
1.11. The Poincaré Bendixson Theorem.

For an autonomous differential equation in the plane, the ω-limit set and α-limit
set of bounded orbits have a very simple structure as was observed by Poincaré and
Bendixson at the turn of the century. In this section, we state these results precisely
leaving the details of the proofs to the reader since they are rather simple and serve
as instructive exercises We give an application to the existence of a periodic orbit of
van der Pol’s equation and discuss in some detail the Esaki diode.

The Jordan Curve Theorem will play a crucial role. It is one of those geometri-
cally obvious results whose proof is very difficult. Recall that a Jordan curve is the
homeomorphic image of the unit circle in the plane.

Theorem 11.1. (Jordan Curve Theorem) A Jordan curve in lR2 separates lR2 into
two connected components, one bounded which is called the interior, and the other
unbounded which is called the exterior.

We consider throughout this section the differential equation (6.1) in lR2. If ξ
is a regular point of f , let Σ be a transversal to f at ξ. The transversal Σ can be
considered as the diffeomorphic image of a line segment and therefore we can order
the points on Σ with the natural order of the real numbers. We will assume always
that we have made this ordering.

Lemma 11.1. If f ∈ Cr(lR2, lR2), r ≥ 1, ξ is a regular point of f , Σ is transverse to
f at ξ and π is the corresponding Poincaré map, then π is monotone on D(π).

Proof. If D(π) = ∅, then there is nothing to prove. If D(π) 6= ∅ and η ∈ D(π), let
πη = ϕτ(η)(η). Let η1, η2 ∈ D(π) with η1 ≤ η2 and suppose that πη1 ≥ η1. We can
define a Jordan Curve to be the set C = { x = ϕt(η1) : 0 ≤ t ≤ τ(η1) } ∪ [η1, πη1].
From the Jordan curve theorem and the uniqueness of the solutions of the initial
value problem for (6.1), it is now easy to show that πη2 ≥ πη1. The other case where
πη1 ≤ η1 is treated in exactly the same way.

Lemma 11.2. (Flow Box Theorem) In a sufficiently small neighborhood of a regular
point of the planar system (6.1), there is a differentiable change of coordinates y =
y(x) such that the original system becomes the product system ẏ1 = 1, ẏ2 = 0.

Proof. To simplify the notation in this proof, we will write an element in lR2 as
x = (x1, x2). Without loss of generality, we may assume that the regular point under
consideration is the origin 0 and that f(0) = (1, 0). If we define h(y1, y2) = ϕy1(0, y2),
then h(0, y2) = (0, y2) and ∂h(0, 0)/∂y1 = f(0) = (0, 1). Therefore, the Implicit
Function Theorem implies that h maps diffeomorphically an open neighborhood U of
(0, 0) in the (y1, y2)-plane to an open neighborhood V of (0, 0) in the (x1, x2)-plane.

For (x0
1, x0

2) ∈ V , let h(y0
1 , y0

2) = (x0
1, x0

2). Then h−1ϕt(x0
1, x0

2) = h−1ϕt+y0
1 (0, y0

2) =
h−1h(t + y0

1 , y0
2) = (t + y0

1 , y0
2). This shows that the flow in the (y1, y2) coordinate

system is the one stated in the lemma.
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Lemma 11.3. If ξ is a regular point of the planar vector field f and Σ is a transversal
to f at ξ, then ω(ξ) can intersect Σ in at most one point. Moreover, if ω(ξ)∩Σ = ξ0,
then either ω(ξ0) = α(ξ0) is a periodic orbit or there is a sequence { tk }, tk → ∞ as
k → ∞ such that ϕtk(ξ) ∈ Σ and ϕtk(ξ) → ξ0 monotonically as k → ∞.

Proof. There is a sequence { t′k }, t′k → ∞ as k → ∞ such that ϕt′
k(ξ) → ξ0 as k → ∞.

