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For Hamiltonian systems subject to an external potential which in the presence
of a thermostat will reach a nonequilibrium stationary state Dettmann and
Morriss proved a strong conjugate pairing rule (SCPR) for pairs of Lyapunov
exponents in the case of isokinetic ( I K ) stationary states which have a given
kinetic energy. This SCPR holds for all initial phases of the system, all times t,
and all numbers of particles N. This proof was generalized by Wojtkowski and
Liverani to include hard interparticle potentials. A geometrical reformulation of
those results is presented. The present paper proves numerically, using periodic
orbits for the Lorentz gas, that SCPR cannot hold for isoenergetic ( I E ) station-
ary states which have a given total internal energy. In that case strong evidence
is obtained for CPR to hold for large N and I, where it can be conjectured that
the larger N, the smaller I will be. This suffices for statistical mechanics.
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1. INTRODUCTION

This paper consists of three parts: a statistical mechanical, a numerical and
a mathematical part. They are not equally accessible to readers interested
in the new and developing interaction between dynamical systems theory
and statistical mechanics of dissipative systems. This reflects, in our
opinion, the multidisciplinary approach involving on the one hand the
mathematical theory of dynamical systems and on the other hand the
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physical theory of dissipative macroscopic, i.e., statistical mechanical
systems. In order to make progress towards a deeper understanding of the
dynamical foundation of the statistical mechanics of dissipative macro-
scopic systems, such a combined approach seems unavoidable. However,
it leads, regrettably, to difficulties in understanding the language of the
different disciplines.

Since this paper is primarily adressed to physicists, we have written the
core of the paper in a language that should be accessible to a large portion
of them. However, an interesting mathematical unification and reformula-
tion of previous results has been obtained by one of us (C.P.). This work
is of a more mathematical nature than the rest of the paper, but so makes
a connection between mathematics and physics, in particular the mathe-
matics of symplectic spaces and the physics of thermostatted dynamical
systems. For that reason we have summarized the main results of this work
in a Discussion Remark, but reserved a sketch of the details to an
Appendix.

The modelling of dissipative macroscopic systems by dynamical
systems, i.e., by sets of equations of motion for the particles of the system,
which mimic the behavior of such systems under the influence of an exter-
nal field in a nonequilibrium stationary state, can be achieved by adding a
suitable dynamical thermostatting term to the equations of motion. In fact,
in all computer simulations the dynamical system reaches a stationary
state, by adjusting a thermostat term in the equations of motion in such a
way that the heat developed due to the work done on the system by the
external forces is removed via effective friction terms in the equations of
motion of the system. This approach has raised a lot of interest in the last
ten years. In particular in 1988, Posch and Hoover(3) found a relationship
between the average phase space contraction rate of a many particle color
diffusion system under the influence of an external color field and the work
done on the particles of the system, if the internal energy of the system in
the stationary state was kept constant (iso-energetic (IE) thermostat).
Another way of saying this is that in the stationary state the average phase
space contraction rate of the system is equal to the irreversible entropy
production rate in the system.(4) This allowed one to express transport
coefficients in terms of the sum of the Lyapunov exponents of the system
and established a direct relation between dynamical systems theory in
phase space and macroscopic physics in ordinary space. Similar relations
have been found for other dynamical systems, including those representing
viscous flow, if the stationary state is one with a fixed kinetic or internal
energy. In the case of hard core interparticle interactions, when no inter-
particle potential energy is present, iso-energetic and iso-kinetic (IK)
systems, which have constant kinetic energy, are the same. Most computer
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experiments have been carried out for the IK case and some for the IE case
as well(5,6)..

The dynamical equations describing the macroscopic systems were
solved numerically, using nonequilibrium molecular dynamics (NEMD). It
was found this way that an important simplification occurred—for example
in the computation of the transport coefficients—in that the sum of all
Lyapunov exponents, which determines the phase space contraction rate,
obeys a conjugate pairing rule (CPR) (see ref. 7). That is, the sum of every
pair of conjugate Lyapunov exponents adds up to the same (negative)
constant, which is equal in absolute value to the average phase space con-
traction rate of the system in the stationary state, which in turn was
equated to the average entropy production rate of the system. Equivalently,
one can say that the Lyapunov spectrum of the system is symmetric.

A mathematical proof of the CPR for the case of a possibly time-
dependent, i.e., non-autonomous, Hamiltonian system with a constant
friction added to the equations of motion, was given independently of the
above developments in 1988 by Dressier.(8) The system she considered in
this case was neither IK or IE.

For an IK Hamiltonian system consisting of N particles i= 1,..., N
with a Gaussian thermostat, which keeps the kinetic energy constant,(5)

one has in three dimensions (d = 3) the Hamiltonian:

where ( j > i n t ( q ) and ^>ext(q) are the potential energy due to the interactions of
the particles of the system among themselves and with the external field,
respectively, where p = (p,..., pN) and q = (q1,..., qN), pi= (pxi, pyi, pzi) and
qi = (qxi, qyi, q z i ) are three dimensional vectors, ff'(q) = d</>i n t (q) /dqi ,
fext(q) = 3ext(q)/3#(, and (•, •) represents the usual scalar product in three
dimensions. <x.1K(p, q) is the thermostatting function (or effective friction)
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with the equations of motion

where a.(p, q) = a.IK(p, q) is given by



which will be determined in such a way that the total kinetic energy of the
system remains constant in time. It is a mechanical representation of the
heat exchange via the boundaries of the system representing the thermostat
in a real system.

