
1.5. Linear equation with constant coefficients.

In this section, we present the basic theory of a linear system of differential
equations with constant coefficients. The interest in such systems arises through the
linear variational equation near a constant solution of a nonlinear equation ẋ = f(x).

Let A be a d × d real or complex matrix and consider the equation

(5.1) ẋ = Ax ,

where x ∈ lRd or Cl d. From Theorem 3.1, the initial value problem for (5.1) has a unique
solution which depends continuously upon the initial data. Let ϕt(ξ) be the solution
of (5.1) which satisfies ϕ0(ξ) = ξ. From Exercise 4.2, the function ϕt(ξ) is defined for
all t ∈ lR. Suppose that ϕt(ξ) and ϕt(ζ) are solutions of (5.1) and a, b are scalars.
From the fact that the vector field in (5.1) is linear in x and there is a unique solution
of the initial value problem for (5.1), we know that ϕt(aξ + bζ) = aϕt(ξ) + bϕt(ζ). In
particular, the mapping ϕt is a bounded linear operator on lRd or Cl d. Therefore, it
is represented by a d × d matrix, which we designate by eAt; that is, for each t ∈ lRd

and ξ ∈ lRd or Cl d, we have

(5.2) ϕt(ξ) = eAtξ .

It is clear that each column of the matrix eAt is a solution of (5.1). In this sense, we
say that eAt is a matrix solution of (5.1).

The matrix eAt satisfies the following properties:

(i)eA0 = I , the identity

(ii)eA(t+s) = eAteAs

(iii)(eAt)−1 = e−At

(iv)
d

dt
eAt = AeAt = eAtA

(v)eAt = I + At + · · ·+
1

n!
Antn + · · · .

Properties (i) was proved above. Property (ii) is a consequence of the uniqueness
of solutions since, for any ξ ∈ lRd, the functions eA(t+s)ξ and eAteAsξ are solutions
of the equation with the same initial values. Property (iii) is a consequence of (ii) by
setting s = −t. Property (iv) follows from the uniqueness of the solution of the initial
value problem and the observation that both AeAt and eAtA are matrix solutions of
(5.1).

Before proving (v), we must make a few remarks about the meaning of a matrix
power series. If f(z) is a function of the complex variable z in a neighborhood of 0,
the power series f(A) is defined as the formal power series obtained by substituting
for each term in the power series of f(z) the matrix A for z. We say that f(A)
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converges in a neighborhood of 0 if each element of the matrix f(A) converges in a
neighborhood of 0.

We could have taken the power series expansion in (v) as the definition of eAt and
then show that it has all of the properties stated and that the matrix gave the solutions
of (5.1) through the expression (5.2). On the other hand, we did not proceed this way.
We used the differential equation (5.1) to define a linear operator which we called
formally eAt. We use the method of successive approximations (Picard iteration)
defined after the proof of Theorem 3.1 to show that the power series expansion of eAt

is given by (v). More precisely, if we let

P (0) = I,

P (k+1)(t) = I +

∫ t

0

AP (k)(s) ds, k = 0, 1 . . . ,

then we see that the expression for P (k) is given by the formula

P (k)(t) = I + At + · · ·+
1

n!
Aktk

which is the first k terms in (v). It remains to show that each element of the sequence
of matrices {P (k)(t), k = 0, 1, . . . , } converges. There is a β > 0 such that, for any
d× d matrix B = { bij }, we have |bij| ≤ β−1|B|, where |B| denotes the norm of B. If

P (k)(t) = { p
(k)
ij (t) } and |A| = α, then

β|p
(k)
ij (t)| ≤ 1 + αt + · · ·+

1

k!
αktk ≤ eαt ,

β|p
(k+m)
ij (t) − p

(k)
ij (t)| ≤ Σk+m

k

1

n!
αntn .

This show that each element of the sequence of matrices {P (k)(t), k = 0, 1, . . . , } is
a Cauchy sequence. This proves (v).

Exercise 5.1. Prove the following facts:
(i) BeAt = eAtB for all t if and only if BA = AB,

(ii) e(A+B)t = eAteBt for all t if and only if BA = AB.

In the case where d = 1, we have shown above that the scalar differential equation
ẋ = ax defines in a unique way the exponential function eat. For the matrix case, we
have shown that (5.1) defines in a unique way an exponential matrix function. It
remains to understand the more detailed structure of this matrix function eAt.

Exercise 5.2. Obtain eAt for the following differential equations using only the
knowledge that we have presented above:

(i) ẋ = ix, i = (−1)1/2 ,
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(ii)ẋ1 = x2, ẋ2 = −x1 .

There is an intimate connection between the eigenvalues and eigenvectors of A

and the solutions of (5.1). We recall that λ is an eigenvalue of A if and only if det
[A − λI] = 0 and an eigenvector corresponding to λ is a nonzero vector ξ such that
[A − λI]ξ = 0. The function x(t) = eλtξ satisfies ẋ(t) = eλtλξ = Aeλtξ = Ax(t) and
is thus a solution of (5.1). Conversely, if there is a complex number λ and a nonzero
vector ξ such that eλtξ is a solution of (5.1), then λ is an eigenvalue and ξ is an
eigenvector corresponding to λ. We also have the following result.

