Fall 04
Math 3770

Name:
Test 2

Bonetto

1) In a bowl there are 3 balls numbered form 1 to 3 . You extract two of them without reinsertion. Let X_{1} the result of the first extraction and X_{2} the result of the second one. Compute:
a) the joint probability mass function $p\left(x_{1}, x_{2}\right)$ of X_{1} and X_{2}.
b) the probability mass function of $Y=X_{1}+X_{2}$ and the expected value $E\left(X_{1}+X_{2}\right)$.
c) the marginal $p_{X_{1}}\left(x_{1}\right)$ with respect to X_{1} of $p\left(x_{1}, x_{2}\right)$ and the conditional probability mass function $p_{X_{1} \mid X_{2}}\left(x_{1} \mid x_{2}\right)$.
d) $\operatorname{cov}(X, Y)$. Are X_{1} and X_{2} independent? Why?
2) Let X be an exponential rv with parameter $\lambda=2$ and Y be a uniform $r v$ between 0 and 1. Assume that X and Y are independent. Compute:
a) the joint probability distribution function $f(x, y)$ of X and Y.
b) the probability that $X>3$ and $Y>0.5$
c) the probability that X is larger than Y, that is $P(X>Y)$.
(Bonus) Assume now that X and Y are not independent but X is still exponential with parameter $\lambda=2$ while the conditional probability of Y given X is $f_{Y \mid X}(y \mid x)=$ $1 / x$ for $0<y<x$ and $f_{Y \mid X}(y \mid x)=0$ otherwise. Compute
d) the joint probability distribution function $f(x, y)$ of X and Y.
e) the covariance of X and $Y, \operatorname{cov}(X, Y)$.
(Hint: remember that:

$$
\int_{0}^{\infty} \lambda x e^{-\lambda x}=\frac{1}{\lambda} \quad \int_{0}^{\infty} \lambda x^{2} e^{-\lambda x}=\frac{2}{\lambda^{2}}
$$

).
3) You reach campus driving while a friend of yours use public transportation. The time you need to reach campus is described by a rv X with $E(X)=1 h$ and standard deviation $\sigma_{X}=0.3 h$ while the time needed by your friend is a rv Y with $E(Y)=1.2 h$ and standard deviation $\sigma_{Y}=0.5 h$. In a semester you both go to campus 100 times. Moreover the times needed to reach campus on different days are independent. Let T_{x} be the total time you spend driving during a semester.
a) What is the (approximate) distribution of T_{X} ? Compute $P\left(T_{X}>110\right)$.

Call \bar{X} the average time (over the semester) you spend driving to campus and \bar{Y} the average time your friend spend in the public transportation system.
b) compute $P(\bar{X}>1.05)$ and $P(1.1<\bar{Y}<1.3)$.
c) compute $P(\bar{X}>\bar{Y})$.