Dettmann and Morriss(1) recently proved a much stronger CPR than
observed in the stationary states of the computer simulations: their CPR
holds for every initial condition x0 = = ( p o , q0), at every time t and for any
number N of particles. We refer to this Dettmann and Morriss pairing as
a strong CPR (SCPR). Isolating two zero Lyapunov exponents, the
remaining 6N — 2 local Lyapunov exponents over time t for any initial state
xo =(Po, qo) and any number N of particles obey the CPR. If the local
Lyapunov exponents are ordered as A, >/2 > • • • > ^e;v-2> then adding up
the conjugate pairs A! + A6JV_2 , A2 + A6N_3,..., leads for every such pair to
a constant — <«>,, where < >, means a time average of a(p, q) over time
t: —jo a.(s) ds/t (see Section 2 sub B for a more precise definition of SCPR).

It seems natural to extend the proof of Dettmann and Morriss from
the IK to the IE case. The only difference is that a.(p, q) is not given by
y.lK(p, q} of Eq. (1.3) but by the simpler expression:
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We will call H0 the constrained part of the Hamiltonian H, i.e.

for the IK case and

for the IE case. The question then arises to what extent the Dettmann and
Morriss' proof of SCPR for the equations (1.1)-(1.3) is typical for general
dissipative dynamical equations.

The Dettmann and Morriss proof has recently been generalized by
Wojtkowski and Liverani(2) to include hard core contributions to the inter-
action potential < j > i n t ( q ) , for which V^int(q) is not defined.

The Dettmann and Morriss proof makes use of the observation that
the CPR as stated above only holds in a 2dN-2 dimensional (i.e., a 2-co-
dimensional) subspace of the full 2dN-dimensional phase space of the
dynamical system. Two zero Lyapunov exponents associated with the con-
servation of kinetic energy and with the motion along the system's phase



space trajectory have first to be eliminated, in order to allow the remaining
Lyapunov exponents to pair to a different (non-zero) value. A similar pro-
cedure, replacing the conserved kinetic by the total energy does not lead to
a SCPR, like that found by Dettmann and Morriss. In fact, computer
simulations for the Lorentz gas indicate that, in general, no SCPR can be
expected in this case. On the contrary, our computer simulations seem to
indicate that the CPR may only hold for large systems and/or long times.
The reason is not clear at the moment, but might be related to the special
form of the friction term in Eq. (1.2): -a/A:(p, q) p( which obtains both
for Gaussian and Nose-Hoover thermostats.(5) For, the IK condition,
a.IK(p,q) contains < t > i n t ( q ) in addition to <j> e x t (q) (the latter appearing
exclusively in y.jE(p,q) (cf. Eq. (1.4)). This could be responsible for the
validity of the local CPR in the IK case. In fact, computer simulations
show that the CPR continues to be obeyed to machine precision before,
during and after a collision of one moving point particle interacting via a
Weeks-Chandler-Andersen (WCA) potential (cf. Eq. (2.1), (2.2)) with one
stationary scatterer in the Lorentz gas IK case, but is violated considerably
in the IE case. Although it is unclear at present why the oi.,K(p, q) is able
to assure the CPR, the fact that it contains < t > i n t ( q ) = <j>WCA(q), the same
potential that causes the scattering, could well be relevant in this context.
On the other hand, it is very hard to see how OL,E(P, q), which only con-
tains the external potential, could physically force a CPR during a collision
governed by < / > i n t ( q ) .

Strictly speaking, when more than one moving particle is present in
the system, the proper thermostatting condition involves, in general, the
peculiar rather than the laboratory velocities, that appear in the equations
(1.1)-(1.4). Especially in the case of viscous flow it is important to identify
the relevant particle velocities and the temperature of the system with the
peculiar rather than the actual velocities of the particles, where the former
refer to the velocity of each particle relative to the average local flow
velocity of the fluid at the position of the particle (cf. Eqs. (4.1), (4.2)).
They will be used in Section 4.

Our main results can be summarized as follows.

1. For a Lorentz gas, where a single point particle moves in a regular
tetrahedral lattice of fixed spherical WCA scatterers under the influence of a
(color) field subject to a Gaussian thermostat to attain a stationary state,
very carefully controlled numerical simulations of period 3 to period 8 peri-
odic orbits, have excluded the validity of strong SCPR for an IE constraint,
while being consistent with an IK constraint (for all t and x0).

2. On the other hand both IE and the use of IK with the proper
thermostatting condition with peculiar, rather than laboratory velocities,
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for 8, 16, 32 point particles moving through WCA scatterers, strongly
suggested the validity of the CPR for sufficiently large N and possibly for
each t, with N large enough. In fact, at present it is unclear whether N -> oo
would be sufficient for the CPR to hold in general, i.e., for all t, or whether
a large t condition, i.e., t -> oo, should be imposed in addition.

The "mechanization" of the thermostats, as shown in the friction terms
~y.pi in the above equations, was developed in numerical simulations in
the beginning of the 1980's.(5) This extended to heat exchange the
"mechanization" of thermal external forces-as occur in viscous or thermal
phenomena-already introduced in linear response theory in the middle
1950's.(9) Together they form a basis for a connection between statistical
mechanical and dynamical systems. To what extent these "mechanized"
equations of motion adequately represent the real physical systems and the
application of dynamical systems theory considerations to them reflect
properties of real systems, remains, at present, an open question.