Lemma 11.2 implies that the orbit through ϕt′
k(ξ) must intersect Σ at some point,

say ϕtk(ξ) and ϕtk(ξ) → ξ0 as k → ∞. If two distinct points in this sequence coincide,
then they all coincide and the orbit through ξ is periodic. If all of the points in this
sequence are distinct, then we can reorder so that tk < tk+1 and π(ϕtk(ξ)) = ϕtk+1(ξ).
From Lemma 11.1, it follows that ϕtk(ξ) → ξ0 monotonically which shows also that
ω(ξ) can intersect Σ in at most one point.

Lemma 11.4. If ξ0 is a regular point of the planar vector field f and ξ0 ∈ ω(ξ) ∩
γ+(ξ), then γ+(ξ) is a periodic orbit.

Proof. If ξ0 ∈ ω(ξ) ∩ γ+(ξ) and Σ is a transversal to f at ξ0 and ω(ξ) 6= γ+(ξ),
then Lemma 11.3 implies that there is a sequence { tk }, tk → ∞ as k → ∞ such that
ϕtk(ξ) ∈ Σ and ϕtk(ξ) → ξ0 monotonically as k → ∞. This is clearly a contradiction
since ξ0 ∈ γ+(ξ) and ω(ξ) can intersect Σ in at most one point.

Lemma 11.5. If M is a bounded nonempty minimal set of the planar system (6.1),
then M is either a critical point or a periodic orbit.

Proof. If γ is an orbit in M , then α(γ) and ω(γ) are nonempty and belong to M .
Since α(γ) and ω(γ) are invariant, we have α(γ) = ω(γ) = M . If M contains a critical
point ξ, then M = ξ. If M = ω(γ) does not contain a critical point, then γ ⊂ ω(γ)
implies that γ and ω(γ) have a point in common and Lemma 11.4 implies that γ is
periodic.

Lemma 11.6. If ω(ξ) contains regular points and a periodic orbit γ0, then ω(ξ) is a
periodic orbit.

Proof. If ω(ξ)\γ0 is not empty, then the connectedness of ω(ξ) implies the existence
of a sequence ξk ∈ ω(ξ) \ γ0 and a ξ0 ∈ γ0 such that ξn → ξ0 as k → ∞. If Σ is a
transversal to f at ξ0, then it follows from Lemma 11.2 that there exist a sequence
{ tk } such that ϕtk(ξk) ∈ Σ ∩ ω(ξ) and ϕtk(ξk) → ξ0 as k → ∞. Since all of these
points belong to ω(ξ) and Lemma 11.3 implies that ω(ξ) can intersect Σ in at most
one point, we obtain a contradiction.

Theorem 11.2. (Poincaré Bendixson Theorem) For the planar system (6.1), if γ+(ξ)
is bounded and ω(ξ) contains no critical points, then ω(ξ) is a periodic orbit and is
either equal to γ+(ξ) or equal to γ+(ξ) \ γ+(ξ). The same conclusion holds for γ−(ξ)
and α(ξ).

Proof. The set ω(ξ) is a nonempty compact invariant set which contains no critical
points. Lemmas 11.5 and 11.6 imply that ω(ξ) is a periodic orbit. The other assertions
are clear.
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Theorem 11.3. For the planar system (6.1), if γ+(ξ) is a bounded orbit, then one
of the following is satisfied:
(i) ω(ξ) contains only critical points
(ii) ω(ξ) is a periodic orbit
(iii) ω(ξ) consists of equilibrium points and orbits whose α- and ω-limit sets are

equilibrium points.

Proof. If ω(ξ) contains no regular points, then ω(ξ) contains only critical points and
the first alternative holds. Now suppose that ω(ξ) contains regular points of f . If all
points of ω(ξ) are regular, then Theorem 11.2 implies that ω(ξ) is a periodic orbit
which is the second alternative above. The only remaining case is when all points
in ω(ξ) are not regular. Suppose that y ∈ ω(ξ) is a regular point and ω(y) is not
a periodic orbit. We remark that ω(y) ⊂ ω(ξ) and claim that ω(y) contains points
which are not regular. In fact, if y0 ∈ ω(y) is a regular point and Σ is a transversal
to f at y0, then there would be a sequence ϕtk(y) ∈ Σ ∩ ω(ξ) such that ϕtk(y) → y0

as k → ∞. Lemma 11.3 implies that ϕtk(y) = y0 for all k and so ω(y) is a periodic
orbit, which is a contradiction. Therefore, ω(y) can contain only critical points and
the theorem is proved.