Theorem 5.1. If λ1, . . . , λd are the eigenvalues of A and there is a basis ξ1, . . . , ξd

of eigenvectors, then

(5.3) eAt = [ξ1e
λ1t, . . . , ξde

λdt][ξ1, . . . , ξd]
−1 .

Proof. Each column of the right hand side of (5.3) satisfies (5.1) and the matrix
when evaluated at t = 0 is the identity. The same property holds for eAt. Therefore,
by uniqueness of the solutions of the initial value problem, we have the assertion in
the theorem.

If there is not a basis of eigenvectors, then the structure of the matrix eAt is more
complicated. We now give a constructive method for determining eAt.

For any matrix B, let N(B) designate the null space of B; that is, the set of
vectors ξ such that Bξ = 0. If λ is an eigenvalue of A, let r(λ) be the least integer k

such that N((A − λI)k+1) = N((A − λI)k). The generalized eigenspace Mλ(A) of A

corresponding to the eigenvalue λ is defined to be N((A−λI)r(λ)) and has dimension
equal to the multiplicity of the eigenvalue λ. The subspace Mλ(A) is invariant under
A and thus, if ξ ∈ Mλ(A), then eAtξ ∈ Mλ(A) for all t. Therefore, from (v), we have
the polynomial representation of eAt on Mλ(A) given by

(5.4) eAtξ = eλte(A−λI)tξ = eλtΣ
r(λ)−1
k=0 (A − λI)k tk

k!
ξ, ξ ∈ Mλ(A) .

Relation (5.4) shows that the solutions in Mλ(A) are represented as polynomials in t

times eλt. However, the degree of the polynomial may be less that r(λ) − 1. As we
determine a basis for Mλ(A), we will recognize the number of blocks and the exact
degree.

Relation (5.4) gives the solution on Mλ(A). To continue, we need the following
result. If λ1, . . . , λq are the distinct eigenvalues of A, then

Cl d = ⊕q
j=1N(A − λjI)r(λj) ,

where the symbol ⊕ means to take the span of the basis vectors of all of these sub-
spaces. Using (5.4), we see that eAt is the sum of exponential functions with coeffi-
cients which are polynomials in t.
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Example 5.1. We consider the equation corresponding to the linear oscillator:

ẋ1 = x2, ẋ2 = −x1 .

The eigenvalues of the corresponding matrix A =

[

0 1
−1 0

]

are ±i and they are

simple with eigenspaces spanned by the vectors v1 = col [i, 1], v2 = col [−i, 1],
respectively. Therefore, eAtv1 = eitv1, eAtv2 = e−itv2 . If ξ = col (ξ1, ξ2) ∈ lR2, then
it is represented uniquely in this basis of Cl 2 as ξ = 1

2i (v1 − v2)ξ1 + 1
2 (v1 + v2)ξ2 and

a simple computation shows that

eAtξ =

[

cos t sin t

− sin t cos t

] [

ξ1

ξ2

]

Exercise 5.3. Find eAt for each of the following matrices A:

(a)

[

0 1
0 0

]

(b)

[

1 1
1 −1

]

(c)





0 −1 2
0 1 0
1 1 −1





(d)





0 1 0
4 3 −4
1 2 −1





It is possible to obtain very precise information about the structure of the matrix
eAt from the Jordan canonical form of A (see Appendix). In fact, there exists a
nonsingular d × d matrix P such that P−1AP is in Jordan canonical form:

P−1AP = diag(A1, A2, . . . , As)

where Aj = λjI + Nj is a dj × dj matrix, Nj is the nilpotent matrix

Nj =













0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
0 0 0 . . . 0













and λj is an eigenvalue of A.
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This implies that

P−1eAtP = diag(eA1t, eA2t, . . . , eAst)

where eAjt = eλjteNjt. We easily compute the matrix eNjt explicitly using (v) to
obtain

eNjt =

















1 t t2

2! . . . tdj

dj !

0 1 t . . . tdj−1

(dj−1)!

...
...

...
. . .

...
0 0 0 . . . t

0 0 0 . . . 1

















As a consequence, we obtain the solution ϕt(ξ) of (5.1) as

ϕt(ξ) = eAtξ = PeP−1APtP−1ξ .

Our next objective is to obtain some elementary results on the asymptotic behav-
ior of the solutions of (5.1). The spectrum σ(A) of a matrix A is the set of eigenvalues
of A. We use the notation Re σ(A) > 0 (or < 0) to designate that Re λ > 0 (or < 0)
for all λ ∈ σ(A).

Lemma 5.1. If Re σ(A) < 0, then there are positive constants k, α such that

(5.5) |eAt| ≤ ke−αt, t ≥ 0 .

Proof. From the hypothesis, we know that there is an integer p such that the solutions
of (5.1) are polynomials in t of degree ≤ p multiplied by decaying exponentials. Since
each column of eAt satisfies (5.1), the estimate (5.4) follows.