For large "mechanized" systems a number of properties of real
systems, such as the positivity of the entropy production(10) and the
Onsager reciprocal relations(11) have recently been established. For a
further discussion of this point we refer to a forthcoming paper(4)

If the generic case for the CPR to hold is large N and/or large t, then
it is in general a statistical mechanical property in a nonequilibrium
stationary state of a system, rather than a dynamical property, where it
would hold for all N and/or all t.

The outline of the paper is as follows.
In Section 2 various attempts are described to prove CPR for the IE

one particle Lorentz model, where one particle moves through scatterers
placed on a regular triangular lattice. In Section 3, very accurate controlled
numerical results for a one particle regular IE Lorentz model are presented,
which contain apparently incontrovertable evidence of a violation of the
SCPR for certain periodic orbits (see Table II), contrary to the IK Lorentz
model, as proved by Dettmann and Morriss. In Section 4, numerical
evidence for an aymptotic CPR for large N for IE and for a different
thermostat (IPK), that makes sense only for many particle systems and in
which peculiar rather than laboratory velocities appear, is presented.
Section 5 summarizes some of the results and their implications obtained
in the paper as well as a reformulation of the strong pairing rule condition.
Appendix A1 discusses the difficulties one encounters, if one tries to map an
IE system into a Hamiltonian system, like is done in ref. 12 for IK systems.
Finally Appendix A2 gives a sketch of the proof of the reformulated strong
pairing condition in a geometrical form.

592 Bonetto et al.



2. NUMERICAL RESULTS: THE LORENTZ MODEL

In this and the following sections we report the numerical simulations
we have done on the pairing problem. We focus our attention on the sim-
plest system: a periodic Lorentz model with one or more moving particles
through periodically arranged scatterers. The results on a single moving
particle are reported in this and the next section, those on many moving
particles in Section 4.

The Lorentz model we consider in this section then consists of one
particle moving in a regular tetrahedral array of scatterers. The particle
interacts with the scatterers via a Weeks-Chandler-Andersen (WCA) poten-
tial and is subject to an external field and an IK or IE thermostat. The
equations of motion are thus given by Eq. (1.2) where N = 1 and, writing
directly q, p instead of q = ( q 1 ) , p = (p1), we have <i>ex t(q) = (q, E), with E
a fixed three dimensional vector chosen to be £=(1.1,0.1,0.1), < j > i n t ( q ) =
(/>WCA(q) where < / > W C A ( q ) is the (finite range) WCA potential given by
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with

and qn the centers of the scatterers on the regular tetrahedral lattice.
This system can be considered as a model for electro-conductivity in

which the moving particle represents an electron and the scatterer
represents the ion of the metal. In the present context it is usually used as
a model for color conductivity, where the moving particle has a color
charge rather than an electrical charge,(5) so that (electrical) interactions
between particles, when more than one is present, are avoided. We fix the
units in such a way that the mass of the particle is equal to 1, its charge
is also equal to 1. The scatterers have a radius of 21/6, a distance of 2.5 and
the time the particle needs to cover a distance 1 in free space, i.e. when not
interacting with a scatterer, is 1/^/2. The last condition just means that the
constant energy (kinetic or total) of the particle is fixed to 1. From a math-
ematical point of view the scatterers are needed to introduce a strong chaos
in the system. In general no analytic results are known for this system with
respect to its ergodic or chaotic properties. The closest system for which
ergodicity and the existence and uniqueness of a limiting distribution



(SRB) for the Liouville measure has been proved is the case in which the
WCA scatterers are substituted by hard scatterers and the space dimension
is 2 (see ref. 13).

The number of degrees of freedom of the system is three. This means that
we have two zero Lyapunov exponents and only 4 non trivial Lyapunov
exponents: At> A2> A3> A4, of which At and A2 are positive, /3 and A4

negative, if E is not too large.(17,18) If we introduce the pairing error by:

A. Asymptotic Pairing

To compute the asymptotic Lyapunov exponents, we calculated the
local Lyapunov exponents for as long a time as possible, typically for
about 50,000 time units. With our units the time unit equalled the distance
unit. We use the standard algorithm(15) consisting of evolving a basic set of
unit vectors in the tangent space with the tangent flow and orthonormal-
izing them from time to time (see ref. 14 for a theoretical justification of
this algorithm). It is very hard to give a reliable error estimate on this kind
of computation. In fact there are two main sources of error:

(1) the intrinsic instability of the dynamical system due to the
presence of two positive Lyapunov exponents (quite clear from the simula-
tion) prevents us from following a trajectory of the real system for a long
time. In fact even using a very accurate integration method (we used an
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we have for a system for which CPR holds that pe = 0. This implies that we
can use pe as a measure of the discrepancy of the Lyapunov exponents
from pairing.

Strictly speaking Lyapunov exponents are defined only in the limit
when the time length of a trajectory goes to infinity. Moreover they are
only defined almost everywhere with respect to some ergodic measure.(14)

In what follows we will use the term local Lyapunov exponent to refer to
a definition of a Lyapunov exponent for a single trajectory for a finite time.
The particular definition needed will be clear from the context. We will
drop the term "local" when no confusion can arise.

