
1.10. Discrete systems.

We first present some abstract results for discrete dynamical systems and then
make some remarks on applications to nonautonomous differential equations which
are periodic in time, periodic orbits of autonomous equations, flows on a cylinder or
torus and discrete approximations to differential equations. We give more details on
these applications in later chapters.

We denote by a discrete dynamical system in lRd any continuous map T : lRd →
lRd. For any ξ ∈ lRd, we let T 0ξ = ξ, Tn+1ξ = T (Tnξ), n = 0, 1, . . . . The positive
orbit γ+(ξ) through ξ ∈ lRd is defined by γ+(ξ) = {Tnξ : n ≥ 0 } and a negative
orbit γ−(ξ) through ξ ∈ lRd is defined by γ−(ξ) = { x−n, n ≥ 0 : x0 = ξ, Tx−(j+1) =
x−j , j ≥ 0 }.. When we are given a negative orbit, we will denote the elements

sometimes by Tnξ, n ≤ 0. A complete orbit γ(ξ) through ξ ∈ lRd is the union of a
positive and a negative orbit. We cannot say the negative orbit and complete orbit
because we have not assumed that the map T is one-to-one. If we do not want to
distinguish a particular point on the orbit, we will write γ, γ+, γ− for the orbit,
positive orbit, negative orbit, respectively.

We remark that we often are interested in maps T which are defined on a domain
D ⊂ lRd and not on all of lRd. The treatment of this situation is no more difficult but
simply requires a little more notation.

The ω-limit set ω(ξ) of a point ξ (or, equivalently, the ω-limit set of the positive
orbit containing ξ) is defined by the following relation:

ω(ξ) = ∩m≥0∪n≥mTnξ

If γ−(ξ) is a negative orbit through ξ, then we can define the α-limit set α(γ−(ξ)) of
the negative orbit γ−(ξ) through ξ in a similar way as

α(γ−(ξ)) = ∩m≤0∪n≤mTnξ

If the mapping T is one-to-one, then there is at most one negative orbit through ξ
and then α(γ−(ξ)) depends only upon ξ. If the mapping T is not assumed to be
one-to-one, there may be several negative orbits through a given point ξ. If we want
to define the α-limit set of the point ξ (in contrast to the α-limit set of a particular
orbit through ξ, then we must consider the set H(ξ) consisting of all negative orbits
through ξ. We can represent the set H(ξ) as H(ξ) = {A−n(ξ) : n ≥ 0}, where
TA−(n+1)(ξ) = A−n(ξ) for n ≥ 0. With this notation, we can define the α-limit set
α(ξ) of the point ξ as

α(ξ) = ∩m≥0∪n≥mA−n(ξ)

It is easy to see that a point y ∈ ω(ξ) (resp. α(γ−(ξ))) if and only if there is
a sequence of real numbers {nk }, nk → ∞ as k → ∞ such that Tnk(ξ) → y (resp.
x−n → y) as k → ∞. Can you describe the elements in α(ξ) in terms of sequences?
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If B is a bounded set in lRd, then we define TB = ∪ξ∈BTξ and the ω-limit set
of B, ω(B), by the relation

ω(B) = ∩m≥0∪n≥mTnB.

If γ−(B) is a negative orbit through B, then we can define the α-limit set α(γ−(B))
of the orbit γ−(B) in a similar way. It also is possible to define the α-limit set of B
by using all possible orbits through B. We do not give this latter definition precisely
since it will not be of interest to us in the following.

A set A ⊂ lRd is an invariant set of T if TA = A. A set A ⊂ lRd is a positively
invariant set of T if TA ⊂ A. A set A ⊂ lRd is a negatively invariant set of T if
A ⊂ TA.

Exercise 10.1. If B is a closed, bounded, positively invariant set, show that

ω(B) = ∩n≥0T
nB .

As in the proof of Theorem 6.2, we obtain the following result.