Exercise 11.1. Prove the following result: A periodic orbit γ of a planar system (6.1)
is a local attractor if and only if there is a neighborhood U of γ such that ω(ξ) = γ
for every ξ ∈ U.
Hint. Use a transversal to the periodic orbit.

Exercise 11.2. Prove the following result: Suppose that γ1, γ2 are two periodic orbits
of a planar system (6.1) with γ2 in the interior of γ1 and let U be the annular set
between γ1 and γ2. If there are no critical points or periodic orbits in U and ξ ∈ U ,
then ω(ξ) is either γ1 or γ2. Furthermore, if ω(ξ0) = γ1 (resp. γ2) for an ξ0 ∈ U ,
then, for each ξ ∈ U , ω(ξ) = γ1 (resp. γ2).
Hint. Use the Poincaré Bendixson Theorem.

It is possible to prove the Brouwer fixed point theorem for C1-mappings in the
plane by using the Poincaré Bendixson Theorem and some of the above ideas.

Theorem 11.4. (Brouwer’s Fixed Point Theorem) If B̄ = { x ∈ lR2 : x∗x ≤ 1 } and
g : B̄ → B̄ is a C1-mapping, then g has a fixed point in B̄.

Proof. Let f(x) = g(x)− x and consider the differential equation ẋ = f(x). For any
x ∈ B̄, we have f(x)∗x = |g(x)| cos θ − 1, where θ is the angle between the vectors
g(x) and x. If g has a fixed point on the boundary of B̄, then we have nothing to prove.
Therefore, if we suppose that this is not the case, then f(x)∗x < 1 and the Poincaré
Bendixson Theorem implies that B, the interior of B̄ contains either a periodic orbit
or a critical point of the differential equation. If there is no periodic orbit in B, then we
have a critical point of f and thus a fixed point of g and the proof is finished. If there
is a periodic orbit in B, we let S = {γ : γ is a periodic orbit or a critical point in B }
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and let R(γ) be the interior of γ if γ is a periodic orbit and R(γ) = γ if γ is a critical
point of f . We define a partial order on S by inclusion. From Zorn’s Lemma, we see
that each nonempty subset of S contains a least element, say γ0. If γ0 is a critical
point, we are finished. Otherwise, γ0 is a periodic orbit and there is no periodic orbit
in R(γ0). If there is no critical point in R(γ0), then the Poincaré Bendixson Theorem
implies that ω(ξ) = α(ξ) = γ0 for all ξ ∈ R(γ0). It is easy to see that this contradicts
the monotonicity of the Poincaré map associated with a transversal to a point ξ0 ∈ γ0.
This completes the proof.

The Poincaré Bendixson Theorem suggests a way to determine the existence of
a nonconstant periodic solution of an autonomous planar differential equation. If
we construct a bounded domain D ⊂ lR2 which contains no critical points and is
positively invariant under the flow, then we are assured that there is a periodic orbit.
Furthermore, if we can conclude that there is only one periodic orbit in D, then we
will know that it is an attractor for the orbits through points in D.

Exercise 11.3. Show that the differential equation

ẋ1 = x2, ẋ2 = −x1 + x2(1 − x2
1 − 2x2

2)

has a periodic orbit.
Hint. Let V (x1, x2) = 1

2(x2
1 + x2

2) and show that the derivative of this function along
the solutions of the differential equation is ≥ 0 if x2

1+x2
2 < 1

2
and is ≤ 0 if x2

1 +x2
2 > 1.

We now give an important application of the Poincaré Bendixson Theorem to
the van der Pol equation.

Theorem 11.5. The equation of van der Pol

(11.1)
ẋ1 = x2

ẋ2 = −x1 + λ(1 − x2
1)x2

has a nontrivial periodic orbit for all values of the scalar parameter λ.