In our calculations for the one particle Lorentz model, we focussed
our attention on three main points:

(A) asymptotic pairing;

(B) possibility of generalizing the DM scheme;

(C) periodic orbits (see Section 3).



adaptive step size 4th order Runge-Kutta ( R K ) integrator with an error
control of 10-11 at each time step) any truncation error will be exponen-
tially increased. The typical argument to solve this problem is to consider
the truncation error as a random perturbation and use the "shadowing
lemma" to argue that there must be a trajectory of the real system near by
the simulated one.(16) This has, in our opinion, no real mathemathical
basis. So we will proceed assuming that the Lyapunov exponents of
systems like (2.1) behave continuously with respect to small perturbation-
like truncation errors, even if we cannot prove this. We refer to ref. 17 for
further discussion.

(2) The errors introduced by the numerical round-off in the evalua-
tion of the tangent flow, in orthonormalizing the evolved basis of tangent
vectors and the impossibility to do the infinite time limit on a computer.
To deal with this we proceeded in two different ways. The first one was the
typical one (see, e.g., ref. 18) and consisted in considering as error the
variance of the computed exponent on the last part of the trajectory. The
other way was to run more than one simulation, starting from different
randomly chosen initial points. We got essentially the same results from
both these methods.

To have a clearer idea of the asymptotic values of the Lyapunov
exponents, we monitor the 6 local Lyapunov exponents as a function of
time for a single trajectory. Using the algorithm of ref. 15, we then have to
follow these 6 local Lyapunov exponents. In all cases, we observe that after
a short transient time two of them decrease to 0 quite regularly; these two
are related to the conservation of energy and the direction of motion. It is
natural to consider the remaining four Lyapunov exponents as the non
trivial and possibly pairing ones and use the first two (which we will call
the zero local Lyapunov exponents) as a check on the precision reached in
approaching the infinite time limit. In fact, only when these two zero
Lyapunov exponents, A0 and 2.^, have become approximately equal to
zero, can CPR-like behavior be expected to hold for the other four
asymptotic-like Lyapunov exponents. We ran simulations both with IK
and IE thermostats. Clearly we expect the pairing error for the system with
the IK thermostat to go to zero and this can be used as a further check of
the precision of the algorithm. The results are reported in Fig. 1.

We see that the three lines in Fig. 1 (a ) for the IK system approach
zero regularly. They can easily be described by a C/t behavior with C = 1.5
for the pairing error, C = 6.0 for the largest zero exponent A0 and C = 0 for
the smallest exponent A00. Moreover, pairing is very well satisfied, the
pairing error being always smaller than the largest zero exponent /0. All
this is clearly in good agreement with ref. 1 and reflects the fact that, if one
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Fig. 1. Behavior, as functions of time, of (a) pairing error, A0 and Ao for IK Lorentz system
(b) same for IE Lorentz system (c) maximum exponent Am a x for IK Lorentz system (d) same
for IE Lorentz system.

had used a proper Poincare section on the energy surface and the standard
definition of Lyapunov exponents (see ref. 14), one would have found an
identically vanishing pairing error. In this respect, it is interesting to
observe that the values and the fluctuations in time of the pairing error are
always much smaller than the fluctuations of the largest zero Lyapunov
exponent A0 (see Fig. 1(c)), again indicating a strong cancellation between
the exponents.
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Fig. 1. (Continued)

In the IE case (Fig. 1b and 1d) we observe again a C/t behavior for
the two zero Lyapunov exponents, with C = 6.0 and C = 0 respectively.
However, the pairing error does not show any clear behavior and strongly
fluctuates, even after a very long time. Nevertheless, it must be recognized
that its value is very small and its fluctuation is of the same order of
magnitude as its value. We think that it is very hard to decide on the basis
of these data if such a small value is a numerical artifact or a real effect,
but we think that the fact that the fluctuations of the pairing error are of
the same order of magnitude as those of the maximum Lyapunov exponent,
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Table 1. Values for Pairing Error (p.). Zero Lyapunov Exponents (A0 and A00)
and Maximum Lyapunov Exponent (Amax) for IK and IE Systems after

50,000 Time Units

IE
IK

P,

9.10-4 + 3.10-4
4.10- 5 + 1.10-5

AO

1 . l 0 - 4 + 2 .10 - 5

1 • I0-4+l1•110-5

^00

1 • I 0 - 6 ± 9 . 1 0 - 6

2.10-6 + 3.10-6

^max

1.0090±2.10- 4

1.0248 + 4.10-4

suggest that, even if pairing is obtained, it could not be SCPR in the strong
sense of ref. 1.

The results after 50,000 unit of time, with the errors computed from
the variance of the last 5,000 time units, are reported in Table I, which
summarizes the above discussions.

To double check these results we also ran a simulation with 10 dif-
ferent initial conditions, both for the IK and the IE system. The results are
given in Fig. 2(a), (b) where we show figures of the behavior of the pairing
error pe for a simulation with ten initial points, plotting the mean value of
pe over the ten points, as well as the maximum and the minimum values
observed. We also present the behavior of the maximum Lyapunov expo-
nent in Fig. 2(c), (d) to compare the error of the pairing error with that
of the maximum exponent. These results confirm the previous discussion
and the errors evaluated with this method are of the same order as those
previously reported. Namely, for the IK system the difference between the
maximum and minimum values of the pairing errors is much smaller than
those for the maximum Lyapunov exponent, while this is not the case for
the IE system. It is interesting to note that after a long time the pairing
errors for all the 10 points of the IE simulations are positive. Although not
conclusive we do think that this can be considered as strong evidence of
non pairing.

B. Generalizing the DM Scheme

In ref. 1 Dettmann and Morriss consider the flow q>, on R2d generated
by the Hamiltonian IK system (1.1)-(1.2).

