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5. Solve the problem

Viu=0, O<x<a, O0O<y<bh,

u(0,y9) =0, u(a,y)=0, 0<y<b,
w(x, =0, ux,b=fx), O0<x<a,

where f is the same as in the example. Sketch some level curves of u(x, y).

-f;f?."j:{SOlve the potential problem on the rectangle 0 <x <4, 0 <y < b, subject
“to the boundary conditions u(a, y) =1,0 <y < b, and u = 0 on the rest of

the boundary.

7. Solve the problem of the potential equation in the rectangle 0 <x < 4,0 <
y < b, for each of the following sets of boundary conditions. Before solving,
make a pictorial version of the problem as in Exercise 9 of Section 4.1.

o u(x, b)=100,0 <x <a;u=00n the other three sides of the rectangle.

b, u(x,b) =100, 0 <x < & u(a, y) = 100, 0 < y < b; u = 0 on the other

two sides of the rectangle.

€. u(x,b):bx,O<x<a;u(a,y)=ay,0<y<b;u=0ontheothertwo

sides of the rectangle.

8. Solve the problem for u,. (That is, derive Eq. (18).)

4.3 Further Examples for a Rectangle

In Section 4.2, we solved Dirichlet problems with separation of variables. The
same method applies to problems with other types of boundary conditions, as

shown in the following.

Example 1.

In this problem, the unknown function might be a voltage in a conductor, The

left and right sides are electrically insulated.

8%u  d%u
@-ka—yzz(}, 0<x<a, -0<y<b,
ou du

Zw,9=0, —(a,=0, 0 b,
ax( ¥) ax(a ¥) <y<

u(x,0) =0, ulx, ) =Vyxfa, O<x<a

We have homogencous conditions on the facing sides at x = 0 and x = 2. I

we look for solutions in the product form u(x, y) = X(x)Y ()

we find (as ex-
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pected) that

X" v
) _ Yo = constant.

X~ Y

The conditions at x = 0 and x = a become

X =0, X(a)=0.

If we make the separation constant —A?, we find a familiar eigenvalue problem
for X whose solution is

Xp(x)=1, Ao=0,
X,(x) = cos(hnx), An=nmja, n=1,2,....

For the factor Y (y), the differential equation is
Yy =0, or Y/—-)\Y,=0
with solution
Yo =ao+byy or Y.(y) =a,cosh()r,y) + b, sinh(i,p).

Thus, the principle of superposition leads to the series solution

u(x, y) = ap + boy + Z(an cosh(r,y) + by sinh(l,,y)) cos(Ax).

n=}

The boundary condition at y = 0 becomes
o0
ag + Zaﬂ cos(Axy =0, O<x<a,
1
from which we see that all the 4’s are 0. Then at y = b we have

w .
Vi .
bob + Z(bﬂ sinh(1,b)) cos(h,x) = zj, 0<x<a. |

n=1

This is a slightly disguised cosine series. The coefficients are : o

1 73
bob = —f vo(f) dx,
aJo 24
) 2 ¢ x
b, sinh(),b) = - f Vo(—) cos(A,x) dx.
aJo a

See a color graphic of the solution on the CD. =
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‘We have seen that the success of the separation of variables method depends
on having homogeneous boundary conditions at the ends of one of the inter-
vals involved. In Section 4.2 we mentioned splitting up a Dirichlet problem,
if necessary, to achieve this. The same splitting technique applies in problems
where boundary condition of other kinds are used. The principle is to zero
conditions on two facing sides of the region and to copy the rest.

Example 2.
This problem may describe the temperature u(x, y) in a thin plate between
insulating sheets.

3Ry du

8x2+8_y220’ D<x<a, 0<y<b,

?(O,y):(), u(a,y):sz, 0<y<b,
X

d Sh
—u(x,O)zS, u(x,b):—}—c, 0<x<a.
dy a

Since we have nonhomogeneous conditions on adjacent sides, we must split
the problem in order to solve by separation of variables. Here are the twao prob-
lems: |

Fu; 9y —0 Bzﬁ 8%u, _

ox? gy 32

%(O,Jf) =0, wuw(ay=0 %(O,y) =0, wlay=35§,
dx dx

Skx @
=8 wx b= T, 0) =0, ws(x,B)=0.
ay a dy

The solution of the original problem is the sum u = u; + u,. Here is the
reasoning in detail.

1. The potential equation is linear and homogeneous. By the Principle of
Superposition, the sum of solutions is a solution,

2, At x = a we have u(a,y) = 0+ Sy, and at y = b we have u(x, b) =
Sbx/a + 0. Both conditions are satisfied.

3. From elementary calculus, we know

S 0w Ow | Owp du _ duy  Ouy

o ax T ax oy ay oy
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Then at the left and bottom boundaries, we have
ou C du
0: =0 Og N =35 .
_ax( ¥) 4 3y (x, ) +0

These are satisfied as well.

Thus, it remains to solve the two problems for #; and ;. (See the Exercises.)
Here are product solutions, For u;:

Vi

| 1
cos(lnx)(an cosh(A,p) + by sinh(A,,y)), A= (n — 5) —, n=12,....
a

For us:

1
cos(iLny) (An cosh{it,x) + By sinh(,u,,,x)), My = (n - 5) % n=12,....

The simple polynomial solutions that we found in Section 4.1, Exercise 1,
can be very useful in reducing the number of series needed for a solution. I
nonhomogeneous conditions are given on adjacent sides and these are con-
stants or first-degree polynomials in one variable, then a polynomial may be
able to satisfy enough of them to simplify the work.

