Point Theorem, there is a ξ1 ∈ K such that ϕτ1(ξ1) = ξ1 and, thus, a periodic orbit
of (6.1) of period τ1. We choose a sequence τm > 0, τm → 0 as m → ∞ and the
corresponding points ξm so that ϕτm(ξm) = ξm. Since K is compact, we may assume
that this sequence converges to a point ξ∗ ∈ K as m→ ∞. For any t and any m, there
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is an integer km(t) such that km(t)τm ≤ t < km(t)τm + τm and ϕkm(t)τm(ξm) = ξm
for all t since ϕt(ξm) is periodic of period τm in t. Furthermore,

|ϕt(ξ∗) − ξ∗| ≤ |ϕt(ξ∗) − ϕt(ξm)| + |ϕt(ξm) − ξm| + |ξm − ξ∗|

= |ϕt(ξ∗) − ϕt(ξm)| + |ϕt−km(t)τm(ξm) − ξm| + |ξm − ξ∗| .

Since the right hand side of this inequality approaches zero as m→ ∞, we have that
ξ∗ is an equilibrium point and the theorem is proved.
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