Proof. (Yeh [1986]) We will consider the case λ > 0. When λ = 0, the equation
becomes the linear harmonic oscillator. The case λ < 0 can be reduced to the first
case by reversing time. Let us observe first that the origin is the only critical point
of the vector field. Furthermore, it is easy to verify that the eigenvalues of the
linearized equations at the origin have positive real parts. Therefore, no orbit with
nonzero initial data can have its ω-limit set contain the origin. (The verification of
this intuitive obvious fact will follow from the principle of linearization, Theorem
2.7.7, in the next chapter by replacing t by −t.) Thus, to show the existence of a
periodic orbit, we will construct a Jordan curve C encircling the origin which will
form the outer boundary of a positively invariant region and then invoke the Poincaré
Bendixson Theorem to conclude that there is a periodic orbit in this region.
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The idea for constructing C is to begin at a point A on the negative x2-axis and
use the special properties of the vector field to piece together various curve segments
to obtain a curve lying in the left half plane which intersects the positive x2-axis at
a point E and such that the angle between the tangent vector to this curve and the
vector field (11.1) is in the interval (0, π). Since (11.1) is symmetric with respect to
the origin, we can also define the reflection of this curve through the origin and obtain
points A′ and E′. If A′ > E′, then the curve AEA′E′A will be our Jordan curve C.

First, we draw an auxiliary curve Q,

(11.2) Q(x1, x2) ≡ −x1 + λ(1 − x2
1)x2 = 0,

which has three components and their asymptotes given by x1 = ±1 and x2 = 0; see
Figure 11.1. The component of this curve with asymptotes x2 = 0 and x1 = −1 is
crossed from left to right by the vector field (11.1).

Figure 11.1.

To construct the first piece of C, we take a point A = (0, x0
2) on the negative

x2-axis sufficiently far away from the origin, and follow the orbit of the system

(11.3)
ẋ1 = x2

ẋ2 = λ(1 − x2
1)x2

passing through the point A. An easy integration shows that this orbit intersects the
line x1 = −1 at the point B = (−1, −2λ/3 + x0

2). Along the arc AB we have

−x1 + λ(1 − x2
1)x2

x2
−

λ(1 − x2
1)x2

x2
= −

x1

x2
< 0;

thus, the crossing of AB by an orbit of (11.1) must be from right to left.
Next, we follow the orbit of the differential equation

(11.4)
ẋ1 = x2

ẋ2 = −x1

emanating from B until the orbit hits the component of the curve (11.2) in the upper
left quadrant. If the point A is taken sufficiently far from the origin, such a point of
intersection will exist and we denote it by C. Along the curve BC we have

−x1 + λ(1 − x2
1)x2

x2
+

x1

x2
= λ(1 − x2

1) < 0
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and, thus, the orbits of (11.1) cross BC from left to right.
For the next piece of C, we first study the points of tangency of an orbit of the

differential equation

(11.5)
ẋ1 = x2

ẋ2 = −x1 + λx2

with the component of the curve (11.2) on the upper left quadrant. By implicitly
differentiating (11.2), it is not difficult to verify that the first coordinate x1

1 of such a
point D = (x1

1, x1
2) satisfies the equation

(11.6) 1 + (1 − λ2)x2 + 2λ2x4 − λ2x6 = 0.

When x = −1, the left side of (11.6) is positive, and when |x| is sufficiently large the
left side is negative; hence, there exists a solution x1

1 of (11.6). Among the solutions
of (11.6) we take the one nearest to −1. When the point A is sufficiently far from
the origin, the point D lies to the right of C. It is clear that the orbits of (11.1) are
crossing the segment of the curve (11.2) between C and D from left to right.

To continue C, we follow the orbit of (11.5) starting from the point D until it
hits the x2-axis at a point which we denote by E. Since

−x1 + λ(1 − x2
1)x2

x2
−

−x1 + λx2

x2
= −λx2

1 < 0,

the orbits of (11.1) cross the curve DE from left to right.
The first half of C is defined to be ABCDE. Let A′B′C′D′E′ be the reflection of

ABCDE with respect to the origin. Since D, hence E, is fixed, we may ensure that
A′ lies above E by taking A far from the origin. Also, observe that orbits of (11.1)
cross the curve segment EA′ from left to right. From the symmetry, it is now clear
that the region encircled by the closed curve C = ABCDEA′B′C′D′E′A is positively
invariant for the flow of (11.1). This completes the proof of the theorem.

