Spring 04
Math 3770

Name: \qquad
Second Midterm

1) Let X_{1} and X_{2} be two independent normal standard r.v.. Let

$$
\begin{aligned}
& Y_{1}=X_{1}+X_{2} \\
& Y_{2}=X_{1}-X_{2}
\end{aligned}
$$

Compute

a) The expected value and variance of Y_{1} and Y_{2}.
b) $\operatorname{Cov}\left(Y_{1}, Y_{2}\right)$ and $\operatorname{Corr}\left(Y_{1}, Y_{2}\right)$.
c) Can Y_{1} and Y_{2} be independent?

We know that $E\left(a_{1} X_{1}+a_{2} X_{2}\right)=a_{1} E\left(X_{1}\right)+a_{2} E\left(X_{2}\right)$ while $V\left(a_{1} X_{1}+a_{2} X_{2}\right)=$ $a_{1}^{2} V\left(X_{1}\right)+a_{2}^{2} V\left(X_{2}\right)$ so that for Y_{1} we have

$$
E\left(Y_{1}\right)=E\left(X_{1}\right)+E\left(X_{2}\right)=0 \quad V\left(Y_{1}\right)=V\left(X_{1}\right)+V\left(X_{2}\right)=2
$$

while for Y_{2} :

$$
E\left(Y_{2}\right)=E\left(X_{1}\right)+E\left(X_{2}\right)=0 \quad V\left(Y_{2}\right)=V\left(X_{1}\right)+V\left(X_{2}\right)=2
$$

For the covariance we have:
$\operatorname{Cov}\left(Y_{1}, Y_{2}\right)=E\left(Y_{1} Y_{2}\right)-E\left(Y_{1}\right) E\left(Y_{2}\right)=E\left(\left(X_{1}+X_{2}\right)\left(X_{1}-X_{2}\right)\right)=E\left(X_{1}^{2}\right)-E\left(X_{2}^{2}\right)=0$
while

$$
\operatorname{Corr}\left(Y_{1}, Y_{2}\right)=\frac{\operatorname{Cov}\left(Y_{1}, Y_{2}\right)}{\sigma_{X_{1}} \sigma_{X_{2}}}=0
$$

Finally since $\operatorname{Cov}\left(Y_{1}, Y_{2}\right)=0$ it is possible that Y_{1} and Y_{2} are independent.
2) A group of 600 students this semester attempted the exams for Calculus II (CII) and Linear Algebra (LA). Assume that the possible grades are just 0,1 or 2 . The combined results of the exam are given in the following table:

		CII		
		2	1	0
LA	2	200	80	20
	1	20	100	80
	0	80	15	5

Let X_{1} be the r.v. for the result of CII and X_{2} the r.v. for the result of LA. Compute:
a) the marginal p.m.f. of X_{1} and X_{2}.
b) the expected value of X_{1}, X_{2} and $X_{1}+X_{2}$.
c) if $f_{X_{1}}\left(x_{1} \mid x_{2}\right)$ is the conditional p.m.f. of X_{1} given X_{2}, compute $f_{X_{1}}(2 \mid 2)$.
d) are X_{1} and X_{2} independent?

Let us call $f\left(x_{1}, x_{2}\right)$ the joint p.m.f. of X_{1} and X_{2}. The marginal are given by:

$$
\begin{array}{lll}
f_{X_{1}}(2)=\frac{300}{600}=0.5 & f_{X_{1}}(1)=\frac{195}{600}=0.325 & f_{X_{1}}(0)=\frac{105}{600}=0.175 \\
f_{X_{2}}(2)=\frac{300}{600}=0.5 & f_{X_{1}}(1)=\frac{200}{600}=0.333 & f_{X_{1}}(0)=\frac{100}{600}=0.167
\end{array}
$$

The expected values are given by:

$$
\begin{aligned}
& E\left(X_{1}\right)=0 \cdot 0.175+1 \cdot 0.325+2 \cdot 0.5=1.325 \\
& E\left(X_{2}\right)=0 \cdot 0.167+1 \cdot 0.333+2 \cdot 0.5=1.333 \\
& E\left(X_{1}+X_{2}\right)=E\left(X_{1}\right)+E\left(X_{2}\right)=2.658
\end{aligned}
$$

For the conditional probability we have:

$$
f_{X_{1}}(2 \mid 2)=\frac{f(2,2)}{f_{X_{2}}(2)}=\frac{0.333}{0.5}=0.677
$$

Finally observe that $f(2,2)=0.333$ is different from $f_{X_{1}}(2) f_{X_{2}}(2)=0.25$ so that X_{1} and X_{2} are not independent.
3) A passenger can take two different bus lines to go to work. Both lines stop at the same bus stop. Let T_{1} the r.v. giving the time of arrival of the bus of line 1 and T_{2} the r.v. giving the time of arrival of the bus of line 2 . You know that T_{1} is exponential with parameter 10 and T_{2} is exponential with parameter 20 when time is measured in minutes. Let T be the random variable giving the time our passenger will wait for a bus i.e $T=\min \left(T_{1}, T_{2}\right)$ the smallest between T_{1} and T_{2}.
a) compute $P(T>t)$ i.e. the probability that after t minutes no bus as arrived jet?
b) What is the p.d.f. of T ? (Hint: compute the c.d.f and remember that the p.d.f is the derivative of the c.d.f.)
c) What is the average time the passenger will wait at the bus stop?

The probability that after t minutes no bus as arrived jet is the probability that both T_{1} and T_{2} are larger than t. But T_{1} and T_{2} are independent so that:

$$
P(T>t)=P\left(T_{1}>t \text { and } T_{2}>t\right)=P\left(T_{1}>t\right) P\left(T_{2}>t\right)=e^{-10 t} e^{-20 t}=e^{-30 t}
$$

The c.d.f of T is

$$
F(t)=P(T \leq t)=1-P(T>t)=1-e^{-30 t}
$$

so that differentiating we get that the p.d.f. of T is $f(t)=30 e^{-30 t}$. In particular T is exponential with parameter 30. Clearly the expected value of T is $E(T)=1 / 30=0.0333$ and it is the average time the passenger will wait.

