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1. Evaluate the following definite integrals.

(a) (13 points) ∫ 1

0

(x + 2)2 − 4

x
dx

Solution:
∫ 1

0

(x + 2)2 − 4

x
dx =

∫ 1

0

x2 + 4x

x
dx =

∫ 1

0

(x + 4)dx =
1

2
+ 4

(b) (13 points) ∫ 1

0

(x + 1)2
√

3 + (x + 1)3dx

Solution: Calling u = 3 + (x + 1)3 we get du = 3(x + 1)2dx. Thus

∫ 1

0

(x + 1)2
√

3 + (x + 1)3dx =
1

3

∫ 11

4

√
udu =

2

9
u

3
2

∣∣∣
11

4
=

2

9
(11
√

11− 8)
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2. Evaluate the following indefinite integrals.

(a) (13 points) ∫
sin(x) cos(x)

(
cos2(x)− sin2(x)

)
dx

Solution:
∫

sin(x) cos(x)
(
cos2(x)− sin2(x)

)
dx =

1

2

∫
sin(2x) cos(2x)dx =

1

8
sin2(2x)+C

Alternatively call u = sin(x) cos(x) so that du =
(
cos2(x)− sin2(x)

)
dx and

∫
sin(x) cos(x)

(
cos2(x)− sin2(x)

)
dx =

∫
udu =

1

2
(sin(x) cos(x))2 + C

Observe that

(sin(x) cos(x))2 =
1

4
sin2(2x) =

1

4
− 1

4
cos2(2x) =

1

4
− 1

4
(cos2(x)− sin2(x))2

Since the term 1/4 can be included in the constant C this gives several different
ways to write the result.

(b) (12 points) ∫
sin(x) cos(x)dx

Solution: Call u = sin(x) so that du = cos(x)dx and

∫
sin(x) cos(x)dx =

∫
udu =

1

2
sin2(x) + C

Equivalently call u = cos(x) so that du = − sin(x)dx and

∫
sin(x) cos(x)dx = −

∫
udu = −1

2
cos2(x) + C
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3. Let F (x) be the function defined by:

F (x) =

∫ x

π
2

sin(t)

t
dt.

for x > 0.

(a) (12 points) Find where F is increasing/decreasing.

Solution: We need to find where F ′(x) ≤ 0 or ≥ 0. We have that

F ′(x) =
sin(x)

x
(1)

Since 1/x > 0 if x > 0 we have that F ′(x) ≤ 0 if x ∈ [π, 2π]∪ [3π, 4π]∪ [5π, 6π]∪
. . . and F ′(x) ≥ 0 if x ∈ (0, π]∪ [2π, 3π]∪ [4π, 5π]∪ . . . since F (x) is defined for
x > 0.

Thus we have

F (x) decreases on [π, 2π], [3π, 4π], [5π, 6π], . . .
F (x) increases on (0, π], [2π, 3π], [4π, 5π], . . .

(b) (12 points) Is it possible that F (π) > 1?

Solution: No, it is not possible. Indeed se have that, for π/2 ≤ t ≤ π:

0 ≤ sin(t)

t
≤ 1

t
≤ 2

π

so that

F (π) =

∫ π

π
2

sin(t)

t
dt ≤

(
π − π

2

)
max

t∈[π
2
,π]

sin(t)

t
≤ π

2

2

π
= 1.

Thus we have F (π) ≤ 1.
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4. Let A be the region of the plane bounded by the curves

f(x) = (x− 2)2 − 1

and

g(x) = −f(x) = −(x− 2)2 + 1

for 1 ≤ x ≤ 3.

(a) (12 points) Compute the area of A.

Solution: The area of A is given by:

Area(A) = 2

∫ 3

1

[−(x− 2)2 + 1]dx = 2

∫ 3

1

(−x2 + 4x− 3)dx =

= 2

(
−x3

3

∣∣∣
3

1
+ 4

x2

2

∣∣∣
3

1
− 3x

∣∣∣
3

1

)
=

8

3

(b) (13 points) Let S be the solid obtained by rotating A around the y axis. Compute
the volume of S. You may use any of the methods you studied.

Solution: The easiest way is to use Pappus theorem. The centroid of A is at
x̄ = 2 and ȳ = 0 since A is symmetric with respect to the lines y = 0 and x = 2.
Thus the volume is

Vol(R) = 2πx̄Area(A) =
32π

3

Alternatively you can use the shells method and get

Vol(R) = 4π

∫ 3

1

x[−(x− 2)2 + 1]dx = 2

∫ 3

1

(−x3 + 4x2 − 3x)dx =

= 4π

(
−x4

4

∣∣∣
3

1
+ 4

x3

3

∣∣∣
3

1
− 3

x2

2

∣∣∣
3

1

)
= 4π

8

3
=

32π

3
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