Exercise 11.4. The Lienard form of the van der Pol equation is

ẋ1 = x2 − λ(
1

3
x3

1 − x1), ẋ2 = −x1,

where λ > 0. Show that the periodic orbit must lie in the exterior of the disk
x2

1 + x2
2 < 3 for every λ > 0.

Hint. Replace t by −t, let V (x1, x2) = x2
1 + x2

2 and use Theorem 8.2.

In Chapter 3, we will prove there is a unique periodic orbit of van der Pol’s
equation which is a global attractor in lR2 \ { 0 } when λ > 0, and unstable when
λ < 0.
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Let us give another application of the Poincaré-Bendixson Theorem to a problem
in bifurcation. More details about this type of bifurcation will be given in a later
section.

Example 11.1. Consider the planar system

(11.6) ẋ = Ax + f(x), A =

[

0 1
−1 0

]

where f(0) = 0, Dxf(0) = 0. If we suppose that the origin is a local attractor,
then Theorem 8.7 implies that there is a neighborhood U of 0 ∈ lR2 and a function
V ∈ C1(U, lR) such that V is positive definite and V̇ is negative definite on U . Fix
c > 0 and consider the level set V −1(c) = {x ∈ U : V (x) = c}. If c is sufficiently
small, then V −1(c) is a closed curve with the property that, for every x ∈ V −1(c), the
vector field Ax + f(x) points into the interior of V −1(c). Now, consider a C1-small
perturbation F of f such that, for every x ∈ V −1(c), the vector field Ax + F (x)
points into the interior of V −1(c). Also, assume that F (0) = 0 and the vector field
Ax + F (x) has only the origin as equilibrium point in the interior of V −1(c). If we
further suppose that the origin of Ax+F (x) is unstable, then the Poincaré-Bendixson
theorem implies that there must be a periodic orbit in U . By varying the vector field
f to the vector field F , a periodic orbit appeared through bifurcation.

As another illustrataion of the methods that we have been discussing in this
chapter, we consider in some detail the Esaki Diode. If we consider an Esaki diode
with the characteristic function f(v) representing the current flow as a function of
the voltage drop v, then Kirchoff’s laws imply that the relation between the current
I and the voltage v is given by

(11.7)
L

di

dt
= E − Ri − v ≡ I(i, v),

−C
dv

dt
= f(v) − i ≡ V (i, v),

where E, R, C, L are respectively the applied voltage, the resistance, the capacitance
and the inductance in the circuit. We assume that vf(v) ≥ 0 for all v.

Lemma 11.7. If there is an A > 0 such that xf(x) > E2/R for |x| > A, then there
is a global attractor A for (11.7).

Proof. If W (i, v) = (Li2 + Cv2)/2, then

Ẇ = −[Ri(i −
E

R
) + vf(v)].

Let W0 = W (E/R, A). If W (i, v) > W0, then either |i| > E/R or |v| > A. If
|i| > E/R, then Ẇ < 0 and, if |i| ≤ E/R, |v| > A, then

Ẇ < −[Ri2 − Ei +
E2

R
] = −[Ri2 − E(i −

E

R
)] ≤ −Ri2 ≤ 0.
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For i = 0, |v| > A, we have also Ẇ < 0. Therefore, Ẇ < 0 in the region W (i, v) > W0.
This implies that the ω-limit set of any bounded positive orbit must lie in the set
{(i, v) : W (i, v) ≤ W0}. Since the region W < ρ is bounded for any ρ > 0 and
W (i, v) → ∞ as |(i, v)| → ∞, it follows that every solution of (11.7) is bounded for
t ≥ 0. The conclusion of the lemma now follows from Theorem 7.3.

We now determine some of the properties of the global attractor when we impose
more conditions on f .

Lemma 11.8. If the conditions of Lemma 11.7 are satisfied and f ′(v) > 0 for all v,
then the global attractor is a singleton, which of course is an equilibrium point.