Theorem 10.1. The sets ω(B), α(B) are closed and invariant. If B ⊂ lRd is
nonempty and bounded and γ+(B) (respectively, γ−(B)) is bounded, then ω(B)
(respectively, α(B)) is nonempty, compact and dist (Tn(B), ω(B)) (respectively, dist
(Tn(B), α(B))) → 0 as n→ ∞ (respectively, n→ −∞).

Notice that we said nothing about the connectedness of the ω-limit set in Theorem
10.1. For maps, this set may not be connected. In fact, if d = 1 and T (x) = −x(2−x2),
then T (1) = −1, T (−1) = 1. Therefore, ω(1) = { 1, −1 } and ω(−1) = { 1, −1 },
which are disconnected sets.

As in Section 1.7, we define the concepts of stability of invariant sets. Suppose
that J is an invariant set of T. We say that J is stable if, for any ǫ > 0, there is a δ > 0
such that, if ξ ∈ B(J, δ), then Tnξ ∈ B(J, ǫ) for n ≥ 0. We say that J is unstable if
it is not stable. We say that J attracts points locally if there exists a constant b > 0
such that, if ξ ∈ B(J, b), then dist(Tnξ, J) → 0 as n → ∞; that is, for any η > 0
and any ξ ∈ B(J, b), there is an n0(ξ, η) with the property that Tnξ ∈ B(J, η) for
n ≥ n0(ξ, η). We say that J is a local attractor if there exists a constant c > 0 such
that dist (TnB(J, c), J) → 0 as n→ ∞; that is, for any η > 0, there is an n0(η) with
the property that, if ξ ∈ B(J, c), then Tnξ ∈ B(J, η) for n ≥ n0(η). If, in addition,
for any bounded set B ⊂ lRd, we have dist (TnB, A) → 0 as n → ∞, then we say
that A is a global attractor of T .

The following statement is proved in the same way as Theorem 7.2.

Theorem 10.2. If J is a compact invariant set of T, then J is stable and attracts
points locally if and only if it is a local attractor.

We say that T is point dissipative if there exists a bounded set B ∈ lRd such that,
for any ξ ∈ lRd, there is an n0(ξ) ≥ 0 such that Tnξ ∈ B for n ≥ n0(ξ).
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Theorem 10.3. If T is point dissipative, then there exists a global attractor for T .
In addition, there is a fixed point of T.

Proof. The proof of the first part is the same as the proof of Theorem 7.3. The
existence of the fixed point is a consequence of Theorem A.1.6.

1.10.1. Periodic Systems.

If the vector field in the differential equation (1.1) ẋ = f(t, x) is such that
it has period p in t, then we say that (1.1) is a p-periodic system. Suppose that
f ∈ C1(lR × lRd, lRd), (1.1) is p-periodic and x(t, τ, ξ) is the solution of the initial
value problem (1.2) through ξ at time τ. Then uniqueness of the solution of the initial
value problem implies that

(10.1) x(t, τ, ξ) = x(t+ p, τ + p, ξ).

The Poincaré map π at time 0 for the p-periodic system (1.1) is defined by πξ =
x(p, 0, ξ). The map π is a discrete dynamical system and πnξ = x(np, 0, ξ) for all n.
Here, we are implicitly assuming that each solution of the differential equation exists
on an interval of length at least p. If this is not the case, then the discussion below
should be restricted to the set of initial data for which this is true.

A point ξ0 is a fixed point of π if πξ0 = ξ0. The fixed points of π are in one-to-one
correspondence with the initial values of the p-periodic solutions of (1.1). In fact, if
ψ(t) is a p-periodic solution of (1.1), then ψ(p) = ψ(0) and ψ(0) is a fixed point of
π. Conversely, suppose that ξ is a fixed point of π. If ϕ(t, ξ) is the solution of (1.1)
with ϕ(0, ξ) = ξ, then ϕ(t+ p, ξ) is also a solution of (1.1) since f(t, x) is p-periodic
in t. Since ξ is a fixed point of π, uniqueness of solutions of the initial value problem
imply that ϕ(t, ξ) is p-periodic.