If A is a d×d matrix, we let A∗ be the conjugate transpose of A. A d×d matrix B

is positive definite if the quadratic form x∗Bx is positive definite on d-vectors x; that
is, this quadratic form is positive for each x 6= 0. Notice that x∗Bx = x∗(B+B∗

2 )x
for all x and that B + B∗ = (B + B∗)∗ is self adjoint. Therefore, without loss of
generality, if B is positive definite, we may suppose that B∗ = B and we will write
B > 0.

Suppsose that B > 0 and let V (x) = x∗Bx. Then there are positive constants
m, M (given by the smallest and largest eigenvalue of B) such that

mx∗x ≤ V (x) ≤ Mx∗x for all x.

Therefore, V is equivalent to a norm on lRd.
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Theorem 5.2. (A Lyapunov theorem for linear systems) Suppose that B > 0 and
let V (x) = x∗Bx. If there exists a positive definite matrix C such that the derivative
V̇ (x(t)) along the solutions of (5.1) is

V̇ (x) = x∗(A∗B + BA)x = −x∗Cx,

then (5.5) is satisfied; that is, Re σ(A) < 0.

Exercise 5.4. Prove Theorem 5.2 and interpret this result in terms of the properties
of the vector field on a level set of V ; that is, for a fixed c > 0, the set V −1(c) = { x :
V (x) = c }. Use differential inequalities to obtain a bound on x(t) for t ≥ 0 in terms
of the eigenvalues of B, C.

It is an important fact that the converse of Theorem 5.2 is true.

Theorem 5.3. (A converse theorem of Lyapunov for linear systems) If Re σ(A) < 0,
then, for any C > 0, there is a B > 0 such that A∗B+BA = −C; that is, the function
V (x) = x∗Bx satisfies the conditions of Theorem 5.2.

Exercise 5.5. Prove Theorem 5.3. Hint. Let B =
∫

∞

0
eA∗tCeAt dt.

Example 5.2. Consider the damped linear oscillator

ẍ1 + ẋ1 + x1 = 0

or, equivalently, the system

ẋ1 = x2, ẋ2 = −x1 − x2.

The eigenvalues of the matrix of this system have negative real parts and so the
solutions approach zero exponentially. Let us try to use Exercise 5.4 to obtain the
same result. The energy (kinetic plus potential) for this system is E(x1, x2) = 1

2 (x2
1 +

x2
2). We have

Ė(x1, x2) = −x2
2 ≤ 0;

that is, the energy is strictly decreasing except when x2 = 0. Without some other
observations (which we mention in a later section), we cannot conclude that the
solutions approach zero, much less exponentially. The energy does not satisfy the
conditions of the function V in Exercise 5.4. On the other hand, we know there must
be a positive definite quadratic form whose derivative along the solutions is negative
definite. How do we find it? What are the level sets? Note that they cannot be
symmetric with respect to the x2-axis. Let us try

V (x1, x2) =
1

2
x2

1 + βx1x2 +
1

2
x2

2
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for some β. If |β| < 1, this is a positive definite quadratic form and

V̇ (x1, x2) = −[βx2
1 + βx1x2 + (1 − β)x2

2].

For 0 < β < 4
5
, the matrix for the quadratic form in the brackets is positive definite.

Thus, V̇ (x1, x2) is negative definite and we can use Exercise 5.4 to conclude that the
solutions approach zero exponentially. Draw the picture of the level sets of V .

We say that the differential equation ẋ = Ax is hyperbolic if Re λ 6= 0 for all
λ ∈ σ(A). In this case, by a nonsingular transformation of variables, we can assume
that A = diag (A−, A+), where Re σ(A−) < 0 and Re σ(A+) > 0. From Lemma 5.1,
there are positive constants k, α such that

(5.6)
|eA−t| ≤ ke−αt, t ≥ 0 ,

|eA+t| ≤ keαt, t ≤ 0 .

The second inequality in (5.6) is obtained by replacing t by −t in the equation ż =
A+z. If we partition x ∈ lRd as x = col (y, z) with the vector y (resp. z) having the
same dimension as A− (resp. A+), then the linear subspace W s = { x : x = col(y, 0)}
(resp. Wu = { x : x = col(0, z)}) are invariant under eAt and eAtξ approaches zero as
t → ∞ (resp. t → −∞) if ξ ∈ W s (resp. ξ ∈ Wu). The set W s (resp. Wu) is called
the stable manifold (resp. unstable manifold) of 0. When both of the subspaces W s

and Wu have dimension ≥ 1 (or, equivalently, when there is at least one eigenvalue
with positive real part and at least one with negative real part), we refer to 0 as a
saddlepoint .

Exercise 5.6. Suppose that d = 2 and that the planar system (5.1) is hyperbolic
with the eigenvalues of A distinct. Show that there is a change of coordinates such
that the flow is one of the cases shown in Figure 5.1. The arrows designate the
direction of motion with increasing time.

Figure5.1a. Saddle point. Figure5.1b. Stable focus. Figure5.1c. Stable node.
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Figure5.1d. Unstable focus. Figure5.1e. Unstable node.

8



æ

9