Proof. First of all, it is clear that the hypotheses imply that there is a unique
equilibrium point (i0, v0). Also, the eigenvalues of the linearization about (i0, v0) have
negative real parts and so (i0, v0) is a local attractor. If we show that every solution
of (11.7) approaches (i0, v0) as t → ∞, then we will have proved the statement of the
lemma. To prove this latter fact, let

(11.8) Q(i, v) =
1

2L
I2(i, v) +

1

2C
V 2(i, v).

Then Q̇(i, v) = −(RL−2I2(i, v) + f ′(v)V 2(i, v)) ≤ 0 for all i, v since f ′(v) > 0 for all
v. Also, Q̇ = 0 if and only if I(i, v) = 0 = V (i, v); that is, at the equilibrium point
(i0, v0). Since Lemma 11.7 implies that each solution of (11.7) is bounded, it follows
from the invariance principle (Theorem 8.3) that each solution of (11.7) approaches
(i0, v0). The proof of the lemma is complete.

The most interesting cases in the applications are when f ′ changes sign and, in
this case, several different types of situations arise.

Lemma 11.9. If −f ′(v) < R−1 for all v, then there is only one equilibrium point
of (11.7). If, in addition, if maxv(−f ′(v)/C) > R/L, then there is a value of E such
that (11.7) has at least one periodic orbit.

Proof. It is clear that there is a unique equilibrium point (i0, v0) and that one can
choose E so that (−f ′(v0)/C) > R/L. From Lemma 11.7 (actually the proof of
Lemma 11.7), we have seen that there is an ellipse Ω with center (0, 0) such that the
orbits of (11.7) cross Ω from the outside to the inside. If we linearize about (i0, v0),
it is easy to verify that the eigenvalues of the corresponding system have positive real
parts. Now, using the same argument as in Example 11.1, we see that there is a
periodic orbit in Ω and the lemma is proved.

More detailed results are know for this equation. In particular, it is possible to
prove the following result which covers situations where there may be more than one
equilibrium point of (11.7).
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Lemma 11.10. If there is an A ≥ 0 such that vf(v) ≥ 0 for all v, vf(v) > E2/R for
|v| > A and

f ′(v)

C
+

R

L
> 0 for all v,

then not only is there a global attractor A of (11.7), but the ω-limit set of each orbit
belongs to the set of equilibrium points.

Proof. If we let

U(v) =
(E − v)2

2R
+

∫ v

0

f(s)ds,

P (i, v) = −
I2

2R
+ U(v),

then (11.7) can be written as

(11.9)
L

di

dt
=

∂P

∂i

−C
dv

dt
=

∂P

∂v
.

Let Q(i, v)be defined as in (11.8), S = Q + λP , where

−
f ′(v)

C
< λ <

R

L
.

Then some rather lengthy calculations show that

Ṡ = −[(R − λL)L−2I2 + (f ′ + λC)C−2V 2] ≤ 0

by our choice of λ. Furthermore, Ṡ = 0 if and only if I = 0 = V ; that is, the set of
equilibrium points of (11.7). Since all solutions of (11.7) are bounded by Lemma 11.7,
the conclusion of the lemma follows from the invariance principle (Theorem 8.3).

It also is useful to have methods for determining when certain regions do not
have periodic orbits.

Theorem 11.6. (Bendixson’s Criterion) Let D be a simply-connected open subset
of lR2. If div f ≡ ∂f1/∂x1 +∂f2/∂x2 is of constant sign and not identically zero in D,
then ẋ = f(x) has no periodic orbit lying entirely in the region D.

Proof. If γ is a periodic orbit in D, then f1 dx2 − f2 dx1 = 0 on γ. Since the interior
U of γ is simply-connected, we can apply Green’s theorem to obtain

0 =

∮

Γ

(f1 dx2 − f2 dx1) =

∫∫

U

(

∂f1

∂x1
+

∂f2

∂x2

)

dx1 dx2.

This is a contradiction since our hypothesis implies that the integral on the right
cannot be zero.

An easy but important generalization of the criterion of Bendixson is the following
theorem:
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Theorem 11.7. (Dulac’s Criterion) Let D ⊂ lR2 be a simply-connected open set and
B(x1, x2) be a real-valued C1-function in D. If the function div Bf = ∂(Bf1)/∂x1 +
∂(Bf2)/∂x2 is of constant sign and not identically zero in D, then ẋ = f(x) has no
periodic orbit lying entirely in the region D.

