THE PERRON-FROBENIUS THEOREM IN RELATION TO
POSITIVE, STOCHASTIC MATRICES

1. INTRODUCTION

A primary interest when studying Markov chains is the existence of a stationary
distribution, and whether this state is convergent from any beginning state. The
primary theorem applied to this question is the Perron-Frobenius theorem, which
makes significantly stronger statements regarding non-negative square matrices. This
paper will seek to prove the limited case of the Perron-Frobenius theorem when
applied to the transition matrix of a finite-state Markov chain. Although the general
theorem can be proven via a variety of approaches, this limited proof will seek to
primarily use elementary linear algebra results. This paper will subsequently discuss
approaches to extend this result as well as current applications of this result in the
use of finite-state Markov chains.

2. DEFINITIONS AND PREREQUISITE RESULTS

Definition 2.1. A square matrix P is (column) stochastic if it satisfies
pi; 20 Yij, Y py=1 Yj

Definition 2.2. A matrix (or vector) A is positive, and denoted A > 0 if it satisfies
Qjj > 0

Theorem 2.3. Let A be a square matriz, with R; = ., |a;|, the sum of absolute
values of the off-diagonal entries of a column. FEvery eigenvalue lies in one of the
disks on the complex plane centered at aj; with radius R;.

This theorem is known as the Gershgorin Circle Theorem.

Theorem 2.4. Let p(A) be the spectral radius of A. Yv, ||Av|| < p(A)v.

This lemma follows directly from the construction of the spectral radius as a limit
of vector norms.

3. PROOF OF THEOREM

In this section we present the proof of the Perron-Frobenius theorem in relation to
positive, stochastic matrices in order to make the following statement regarding the

convergence of finite-state Markov chains.
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Theorem 3.1. Let P be a positive, stochastic matriz. 3w positive, stochastic such
that ||P"xg — m|| < o™, a < 1 for any starting vector xo stochastic.

This statement is directly equivalent to the existence of a unique stationary dis-
tribution for any finite-state Markov chain, provided that the transition probability
between any two states is strictly positive. In addition, the Markov chain will con-
verge to this steady state regardless of its initial state geometrically. The subsequent
lemmas will develop the structure of the eigenvalues of a positive, stochastic matrix.
The theorem proof itself will be focused on demonstrating its convergent behavior.

Lemma 3.2. A positive stochastic matriz P has an eigenvalue A = 1.

Proof. Consider the characteristic polynomials of P and PT. Since the eigenvalues
of P are the solution of the polynomial det(A — \I) = det(A — \I)T = det(AT — \I),
it follows P and P? have the same eigenvalues. Since the columns of P sum to 1,
the rows of P similarly sum to 1. By stochasticity P71 = 1, where 1 is the column
vector of ones. So A = 1 is an eigenvalue of PT and subsequently P. O

Lemma 3.3. A positive stochastic matriz P has a spectral radius p(P) = 1, and
VA # 1, || < 1, where \; are the eigenvalues of the matriz.

Proof. The proof of this lemma follows geometrically from 2.3. Since every diagonal
entry of a positive stochastic matrix lies in the interval (0, 1), every Gershgorin disk
is centered on the real axis on the interval (0,1). For each disk centered at pj;,
stochasticity ensures it has radius 1 — p,;. The combination of these conditions
require each Gershgorin disk to be internally tangent to the unit disk at 1 on the real
axis. As such, the union of the Gershgorin disks lie completely within the unit disk,
so p(P) < 1. Since A = 1 is an eigenvalue of P, it follows p(P) = 1. Additionally
since every Gershgorin disk is internally tangent at one, and has a strictly smaller
radius than one, the union of the disks does not intersect with the unit disk at any
other point, implying that A = 1 is the only eigenvalue with |A| = 1. O

Lemma 3.4. Av non-negative such that Pv > v if P is a positive stochastic matriz.

Proof. Suppose for contradiction such a v exists. If v is non-negative, Pv is positive.
However, if Pv > v entry-wise, ||Pv|| > ||v||. Since p(P) = 1 by Lemma 3.3, this
contradicts Theorem 2.4. ([l

Lemma 3.5. A positive stochastic matriz P has an eigenvector z > 0 corresponding
to A =1.

Proof. By Lemma 3.2, P has eigenvalue A = 1. Let x be a corresponding eigenvector,
so it follows Px = z,x # 0. Consider z = P|z|. Since |z| has all non-negative
elements, and at least one non-zero element, and P has all positive elements, it
follows z > 0. z = Plz| > |Pz| = |z| by triangle inequality. So, y = z — || > 0.
Suppose y > 0. Positivity implies

0<Py=Pz—Plz|=Pz—z—Pz>z

This contradicts 3.4 so y = 0. So, z = |z|, which implies Pz = z, and by construction
z > 0. U]
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Lemma 3.6. The geometric multiplicity of eigenvalue A = 1 of a stochastic positive
matriz P s 1.