In general, we define a k-periodic point of π to be a point ξ0 such that πkξ0 = ξ0
and πjξ0 6= ξ0 for 0 ≤ j < k. The k-periodic points of π are in one-to-one correspon-
dence with the initial values of the kp-periodic solutions of (1.1).

Example 10.1. If a(t) is a continuous periodic function of minimal period p, we

consider the equation ẋ = a(t)x. The solution x(t, τ, ξ) = e

∫
t

τ
a(s) ds

ξ and so the
Poincaré map is given by πξ = eαξ, where α =

∫ p

0
a(s) ds. Notice that eα > 0 so that

the Poincaré map is monotone. If α < 0 (resp. > 0), then πnξ → 0 (resp., → ∞) as
n→ ∞. This implies that the solutions of the differential equation approach 0 (resp.,
become unbounded) as t→ ∞ is α < 0 (resp., > 0). If α = 0, then each point is fixed
under the Poincaré map and corresponds to a p-periodic solution of the differential
equation.

Exercise 10.2. Consider the scalar p-periodic equation ẋ = f(t, x), where f is a
C1-function. Suppose that each solution is defined for all t and let π be the Poincaré
map. Show that πξ is monotone in ξ and that ω(ξ) and α(ξ) are fixed points of π
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if they are nonempty. Show that each solution of the equation that is bounded for
t ≥ 0 (resp. t ≤ 0) approaches a p-periodic solution as t→ ∞ (resp. t→ −∞).

Exercise 10.3. Give an example of a linear equation ẋ = g(t)x+ h(t), g, h of period
1 with g of minimal period 1, such that there is a periodic solution of period 1

2
.

Exercise 10.4. Consider the linear scalar equation ẋ = −x + h(t), where h(t) is a
continuous p-periodic function. Show that the global attractor for the Poincaré map
is a single point. Interpret this result in terms of periodic solutions of the differential
equation. Do not integrate the equation but use Theorem 10.3 to obtain the existence
of the global attractor and the existence of a fixed point. Then show the fixed point
is unique.

Exercise 10.5. Consider the linear scalar equation ẋ = −x3 + h(t), where h(t) is a
continuous p-periodic function. Show that the global attractor for the Poincaré map
is a single point.

Exercise 10.6. Suppose r(t), k(t) are 1-periodic, positive continuous functions and
consider the equation

ẋ = r(t)x[1 −
x

k(t)
].

Show that the set D = [0,∞) is positively invariant under the flow and show that
the Poincaré map π has a global attractor in D. Show there exists at least two fixed
points of π in D and thus two 1-periodic solutions of the differential equation in D.

Exercise 10.7. Can you construct a system of linear periodic differential equations
in lR2 of minimal period p such that the Poincaré map has an eigenvalue = −1? If so,
then there will be periodic solutions of the differential equation which has minimal
period 2p.

If we suppose that A is an invariant set for π, then the cylindrical set CA =
{ (t, ζ) : ζ = x(t, 0, ξ), ξ ∈ A } has the property that it is invariant for (1.1); that is,
for any (τ, ξ) ∈ CA, we have (t, x(t, τ, ξ)) ∈ CA for t ∈ lR. If A is a global attractor for
π, then, for any bounded set B ⊂ lRd, τ ∈ lR, we have dist ((t, x(t, τ, B)), CA) → 0
as t → ∞. In this sense, the set CA is a global attractor for (1.1). The structure
of the solutions of (1.1) on CA is completely determined by the discrete dynamical
system π on A. If π is point dissipative, then there is a fixed point of π and therefore
a p-periodic solution of (1.1).

Exercise 10.8. An autonomous differential system ẋ = f(x) is p-periodic for any
p > 0. For p = 1, consider the equation in Exercise 1.6.3 and find the global attractor
for the Poincaré map π. Is there an invariant circle for π? What is the nature of the
flow defined by π on this circle?