Exercise 11.5. Show that the equation

ẋ1 = x1 + x3
2 − x1x

2
2, ẋ2 = 3x2 + x3

1 − x2
1x2

has no periodic orbit in the region x2
1 + x2

2 ≤ 4.

Exercise 11.6. Consider the equation

ẋ1 = −x2 + x2
1 − x1x2, ẋ2 = x1 + x1x2 .

Show that Bendixson’s criterion will not preclude the existence of a periodic orbit
and yet Dulac’s criterion will for the function B(x1, x2) = (1 + x2)

−3(−1 − x1)
−1.

Hint. The function div Bf is not of fixed sign but notice that the line x2 = −1 is
invariant and so no periodic orbit can intersect this line.

The Poincaré-Bendixson Theorem tells us that the only minimal sets in planar
differential equations are equilibrium points and periodic orbits. In applications, it
is necessary to know much more in order to determine the properties of the flow
defined by the differential equation. In the case of the van der Pol equation, the flow
is very simple. There is a unique periodic orbit to which every orbit, except for the
equilibrium point, converges.

It is important to understand more about the number of equilibrium points and
limit cycles (isolated periodic orbits) that a given differential equation may have.
This is a very difficult problem. For polynomial vector fields, upper bounds for the
number of equilibrium points are known. These can be given in terms of the degrees
of the polynomials. The determination of bounds for the number of limit cycles is
the celebrated Hilbert’s 16th problem. Only recently (see Ilyashenko [], Écale []) has
it been shown that, for a given polynomial vector field, the number of limit cycles is
finite. At the present time, there is no upper bound known in terms of the degree of
the polynomial vector field. It is even very difficult to estimate the number of limit
cycles that can appear from the origin for a differential equation which is perturbation
of the linear oscillator,

ẋ = y + fλ(x, y)

ẏ = −x + gλ(x, y)
,

where (fl, gλ) are given polynomials of degree (m, n) which vanish for λ ∈ lRk equal
to zero. Of course, it is always finite. In the case where (m, n) = (2, 2), it is know
(see Bautin[]) that the maximal number of limit cycles near zero is 3 and that there
is a perturbation of the vector field that will give 3 limit cycles. Such information is
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not available when (m, n) = (3, 3), for example. Examples have been constructed for
latter case where there are a very large number of limit cycles (see Lloyd[]).

Some special cases of this latter problem are related to another problem that
we have discussed in Section 1.8.1; namely, periodic solutions of scalar differential
equations with periodic coefficients. In fact, consider the equation

(11.7)
ẋ = λx + y + P (x, y)

ẏ = −x + λy + Q(x, y)
,

where P, Q are homogeneous polynomials of degree n. If we introduce polar coordi-
nates (r, θ), we have

ṙ = λr + f(θ)rn, θ̇ = −1 + g(θ)rn−1.

If we write
ρ = rn−1(1 − rn−1g(θ))−1,

then ρ satisfies the differential equation

(11.8) ρ̇ = A(θ)ρ3 + B(θ)ρ2 − λ(n − 1)ρ,

where

A(θ) = −(n − 1)g(θ)(f(θ) + λg(θ)), B(θ) = g′(θ) − (n − 1)(1λg(θ)− f(θ)).

Limit cycles of (11.7) are mapped to isolated periodic solutions of the scalar equation
(11.8). For a discussion, see Lins Neto [], Carbonell and Llibre [], Lloyd [].

The more general problem

ż = pN (t)zN + . . . + p1(t)z + p0(t),

where z is a complex scalar and the vector P (t) = (p0(t), p1(t), . . . , pN (t)) is continu-
ous and periodic in t, has been discussed by Lloyd[] and J. Devlin [Periodic solutions
of polynomial non-autonomous differential equations. Proc. Royal Soc. Edinburgh
123A (1993), 783-801], where all of the other references can be found. They discuss
the changes in the number of periodic solutions as the vector function P (·) varies.
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