Fall 04 Math 3770

Name: _____ Test 2

Bonetto

- 1) In a bowl there are 3 balls numbered form 1 to 3. You extract two of them without reinsertion. Let X_1 the result of the first extraction and X_2 the result of the second one. Compute:
 - a) the joint probability mass function $p(x_1, x_2)$ of X_1 and X_2 .
 - b) the probability mass function of $Y = X_1 + X_2$ and the expected value $E(X_1 + X_2)$.
 - c) the marginal $p_{X_1}(x_1)$ with respect to X_1 of $p(x_1, x_2)$ and the conditional probability mass function $p_{X_1|X_2}(x_1|x_2)$. d) $\operatorname{cov}(X, Y)$. Are X_1 and X_2 independent? Why?

- 2) Let X be an exponential rv with parameter $\lambda = 2$ and Y be a uniform rv between 0 and 1. Assume that X and Y are independent. Compute:
 - a) the joint probability distribution function f(x, y) of X and Y.
 - b) the probability that X > 3 and Y > 0.5
 - c) the probability that X is larger than Y, that is P(X > Y).

(Bonus) Assume now that X and Y are not independent but X is still exponential with parameter $\lambda = 2$ while the conditional probability of Y given X is $f_{Y|X}(y|x) = 1/x$ for 0 < y < x and $f_{Y|X}(y|x) = 0$ otherwise. Compute

- d) the joint probability distribution function f(x, y) of X and Y.
- e) the covariance of X and Y, cov(X, Y).

(**Hint**: remember that:

$$\int_0^\infty \lambda x e^{-\lambda x} = \frac{1}{\lambda} \qquad \int_0^\infty \lambda x^2 e^{-\lambda x} = \frac{2}{\lambda^2}$$

).

3) You reach campus driving while a friend of yours use public transportation. The time you need to reach campus is described by a rv X with E(X) = 1h and standard deviation $\sigma_X = 0.3h$ while the time needed by your friend is a rv Y with E(Y) = 1.2h and standard deviation $\sigma_Y = 0.5h$. In a semester you both go to campus 100 times. Moreover the times needed to reach campus on different days are independent. Let T_x be the total time you spend driving during a semester.

a) What is the (approximate) distribution of T_X ? Compute $P(T_X > 110)$.

Call \bar{X} the average time (over the semester) you spend driving to campus and \bar{Y} the average time your friend spend in the public transportation system.

- b) compute $P(\bar{X} > 1.05)$ and $P(1.1 < \bar{Y} < 1.3)$.
- c) compute $P(\bar{X} > \bar{Y})$.

Page 4 of 4