Fall 05
Math 4581

Name:
Test 1 Bonetto

1) The motion of a pendulum is described by the following equation:

$$
\ddot{x}(t)+8 t \dot{x}(t)+4\left(5+4 t^{2}\right) x(t)=\exp \left(-2 t^{2}\right) \sin (t)
$$

a) find the general solution for the equation. (Hint: try the substitution $x(t)=$ $\left.\exp \left(-2 t^{2}\right) y(t).\right)$
b) You want to solve the equation with boundary conditions

$$
x(0)=0 \quad \dot{x}(\pi)=0
$$

Find the solution.
c) (Bonus) Write the Green function for the boundary conditions of point b). (Hint: You wrote an equation for $y(t)$. Compute the Green function for $y(t)$ and ...)
2) Compute the Foureir series of the function:

$$
f(x)= \begin{cases}-x & -1 \leq x \leq 0 \\ 3 x & 0 \leq x \leq 1\end{cases}
$$

You may use that for $-1 \leq x \leq 1$ we have:

$$
\begin{aligned}
x & =\sum_{n=1}^{\infty} \frac{2(-1)^{n+1}}{n \pi} \sin (n \pi x) \\
|x| & =\frac{1}{2}-\sum_{n=1}^{\infty} \frac{2\left(1-(-1)^{n}\right)}{n^{2} \pi^{2}} \cos (n \pi x)
\end{aligned}
$$

3) Let $f_{e}(x)$ be the even extension of

$$
f(x)=\sin \left(\frac{x}{2}\right) \quad 0 \leq x \leq \pi
$$

a) Find the Fourier series for $f_{e}(x)$. Does it converge pointwise? Uniformly? (Remeber that:

$$
\int \sin (\lambda x) \cos (\mu x) d x=\frac{\cos (\mu-\lambda) x}{2(\mu-\lambda)}-\frac{\cos (\mu+\lambda) x}{2(\mu+\lambda)}
$$

if $\mu \neq \lambda)$
b) Find the Fourier series for $f_{e}^{\prime}(x)$. Does it converge pointwise? Uniformly?
c) Write an expression for $f_{e}^{\prime \prime}(x)$ and its Fourier series. (Hint: remeber the discontinuity at $x=0$)
d) (Bonus) Can you use the relation between $f_{e}(x)$ and $f_{e}^{\prime \prime}(x)$ to compute the Foureir series of $f_{e}(x)$?

