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This is a take home final exam. You can use your notes, my online notes
on canvas and the text book. You are supposed to work on your own
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or via email. Please, write clearly and legibly and take a readable scan

before uploading.

To solve the Exam problems, I have not collaborated with anyone nor sought
external help and the material presented is the result of my own work.
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Question 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 point
Let X be a continuous r.v. with p.d.f. given by

f(x) =

{
p+ 2(1− p)x 0 < x < 1

0 otherwise

where p is a parameter.

(a) (10 points) for which value of p is f a valid p.d.f.? (Hint: remember that there
are 2 conditions you should check.)

Solution: We have ∫ 1

0

f(x)dx = 1

for every p so that we just need to check that f(x) > 0. Since f is linear in x it
is enough that f(0) > 0 and f(1) > 0. Thus we get

0 ≤ p ≤ 2 .

(b) (10 points) Compute the expected value E(X) and the variance var(X) of X.

Solution: We have

E(X) =

∫ 1

0

xf(x)dx = p

∫ 1

0

xdx+ 2(1− p)
∫ 1

0

x2dx =
p

2
+

2

3
(1− p) =

2

3
− p

6

and

E(X2) =

∫ 1

0

x2f(x)dx = p

∫ 1

0

x2dx+ 2(1− p)
∫ 1

0

x3dx =
p

3
+

1

2
(1− p) =

1

2
− p

6

so that

var(X) =
1

36
(p (2− p) + 2)
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(c) (10 points) Show that

E

((
X − 2

3

)2
)
≥
(p

6

)2
(Hint: use Jensen inequality.)

Solution: Use Jensen inequality to get

E

((
X − 2

3

)2
)
≥
(
E(X)− 2

3

)2

=

(
1

2
− p

6
− 1

2

)2

.
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Question 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 point
Let Nk, k = 1, 2, 3, . . ., be an infinite sequence of geometric random variable with pa-
rameter pk = λ

k
, that is

P(Nk = n) = (1− pk)n−1pk for n ≥ 1 .

and P(Nk = n) = 0 for n < 1. Moreover let Y be an exponential r.v. with parameter λ,
that is

fY (y) = λe−λy for y ≥ 0

and fY (y) = 0 for y < 0.

Show that Zk = Nk/k converge in distribution to Y as k → ∞. (Hint: compute the
c.d.f. of Zk, that is Fk(x) = P(Zk ≤ x) for every real number x.)

Solution: Observe that we have

P(Zk ≤ x) = P(Nk ≤ kx) =

bkxc∑
i=1

(1− pk)i−1pk = 1− (1− pk)bkxc−1 =

(
1− λ

k

)bkxc−1
while

P(Y ≤ y) = 1− e−λy.

Observe that
bkxc − 1

k
→ x

as k →∞ so that

(
1− λ

k

)bkxc−1
=

((
1− λ

k

)k) bkxc−1
k

→k→∞ e−λx

for every x.
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Question 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 point
A student is attempting a multiple choices exam. For each question there are 4 possible
answers. He has a probability of 0.75 of knowing the correct answer. If he does not know
the answer he chooses one answer uniformly and randomly. All questions and answers
are independent.

To get a B he need to answer correctly 85% of the questions while to get an A he needs
to answer correctly 95% of the questions.

To answer the questions below, you can use Matlab or R (or any other software) to
compute the needed values c.d.f. of a Standard Normal r.v.. In case you do not have
them available, this is an online calculator.

(a) (10 points) If the test contains 40 questions, use a normal approximation (CLT) to
compute the probability pB that the student will get at least a B and the probability
pA that the student will get a A.

Solution: Let p be the probability that the student give a correct answer. We
have

p = 0.75 + 0.25 · 0.25 = 0.8125 .

Let Xi be 1 if he answer correctly to the i-th question and 0 otherwise. Thus
E(Xi) = 0.8125 and V (Xi) = 0.1523. We get

pB =P

(
40∑
i=1

Xi > 0.85 · 40

)
=

=P

(∑40
i=1Xi − 0.8125 · 40

0.390
√

40
>

(0.85− 0.8125) · 40

0.390
√

40

)
=

=1− Φ(0.60) = 0.274

while

pB =P

(
40∑
i=1

Xi > 0.95 · 40

)
=

=P

(∑40
i=1Xi − 0.8125 · 40

0.390
√

40
>

(0.95− 0.8125) · 40

0.390
√

40

)
=

=1− Φ(2.23) = 0.013 .
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(b) (15 points) Let pB be the probability that a student that knows 75% of the answers
will get a B or more. If the teacher wants pB to be less than 0.025, how many
questions should there be on the exam.

Solution: He wants to find N such that

P

(
N∑
i=1

Xi > 0.85 ·N

)
≤ 0.025

This means

P

(∑N
i=1Xi − 0.8125 ·N

0.390
√
N

>
(0.85− 0.8125) ·

√
N

0.390

)
= 1−Φ(0.096·

√
N) ≤ 0.025

From the table we
Φ(1.96) = 0.975

so that he needs

N >

(
1.96

0.096

)2

= 416

questions.
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Question 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 point
Let X be a continuous r.v. with uniform distribution in [−1, 1] and Y be such that
P(Y = 1) = P(Y = −1) = 0.5, X and Y independent. Consider the r.v. Z = XY .