Example 3.
Refer to the problem in Example 2. The polynomial v(y) = Sy satisfies the
potential equation and several of the boundary conditions:

3
EZ(O,J/)=0, v(@y) =Sy, O0<y<b,
du
8—y(x,0)=8, vix, ) =8b, O<x<a.

Thus, we may set u(x, ¥} = v(y) + w{x, y) and determine that w must be the
solution of this problem, similar to the problem for u; in Example 2:

Pw Fw_o 0 b
— 4+ —— =10, <x<a, <y<h,
ot 3y Y

9

a—w(o,y)=0, w(a,y) =0, 0<y<b,
X

H] Shix —

W =0, web=ETD i
ay a

The solution is left as an exercise. ]
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Poisson Equation

Many problems in enginecring and physics require the solution of the Poisson
equation,

Viu=—H inaregionR.
Here are three examples of such problems.

(1) wuis the deflection of a membrane that is fastened at its edges,so u =0on
the boundary of R; H is proportional to the pressure difference across
the membrane. (See Section 5.1.)

(2) u is the steady-state temperature in a cross section of a long cylindrical

rod that is carrying an electrical current; H is proportional to the power
in resistance heating, (See Section 5.2.)

(3) u is the stress function on the cross section R of a cylindrical bar or rod
in torsion (the shear stresses are proportional to the partial derivatives -
of u); H is proportional to the rate of twist and to the shear modulus of
the material; u = 0 on the boundary of K.

If H is a constant, a polynomial of the form
P(x,y) = A+ Bx+ Cy + Dx* + Bxy + Fy’
is a solution of Poisson’s equation, provided that
AD+F=—

The other coefficients are arbitrary and may be chosen for convenience in sat-
isfying boundary conditions.

Example 4.
Find the deflection u of a membrane that is modeled by this problem. The
constant is H = p/o, where p is the pressure difference (below to above) and
o is the surface tension in the membrane:

A polynomial can be chosen that satisfies the partial differential equatmn
and boundary conditions on facing sides. For instance,

Hx(a —x)

U(x) = 5

satisfies the Poisson equation and two boundary conditions,

vy =0, vi{@=0.
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Thus, we may set u(x, ¥) = v{x) + w(x ¥} and determine that w isa solution
of the problem

Pw | Pw
ﬁ-l—a—yz—O, 0<x<a, 0<y<b,
~w(0,y) =0, wia, y) =10, 0<y<b,
wix, ) =—-vx), wi,b=—vx), 0<x<a
The CD has color graphics of the solution. O

In general, if H is a polynomial in x and y, a solution can be found in the
form of a polynomial of total degree 2 higher than H. If I is a more gen-
eral function, it may be expressed as a double Fourier series (see Chapter 5),
and the partial differential equation can be solved following the idea of Sec-
tion 1.11B.

&/Solve the problem consisting of the potential equatmn on the rectangle
0 <x < a,0 < y < bwith the given boundary conditions. Two of the three

are very easy if a polynomial is subtracted from u.

EXERCISES

a .

a. 52 (0,9) =0 # = 1 on the remainder of the boundary.
d 0

b.gngo=m 3%“00:0; w(x,0) =0, ulx,b)=1,

]
c. 5—2—(9@ 0y=0, ulx,b)=0; u@, =1, ula,y=0
2. Same task as Exercise 1.

a. u#{x, b) == 100; the outward normal derivative is 0 on the rest of the
boundary.

3
b u(x,b) =100, u(0,5)=0, wu(ay) =100, a—;(x,())zo.

3. Finish the work for Example 1: Find the b, form the series, and check that
all conditions are satisfied.

k“ fIn Example 2, check that the given product solution for u; (x, y) satisfies
the conditions and determine the coefficients a,, and &,,.

('i ,In Example 2, check that the given product solution for u,(x, ¥) satisfies
the conditions and determine the coefficients A, and B,,.
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- 6. Explain the difference between the cosine series in Example 1 and the co-
sine series for 1 (x, ¥) in Example 2. What is the source of the difference?

7. Finish the work for Example 3. That is, find w(x, y) as a series and check
that the boundary conditions are all satisfied.

8, Compare the amount of work involved in solving the problem of Exam-
ple 2 (including Exercises 4 and 5) with the work for Example 3 (including
Exercise 7).

: 9. !Finish the work of Example 4: Find the solution, as a series, for w(x, y).
" Form u(x, ¥) and use the first term of the series for w(x, y) to obtain an
expression for the value of u(% , E—z’). This would be the maximum deflection
of the membrane.

10. Find the condition on the coefficients so that the following general
second-degree polynomial is a solution of the Poisson equation, V*p =
—H, where H is constant:

p(x, ¥) = A+ Bx+ Cy+ Dx* + Exy + Py~

11. Same task as Exercise 10, but H = K(x* + %) and p is this part of the
general fourth-degree polynomial

plx, y) = Ax* + By + szyz + Dxy® + By*,

32 82

3_.?:_'_3_;“}1 0<xga, 0<y<b,

u(0,) =0, u(a, ) =0, 0<x<a,
. u(x, U)IO, u(x, b)=0, 0<y<b.

4.4 Potential in Unbounded Regions

The potential equation, as well as the heat and wave equations, can be solved
in unbounded regions. Consider the following problem, in which the region
involved is half a vertical strip, or a slot:

82—M—I~§—ZE=0, O<x<a, 0<y, {1)
ox? =~ 0y* '

ufx, 0) = f(x}, 0<x<a, ' (2)
w0, ) =g:(p). 0<y, | (3)
wa, ) =@, O0<y. | : (4)

As usual, we required that u(x, ¥) remain bounded as y — oo,