The main point in the proof of strong pairing is to split off the two
zero Lyapunov exponent associated with the energy conservation and flow
direction from the other exponents and then consider the pairing of the
other Lyapunov exponents in an appropriate subspace of the full phase
space. To eliminate the exponent associated with the energy it is enough to
restrict the flow to the energy surface. To get rid of the other exponent we
can use a Poincare section like procedure (see Appendix A2, and figure
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therein, for a more detailed discussion). This means that given a trajectory,
its initial point x(0) = (p(0), q(0)), a later point x ( t ) = (p(t), q ( t ) ) and two
corresponding planes Fx(0) and Vx(r) (see Fig. 10), one passing through
x(0) and the other through x(t), both transversal (i.e., not tangent) to the
trajectory, we can consider the map <Pt induced by the flow cp, that
associates to a point r on Vx(0) the point < P t ( r ) on Vx(t) which is the first
intersection between the trajectory starting at r and the plane Vx(t). If we
properly choose a plane Vx(t) for any t, the above procedure defines a new
flow <t>, whose Lyapunov spectrum is identical to the one of qt but does
not contain the zero exponents associated with the flow direction. This is
the scheme followed in ref. 1 where it is shown that if one chooses as Vx(t)

the plane orthogonal to the vector Je0(t) with J = (°-1 '0) the usual sym-
plectic matrix and e0(t) = (p(t), 0) (we will call this choice of Vt the DM
subspace), then the eigenvalues of the matrix L'fL, are paired, where the
tangent flow L, = D<P, is the differential of <P, (see Eq. (A2.2)). From this,
the pairing of the Lyapunov exponents for cpt follows immediately. Observe
that Jeo is a vector field defined on the energy surface with no reference to
the particular trajectory. We will call any vector field g, like Je0 above,
such that the eigenvalues of LtrLt,. given by the above construction, are
paired an a-symplectic field. Observe that L, satisfies an equation of the
form:
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where T ( x ) is called the infinitesimal generator of the tangent flow L,. In
ref. 1 it is shown that the matrix Ltr,Lt has paired eigenvalues if T ( x )
satisfies J T ( x ) + T(x)' r J= -a(x)J for a suitable a(x). If this last condi-
tion is satisfied we call L, and the dynamics that generate L, a-symplectic
and T ( x ) infmitesimally a-symplectic. Moreover we will say that a system
for which such a construction is possible satisfies SCPR.

An interesting property of the Lorentz model (with not too high scat-
terer densities, as considered here) is that the particle spends a significant
part of its time in regions where no potential is present, i.e., between two
successive interactions with the scatterers. In these regions the IE system is
identical to an IK system. It is thus evident that if we consider a trajectory
for a time small enough that the particle never interacts with a scatterer,
we will find that the local exponents in the DM subspace are paired.
Here by local exponents we mean those computed as the eigenvalues of
(1/20 log L t rL,, where L, is the differential of the flow (see ref. 14). A natural
question is now that if one considers a trajectory which starts in free space,
goes through a collision and then arrives again in free space, can one find
again pairing, using the DM subspace? This question is interesting because
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if there is an a-symplectic field for the IE system, this must give pairing for
short (never colliding) trajectories as well as for long trajectories. If no
pairing occurs in the DM subspace for long trajectories with collisions, this
implies that, even if there is an a-symplectic field for the IE system, there
must be either another a-symplectic field for the IK system, (at least for
the portion of phase space outside the scatterer potentials, i.e., in

Fig. 2. Behavior of the (a) mean, maximum and minimum values of the pairing error for 10
initial conditions as a function of time for IK system (b) same for IE system (c) mean, maxi-
mum and minimum values of the maximum Lyapunov exponent for 10 initial conditions as
a function of time for IK system (d) same for IE system.
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Fig. 2. (Continued)

free space) or, alternatively, no subspace within which pairing occurs, exists
for the IE system.

It is not difficult to investigate this question numerically if we consider
only a one collision trajectory and we avoid too singular collisions. For, in
that case we have only to follow the trajectory for a short time and the
diagonalization of the differential of the flow L, can be done very
accurately so that we can achieve a precision on the local exponents of
10 - 1 2 . The result is that for the IE system after one collision there is no
more pairing in the DM subspace. The interesting point is that the pairing
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error is of the same order of magnitude as, i.e., consistent with, the one
observed asymptotically in the long time simulations of Fig. 1, discussed
sub A. We were able to go through more than one collision but not
through many, because the matrix elements of the tangent flow grow
exponentially. Nevertheless for around three collisions, one sees that the
pairing error in the DM space is always violated by more or less the same
amount, most during collisions and decreasing during free flight (cf. Fig. 3).

The question of the existence of a possibly different transversal sym-
plectic field for the IE Lorentz system is nonetheless still open but this is
clearly a question that is not easily investigated numerically. We chose
to look at a similar but in principle simpler alternative: given a point
x(0) = (p(0), q(O)) and a tangent vector w(0), at x(0) is it possible to find
a vector w(t) tangent at x(t) such that the linearized flow from the
orthogonal to w(0) to the orthogonal to w( t ) has paired local Lyapunov
exponents? This means computing the linearized flow for a time t starting
from x(0) and then looking for a solution of the equation pl,(w(t)) = 0
(where we consider the pairing error as a function of w(t)) . Observe that
this equation depends on four variables, while a unique condition is
imposed so that if a solution exists it will generically not be unique. Note
that the existence of w(0) and w(t ) for any initial point x(0) and t does not
imply that these vectors generate a vector field on the energy surface (like
is the case in the DM proof, see Appendix A2). However, this would be
enough to prove SCPR, if one also had that w( t ) does not become
orthogonal to x(t).