(a) (10 points) Find the p.d.f. of Z.

Solution: Observe that

P(Z < z) = P(X < z)P(Y = 1) + P(X > −z)P(Y = −1) .

Observing that P(X < z) = P(X > −z) we get P(Z < z) = P(X < z), that is
Z is uniform in [−1, 1] and

fZ(z) =

{
1
2
−1 ≤ z ≤ 1

0 otherwise

(b) (10 points) Are Z and Y independent?

Solution: For any A ⊂ [−1, 1] we have

P(Z ∈ A&Y = 1) = P(X ∈ A)P(Y = 1) = P(Z ∈ A)P(Y = 1)

while

P(Z ∈ A&Y = −1) =P(X ∈ −A)P(Y = 1) = P(X ∈ A)P(Y = −1) =

P(Z ∈ A)P(Y = −1)

so that Z and Y are independent.

Page 6 of 10



MATH 3235 Final Exam Due May 4, 2021 at 5:30pm

Question 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 point
Let X1 and X2 be two independent exponential r.v. with expected value λ. Find the
joint p.d.f. of Y1 = X1 + X2 and Y2 = X1 − X2 and the marginal p.d.f. of Y2. (Hint:
pay attention to the possible values of Y1 and Y2)

Solution: The p.d.f. of X1 and X2 is

f(x) = λ−1e−
x
λ .

Note: if students used λ as the parameter instead of λ−1, do not penalize them.

Clearly we have
X1 = (Y1 + Y2)/2 X1 = (Y1 − Y2)/2

and the Jacobian of the change of variables id

|J(y1, y2)| =
1

2

and we need y1 + y2 > 0 and y1 − y2 > 0, so that we get

fY1,Y2(y1, y2) =
1

2
λ−2e−

y1
λ for y1 > 0, |y2| < y1

To find the marginal p.d.f. of Y1 we compute

fY2(y2) =
1

2

∫ ∞
|y2|

λ−2e−
y1
λ dy1 =

1

2
λ−1e−

|y2|
λ .
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6. (15 points (bonus)) Let N1, N2 and N3 be discrete random variables with joint proba-
bility mass function

p(n1, n2, n3) = P(N1 = n1 &N2 = n2 &N3 = n3) =
3−NN !

n1!n2!n3!

if n1 + n2 + n3 = N and 0 otherwise.

Compute the marginal mass function pN1 of N1, that is

pN1(n1) = P(N1 = n1)

and the conditional mass function pN2,N3|N1 of N2 and N3 given N1, that is

pN2,N3|N1(n2, n3|n1) = P(N2 = n2 &N3 = n3 |N1 = n1) .

(Hint: you can answer the question without doing any computation. Think what situ-
ation is described by N1, N2 and N3.)

Solution: Observe that N1, N2 and N3 are the result of repeating an experiment
with 3 possible equiprobable outcomes (say 1,2,3) N times. P(N1 = n1) represents
the probability of obtaining n1 1s when the probability of a 1 in 1/3. Thus P(N1 = n1)
is a binomial with p = 1/3 that is

P(N1 = n1) =
N !

(N − n1)!n1!

(
1

3

)n1
(

2

3

)N−n1

.

On the other hand if you know you had exactly n1 1’s, the remaining outcomes are
2 or 3, with equal probability. Thus

pN2,N3|N1(n2, n3|n1) =
2−(N−n1)(N − n1)!

n2!n3!

if n2 + n3 = N − n1 and 0 otherwise.

In formulas we have

pN1(n1) =
∑
n2,n3

p(n1, n2, n3) =
∑

n2+n3=N−n1

3−NN !

n1!n2!n3!
=

=
3−N2N−n1N !

(N − n1)!n1!

∑
n2+n3=N−n1

2−(N−n1)(N − n1)!

n2!n3!
=

=
N !

(N − n1)!n1!

(
1

3

)n1
(

2

3

)N−n1

so that N1 is a binomial r.v. with N trials and p = 1/3.
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Moreover we have

pN2,N3|N1(n2, n3|n1) =
3−NN !

n1!n2!n3!

(
N !

(N − n1)!n1!

(
1

3

)n1
(

2

3

)N−n1
)−1

=

=
2−(N−n1)(N − n1)!

n2!n3!

if n2 + n3 = N − n1 and 0 otherwise.

Thus N2 is a binomial r.v with N − n1 trials and p = 1/2.
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7. (15 points (bonus)) Let Xi, i = 1, . . . , N be independent and identically distributed
continuous r.v. with median m, that is

P(Xi ≤ m) =
1

2
.

Show that

lim
N→∞

P
(

min
1≤i≤N

(Xi) ≤ m < max
1≤i≤N

(Xi)

)
= 1 .

Solution: Observe that due to independence

P
(

min
1≤i≤N

(Xi) > m

)
=

N∏
i=1

P(Xi > m) = 2−N

and similarly

P
(

max
1≤i≤N

(Xi) ≤ m

)
=

N∏
i=1

P(Xi ≤ m) = 2−N

so that

P
(

min
1≤i≤N

(Xi) ≤ m < max
1≤i≤N

(Xi)

)
=

1− P
(

min
1≤i≤N

(Xi) > m

)
− P

(
max
1≤i≤N

(Xi) ≤ m

)
=

1− 2N−1 .
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