Remark 10.1. For an autonomous equation, ẋ = f(x), in lRd, d = 1, we have seen
that the existence of a bounded solution implies the existence of an equilibrium point.
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We will show in the next section that the same is true for d = 2. If d = 3, it is possible
to construct an example (but it is not trivial) for which every solution is bounded
and yet there is no equilibrium point. On the other hand, if the equation is point
dissipative, then there is an equilibrium point.

Exercise 10.9. Consider the equation

ẋ1 = x2 + x1(1 − r2), ẋ2 = −x1 + x2(1 − r2) + ǫ cos 2πt

where r2 = x2
1 + x2

2 and ǫ is a real parameter. Let πǫ be the Poincaré map for this
system. Show that there is an ǫ0 > 0 such that, for 0 ≤ ǫ < ǫ0, the map πǫ is point
dissipative and that there is a fixed point of πǫ. Speculate about the nature of the
global attractor and the nature of the flow.
Hint. Compute the derivative of r2 along the solutions of the equation.

1.10.2. Poincaré Map of a Periodic Orbit.

Suppose that γ is a periodic orbit of an autonomous equation (6.1). Our objective
is associate with this periodic orbit a mapping, called the Poincaré mapping, on a
(d− 1) surface transversal to a point on γ. To do this, we need precise definitions of
these terms.

If U ⊂ lRd is an open set, we say that Σ ⊂ U is a (d-1)-dimensional Ck-surface
if there is a function F ∈ Ck(U, lR) such that, for each x ∈ U, rank ∇F (x) = 1 and
Σ = { x ∈ U : F (x) = 0 }.

Suppose that f ∈ Ck(U, lRd) and Σ ⊂ U is a (d−1)-dimensional Ck-surface. We
say that Σ is transverse to f at ξ ∈ Σ if ∇F (ξ) · f(ξ) 6= 0. We also refer to Σ as a
transversal to f at ξ or a cross section at ξ. If we let Tξ(Σ) denote the set of vectors
tangent to Σ at ξ; that is, the set of vectors orthogonal to ∇F (ξ), then Σ is transverse
to f at ξ if and only if

Tξ(Σ) ⊕ f(ξ) = lRd .

Let γ be a periodic orbit of minimal period p > 0 of (6.1) and suppose that Σ is
a transversal to f at ξ. Let

D(π) = { x ∈ Σ : there exists a τ(x) > 0 such that

ϕτ(x)(x) ∈ Σ, ϕt(x) 6∈ Σ for 0 < t < τ(x) } .

The Poincaré map π : D(π) → Σ is defined by π(x) = ϕτ(x)(x). From Theorem 3.1,
we know that D(π) is not empty and we know also that π ∈ Ck(D(π), Σ).

It is intuitively clear that, if we understand the discrete dynamical system defined
by π, then we will understand the dynamical system defined by (6.1) in a neighborhood
of the periodic orbit γ. We will make this more precise at a later time.

Exercise 10.10. For the equation in Exercise 1.6.3, discuss the behavior of iterates
of the Poincaré map for the transversal Σ = { (x1, 0) : x1 > 0 }.
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Exercise 10.11. Suppose that γ is a periodic orbit of an autonomous differential
equation in lR2 and let π be the Poincaré map associated with a transversal to this
orbit at some point. The transversal is the image of a line segment and therefore has
the natural order of the real numbers. Show that π is a monotone function. If q ∈ γ
and 0 < Dπ(q) < 1, show that γ is a local attractor. If Dπ(q) > 1, show that γ is
unstable.
Hint. For the first part, you must use the Jordan Curve Theorem: Every closed curve
C in the plane separates the plane into two open disconnected sets called the inside
and outside of C. For the other parts, you need a simple estimate using Taylor’s
Theorem.