Fig. 3. Behavior of the pairing error as function of time during a few interactions with the
scatterers for the IK (identically 0) and IE system. The times when the particle enters and
leaves the potential of a scatterer are indicated by two differently dashed vertical lines (the
particle starts outside all scatterer potentials).



The problem with this computation is that we can handle only short
times t for the same reasons as given above, namely that the matrix
elements of the tangent flow grow exponentially with the maximum
Lyapunov exponent while we want to compute a function of them, i.e., the
minimum eigenvalue, which decreases exponentially with the minimum
Lyapunov exponent.

In our simulations we followed the trajectory for a time 10 (i.e., for 5
to 7 collisions) computing w(t) for t = n St with St = 0.1 and n = 1, 2, 3, 4,....
The initial point was chosen outside all the scattering potentials in such a
way that the choice w(0) = Je0(0) was a natural one. To obtain w(t) , we
started with JDH0 (see (1.5), (1.6), and (A2.2)) looking for a solution with
a steepest-descent method, till the pairing error changed sign and then
using bisection. Observe that in this setting the algorithm applied to the IK
system would be completely trivial. We also tried to find other solutions for
example using as an initial attempt for w(t) at t the last computed w(t — St)
at t — St. We note that this is also a possibly interesting procedure for the
IK case because the result need not be J e 0 ( t ) , as would be the case for ref. 1.

In fact, in all cases we were always able to find the vector W ( t ) . That
it was also possible for the IK system to find a w(t) different from Je0(t)
which satisfies the pairing rule (at least for a short time t) could lead to a
different scheme to prove CPR for the IK system in a possibly more
general fashion than in ref. 1. Unfortunately we were unable to prove this
and our numerical simulations were too short to give real insight into the
above question.

3. PERIODIC ORBITS

To obtain a more or less definitive result on the possibility of having
pairing for all time and all initial conditions, we decided to check the pair-
ing of the Lyapunov exponents on periodic orbits of the single particle
periodic Lorentz gas, considering that periodic orbits solve the problem of
obtaining truly asymptotic Lyapunov exponents, since the asymptotic
Lyapunov exponents on a periodic orbit are just the logarithms of the
modulus of the eigenvalues of the differential of the flow after a period,
divided by the period. However, errors are introduced in finding periodic
orbits numerically. Having a periodic orbit or an orbit we know is near
enough to a periodic orbit, will permit us to obtain a very good estimate
of the error involved in the computation of the asymptotic Lyapunov
exponents. In fact, if the period of the orbit is not too long the exponential
propagation of errors can be controlled with an accurate integration
scheme (we again used a 4th order RK with adaptive step size with error
under 10 -14). Having to diagonalize a matrix only once, these operations
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do not increase the error significantly for sufficiently short periodic orbits,
because, after a short time, the matrix elements of the differential of the
flow are not yet very large. The real problem is to find the best
approximate periodic orbits numerically and to estimate their deviations
from real periodic orbits.

To this end we ran a long time single particle trajectory and recorded
the positions of the particle when it entered in the interaction (WCA)
potential of a scatterer (we will register this as a collision). In this way we
get a long list xn of collision points and, fixing a period T, we look for all
m such that |xm — xm + r |<e for some e ( 1 0 - 2 in our experiments). We
then search for a periodic orbit near this orbit using the Newton-Raphson
method. The algorithm stops when the distance between the initial and the
Tth collision point is less than 10 - 1 2 .

Having a small distance between the initial and the final point of the
orbit does not automatically ensure that the orbit is near a periodic one.
A good check of this is to see if the application of the Newton-Raphson
method gives a quadratic convergence as should theoretically be the
case.(19) This means that iterating the method, if the error at the nth step
is e, it should be Ce2 at the (n + 1 )th step, where C is a constant linked to
the first and second derivatives of the flow. Another good check is to see
whether in the computed Lyapunov spectrum there are two 0 exponents
(which means that the spectrum of the differential of the flow must contain
two eigenvalues 1 with sufficient precision). Both these conditions were
always fulfilled in our computations: every time a periodic orbit was found,
the algorithm converged quadratically and there were always two eigen-
values with logarithms of the order of 10 -12. We think that the error on
the evaluated exponents can be conservatively estimated as less than 10 - 9 .

We found typically about 150 periodic orbits for each period ranging
from 2 to 8. For all these periods it was possible to find periodic orbits
whose exponents were not paired by an amount significativelly larger than
the expected error. We report in Table II a number of relevant quantities
we have observed for each period for the two periodic orbits with the
largest pairing errors.

These results provide a numerical proof that SCPR (see Section 1 after
Eq. (1.3) and Section 2 after (2.4)) for the one particle IE Lorentz model
cannot be true, so that no proof like that of ref. 1 is possible for this
system. In fact SCPR will imply pairing of the Lyapunov exponents with
respect to any ergodic measure for the system, so also for the ergodic
measure concentrated on the periodic orbit itself. Nevertheless we note that
this does not rule out the possibility of asymptotic pairing with respect to
the SRB measure for the system. In fact, periodic orbits are a set of
measure zero respect to the SRB measure so that also if no periodic orbit
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has paired Lyapunov exponents this does not imply that the Lyapunov
exponents for T-* oo are not paired.