Proof. By Lemma 3.5, P has eigenvalue pair (x,1) where x > 0. Suppose Py =y,
with z,y linearly independent. Find € such that z = x + ey > 0, but z is not strictly
greater than zero, which can clearly be done since x is strictly positive, and y is
linearly independent (they span a two dimensional space). Pz > 0, since z is non-
negative, and P is strictly positive (as reasoned before). However, z = Pz, so z > 0,
which contradicts the assumption that z is not strictly greater than zero. So the
assumption x,y linearly independent is false, and A = 1 has geometric multiplicity
one. U

Lemma 3.7. If P is a positive stochastic matrix, there exists a unique w such that
P =m, and 7 is stochastic

Proof. By Lemma 3.5 dx such that Pr = z, with x positive. By Lemma 3.6 z is

unique up to scaling, so 7 = Ef”x_ is stochastic, and is the only stochastic vector

which satisfies Pm = . OJ

Lemma 3.8. The algebraic multiplicity of eigenvalue A = 1 of a stochastic positive
matriz P s 1.

Proof. Suppose A = 1 is not a simple eigenvalue. The Jordan representation of
P implies (A — I)*y = 0, (A —I)*'y # 0. So, (A — I)* !y is an eigenvector
corresponding to A = 1 , and by Lemma 3.6, y can be chosen so x = (A — 1)1y,
with x > 0. Let

z=(A-1)"%

(A-Dz=A-D""'Yy=0—>A2—2=2

Since z is strictly positive, Az > z, and by triangle inequality A|z| > |z|. However,
this contradicts 3.4, so the eigenvalue is simple.

A collection of these results, forming a restricted version of the Perron-Frobenius
theorem is as follows.

Theorem 3.9. Let P be a positive, stochastic matriz. The following holds.

(1) P has eigenvalue 1 = p(P). (Lemma 3.2)

(2) For any eigenvalue X # 1 of P |\ < 1. (Lemma 3.3).

(3) The corresponding eigenspace of X\ = 1 has multiplicity one, it is simple.
(Lemma 3.8).

(4) There exists a unique stochastic vector w corresponding to X = 1, satisfying
Pr=m. (Lemma 3.7)

Based on these results, the statement regarding convergence, Theorem 3.1 will be
proved below.
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Proof. Let xy be a stochastic vector. Let vy, ..., be an ordered normed (by L1 norm)
basis satisfying the Jordan canonical form, P = TJT~!. Let o = a v +...a,v,. Since
7 has geometric multiplicity one, v, = 7.

Prry = (TJT Yeug = T T ag = TJ (are1+...ane,) = T T arei+T T (ageq+...ane,)

Since the eigenvalue corresponding to the first Jordan block is 1 by theorem, and the
diagonals of the Jordan blocks after the first are less than one by theorem JF — 0,
with a convergence of \¥, leaving the second term to vanish. So Pfry — ajvy,
and since a stochastic matrix times a stochastic vector is stochastic, P*zy — v, =
7 with a geometric convergence rate with ratio A\¥, where )\; is the second largest
eigenvalue. U

4. DISCUSSION

The results obtained in Theorem 3.9 can be generally applied to any positive ma-
trix, regardless of its spectral radius. The majority of the proof proceeds similarly
by considering the matrix normed by its spectral radius. The theorem is slightly
weaker for non-negative matrices, and the convergence result is conditional on the
periodicity of the matrix. Convergence results for Markov chains in particular can
also be obtained through various more modern probabilistic methods, most notably
through work by Diaconis, and tighter bounds on the convergence ratio can be ob-
tained. However, when examining this particular treatment of the Perron-Frobenius
theorem, the primary necessary building blocks of the theorem are classical results
from linear algebra and the spectral behavior of matrices.

5. APPLICATION

One of the most notable modern examples of the application of the convergent
behavior of positive, stochastic matrices is the Google algorithm, PageRank. Specif-
ically, the underlying ranking of pages in a Google search is determined by their rel-
ative importance. This importance is determined by the steady-state of the Markov
chain that represents a hypothetical user randomly selecting a (certain type) of link
on each web page they visit. This leads to the fundamental assumption of the PageR-
ank algorithm: more important sites will have greater amounts of web traffic flowing
to them. This series of assumptions converts the question of ranking websites to the
determination of a stationary distribution of a (particularly large) stochastic matrix.
In order to leverage the results previously described, PageRank makes two important
modifications to the transition matrix. The first is assuming that if a page has no
outgoing links, it corresponds to a uniform column vector, a user will randomly select
any web page when on a web page with no current links. The second modification
is to ensure the positivity required of the transition matrix, by a slight modification,
P’ = cP + (1 — ¢)E, where E is a stochastic matrix of uniform columns, each pos-
itive. Suitable choice of E fulfills the requirement of the theorem. The choice of
the column vector introduces a preference or bias controllable by Google, however, a
uniform vector can be used to remain completely neutral. In addition, the constant,
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known as the damping factor, can be controlled to preference computational stabil-
ity and performance of the algorithm. In every case, the eventual ranking factor is
determined by the stationary distribution of P’, which as it is guaranteed positive,
converges relatively quickly by the result obtained.
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