1.10.3. General Poincaré Maps.

It is clear that we can define Poincaré maps in a more general setting than in the
previous section. In fact, if f ∈ Ck(U, lRd) and Σ ⊂ U is a transversal to f at ξ ∈ Σ,
then we can define the Poincaré map in the same way as the previous section.

Remark 10.2. In this general setting, it may be that D(π) is the empty set. In fact,
for the equation ẋ1 = −x1, ẋ2 = −x2, if Σ is the vertical line Σ = { (1, x2) }, then
D(π) is empty.

Example 10.12. If (1.1) is a periodic system as defined in Section 1.6.2 and if we
identify { 0 }×lRd with { p }×lRd, then (1.1) can be regarded as a differential equation
on a cylinder with the new differential equation being ṡ = 1 (mod p), ẋ = f(s, x).
The set Σ = { 0 } × lRd is obviously transverse to the vector field (1, f(x)) at every
x ∈ lRd. The Poincaré map obtained in this way is the same as the one obtained in
Section 1.6.2.

Example 10.13. Let T 2 = { θ = (θ1, θ2) : 0 ≤ θj ≤ 1, j = 1, 2 } be a torus and

consider the differential equation θ̇1 = 1, θ̇2 = α (mod 1) on T 2. It is clear that
Σ = { (0, θ2) : 0 ≤ θ2 ≤ 1 } is a transversal to the vector field at each point of Σ. The
Poincaré map π on Σ is defined by π(0, ξ) = (0, α+ ξ) (mod1). Recall that you have
discussed in Exercise 1.6.5 the properties of this flow as a function of α. Interpret
your result for the map π.

1.10.4. Discretizations.

In the applications, it is necessary to use numerical methods to obtain specific
quantitative information about the solutions of a differential equation. If this is done
on a digital computer, then we become involved with maps. In this section, we
illustrate this for a scalar equation and a particularly simple discretization.

For a fixed constant a, let us consider the scalar logistic equation

ẋ = ax(1 − x)

on the finite interval [0, α]. Let us use Euler’s method for approximating the solutions
of this equation. If we subdivide [0, α] intoN equal parts of length h, letX(n) = x(nh),
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replace ẋ(nh) by [x(nh + h) − x(nh)]/h, then X(n+1) = X(n) for n ≥ 0, where the
map T : lR → lR is defined by

Ty = by(
1 + b

b
− y)

where b = ha. Thus, X(n) = TnX(0) is the nth iterate of x(0) by the map T .
If we make the change of variables y = ((1+b)/b)z, then we obtain the equivalent

map œT̃ : lR → lR given by the quadratic map (the logistic map)

(10.2) T̃ z = λz(1 − z) ,

where λ = 1 + b.
For h small, we expect that the nth iterate of the map T and therefore T̃ will

behave in much the same way as the solution x of the differential equation evaluated
at nh. It is not too difficult to show that this is the case and, in fact, we did this
when we were explaining a proof of the Peano theorem of existence of solutions using
ǫ-approximate solutions. Of course, the degree of smallness of the step size h depends
upon the vector field and, in this example, upon the size of the constant a. If the
quantity b is too large, then the iterates of T and therefore of T̃ may have nothing
whatsoever to do with the solution x. To see why this will be the case, let us mention
only that the map must at least be monotone if the iterates are to have properties
similar to the differential equation. There are two fixed points of T̃ given by 0, ξλ =
1 − 1

λ
. If 2 < λ < 3, then DT̃ (ξλ) < 0 and so the map will not be monotone in a

neighborhood of 0. Phenomena can occor in the map which does not occur in the
differential equation! This makes it clear that much effort is needed to determine
if the results that are obtained on the computer are realistic interpretations of the
solutions of differential equations.

In a later section, we will discover that the logistic map exhibits many important
phenomena encountered in dynamical systems.

Exercise 10.12. Use Taylor’s Theorem to show that the fixed point ξλ for the logistic
map is a local attractor for 1 < λ < 3 and discuss the manner in which the iterates
of T̃ approach ξλ.
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