We note that the behavior of periodic orbits can also lead to a better
understanding of the general behavior of the system. First, there is
apparently a large difference between the behavior of orbits with even and
odd periods (even or odd refers here to the number of collisions on an
orbit). In fact, while almost all period 3 orbits have a quite large pairing
error, those of even period have predominantly a zero pairing error (i.e.,
smaller than the precision of the algorithm and often actually evaluated as
zero). To show this effect we made histograms of the probability Pr(pe) of
finding an orbit with a pairing error pe, i.e., the number of orbits found
with that pairing error divided by the total number of orbits found. The
results are shown in Fig. 4.

Secondly, we note that the existence of many even periodic orbits with
paired Lyapunov exponents can perhaps be connected with some
generalization of the ref. 1 proof of pairing. We hope to come back to this
point in a future paper.

4. MANY-PARTICLE SYSTEMS

In the previous sections we have seen that that no SCPR holds for a
particular Hamiltonian IE system, i.e., the one particle Lorentz model. In

Table II. Pairing value -<a/£)r. Pairing Error (Eq. (2.3)) and Relative Pairing
Error" for Each Period of the 2 Periodic Orbits with the Largest Pairing Errors

Period 2

Period 3

Period 4

Period 5

Period 6

Period 7

Period 8

pairing value

-0.038903
-0.528786
-0.388106
-0.313116
-0.339775
-0.256445
-0.271768
-0.259349
-0.397877
-0.352683
-0.338662
-0.438584
-0.467454
-0.525150

pairing error

0.081320
0.005453
0.074560
0.061834
0.157961
0.144549
0.093026
0.084853
0.119123
0.097328
0.022185
0.020747
0.030299
0.020875

relative pairing error

-2.090341
-0.010312
-0.192114
-0.197480
-0.464897
-0.563666
-0.342300
-0.327179
-0.299397
-0.275963
-0.065507
-0.047305
-0.064817
-0.039751

a Ratio of the pairing error to the pairing level, i.e., of columns 2 and 1.
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Fig. 4. Distribution of the pairing error for orbits of period (a) 4 (b) 5 (c) 6 (d) 7. In
Fig. 4(a) the single point at about 0.65 means that about 65% of the periodic orbits with
period 4 have approximately zero pairing error, while in Fig. 4(b) only about 1 % of the peri-
odic orbits have a pairing error near zero. The apparently layered structure of the histograms
in Figs. 4(b), (d) is due to the relatively small intervals chosen in the histograms.

particular, the numerical results of 2 sub A. seem to establish that
even asymptotic pairing is violated. In order to investigate the effect on
pairing in the presence of more than one particle, in fact of many particles,
we looked at the same model but with more than one particle moving
among the scatterers. We considered color diffusion in an external field,
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Fig. 4. (Continued)

putting no interaction potential between the particles in order to be able to
make very long and careful simulations, as well as for other reasons that
will become clear in what follows. Observe that when a thermostat is added
to this system of non-interacting particles, the particles are no more inde-
pendent, because the thermostat (IK or IE) constraint introduces an indirect
interaction between them.

The equation of motions of this system are again (1.1)-(1.2) with
N> 1 (we will use N = 2,4, 8, 16, 32), 4 e x t (q ) = £N=1 (E, q,}, using the same
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notation as in Section 2 and <l> i n t(q) = ^=l<t>WCA(q,) with <f>WCA(q) given
by Eqs. (2.1), (2.2). The units are fixed as in Section 2 (see comments after
Eq.(2.2)).

In this setting it is possible to consider also a different kind of thermo-
stat, which we will call an isopeculiar kinetic (IPK) thermostat, which is,
in general, more physical, but has no meaning for a single particle. It con-
sists, in constraining only the peculiar (i.e., thermal) kinetic energy, i.e., the
kinetic energy with respect to the center of mass of the moving particles.
The equations of motion one then obtains are (i=1,..., N):

where fWCA(q) = ^W C A(q)/dq and

is the peculiar momentum and

The main reason to look at a many particle system is the idea that the
CPR could be valid only in the limit when the number of particles goes to
infinity, which would suffice for statistical mechanics. There are two kinds
of evidence for this point. The first is based on many numerical simula-
tions, in which the Lyapunov spectrum of a many particle system is com-
puted and a good agreement with the pairing rule is obtained, see refs. 5-7.
However, considering the small deviations observed in Section 2 and the
periodic orbit results, it seems doubtful that those simulations can really
establish pairing definitively.

A second reason arises from an analytic argument that was first
presented in ref. 7. We give here a more rigorous and extended presentation
of that argument.

Suppose we have an IE system given by a Hamiltonian of the form
Eq. (1.1), equations of motion Eq. (1.2) with thermostat Eq. (1.4). In Sec-
tion 2, sub B, following ref. 1, conditions for pairing of an IK system to
hold were tied to finding a proper subspace. As was pointed out before the
argument for choosing the proper subspace was related to the need of tak-
ing out of the spectrum the two zero eigenvalues that are always present,
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but pair to a different constant (=0) than the other Lyapunov exponents.
However, since we have been unable to find the proper CPR subspace for
the IE system, we were forced (as in the previous section) to proceed in the
full phase space, replacing, in a way, the proper subspace by the condition
that the zero Lyapunov exponents /I0~^oo must be xO in the full phase
space calculations for CPR to hold.

We can now consider the tangent flow associated with these equations
but, instead of looking at it in an appropriately chosen transversal sub-
space, like we did in Section 2, we look, in the spirit of the previous section,
at the tangent flow in the full phase space. Let us call again q>, (x ) the flow
generated by Eq. (1.2) and Lt = D(p, the tangent flow. Then L, satisfies an
equation identical to Eq. (2.4), with x = (p, q):

(we use here the same convenient notation in full phase space as we did in
the DM subspace of Section 2 for slightly different objects, because we
think that no confusion can arise). The matrix T (x ) , the infinitesimal gen-
erator of the tangent flow, has the simple form:

where TH is the infinitesimal generator of the tangent flow for the
Hamiltonian system, i.e., TH = Jd2H with J the usual symplectic matrix
and 32H the matrix of the second derivatives of H with respect to all
momenta and positions. Moreover Ip = (J

0 °), i-e., the identity on the p sub-
space and ® represents the tensor (or dyadic) product. It is easy "to see
that if we neglect the term p ® Va /£(x) the matrix T(x) = T H ( x ) — a /E(x) Ip

satisfies the relation:

where f t r ( x ) is the transpose of T ( x ) . This follows from the fact that for a
Hamiltonian system JTH(X) + Tff(x)tr J = 0 and JIf + ltrJ = J. This, in turn,
implies that if we consider the characteristic exponents(14) associated with the
matrix T(x), which we will call the mutilated spectrum of the system, they
will be paired. This follows directly, for example, from the last part of ref. 1,
or from ref. 7 and the pairing level will be exactly equal to — <a/£.>,.
Moreover for these exponents a SCPR holds. Note that the mutilated spec-
trum does not necessarily have two zero exponents. This creates a first dif-
ference between the (true) Lyapunov exponents spectrum and the (muti-
lated) characteristic exponents spectrum, but we expect that the two zero
Lyapunov exponents associated with T(X) will be converted into a couple of
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Fig. 5. Behavior of ratio fJe of the pairing error Pe and — < < x > , as a function of time, for
the IK, IE, IPK systems with (a) 2 particles; (b) IK, IE of (a) on a finer scale; (c) 8 particles;
(d) 32 particles.
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paired mutilated characteristic exponents associated with T ( X ) , one of which
is numerically found to be zero, while the other one equals twice the pairing
level — <a / / r>, (see Fig. 7 and discussion below it). The critical question is
whether the term p ® Va(x) can be neglected. Observe that

Fig. 5. ( Continued)
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If we go to the thermodynamic limit, keeping the energy per particle fixed,
we will have that, in the mean £\ pj ~ N \\pf ||, so that we can say that Vo.lE
is of the order of 1 /N. Although this makes the above procedure more
reasonable, it is mathematically not justified. A similar argument holds for
IPK thermostatted systems. In fact we have in that case:

where I? = IP + O ( 1 / N ) and Voi,PK(X) is given by slightly more complicated
expressions than Eq. (4.6), but can still be considered as being O ( 1 / N ) .

The 1/N-argument has three major problems:

(1) It is mathematically speaking not always true that daIE/dpj =
O(l/N). For, in the IE case it can happen that £ / P ] is very small or even
zero, if all the energy of the system is potential energy, so that the system
has no kinetic energy. This implies then that the first term in Eq. (4.6) can
be very large. Of course, it will nevertheless be true that for most parts of
phase space ^p] is O(N) and the volume of the region where it is small
will go to zero as the number of particle goes to infinity. This effect is not
present in the IPK system, because in the denominator of OIPK the con-
strained quantity itself then appears.

(2) If we consider the two equations

where f = T+ O(1 /N) , it is not generically true that L,= L, + O(l/N)
uniformly in t. In fact we will typically have that

for some f(t). The point is then to control the growth o f ( t ) , but this is,
generically, very hard.

(3) Even assuming that we could prove (4.8), it is easy to give an
example of matrices of the form LN = LN + (1 /N) PN in which the spectrum
of LN is completely different from that of LN. Let LN be a Jordan block
with eigenvalue a. That is ( L N ) i ,i = a, ( L N ) i , i + 1 = 1, while all other matrix
elements are zero. Let ( P N ) N , 1 = 1 while all other matrix elements of PN are
zero. It is easy to see that the spectrum of LN consists then only of the
point a counted with multiplicity N, while that of LN converges to the
circle in the complex plane of radius 1 with center at a, when N goes to
infinity. This is clearly connected with the existence of many degenerate
eigenvalues, but it is not clear that a hypothesis of non degeneracy would
be enough to give convergence of the spectrum of LN to that of LN.
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Since we were not able to decide analytically the above points, which
are well known difficulties if one tries to prove continuity of characteristic
exponents with respect to perturbations, we checked the behavior of the
Lyapunov exponents as a function of N numerically. We did simulations
for N = 2, 4, 8, 16 and 32 Lorentz point particles. In this case it became not
feasible to run simulations for 10 different initial conditions, because the 16
and 32 particle simulations already needed two weeks of CPU time. So we
computed errors by only looking at the fluctuations in the last part of the
trajectory (see Section 2) and we always ran analogous simulations for the
IK model to check the precision of the program. Moreover the lengths of
the simulations were necessarily shorter than those used for the single par-
ticle system. Observe that, for the IE system, because of the absence of
interactions among the particles, if we neglect the term containing the
derivatives of a, the matrix f splits into a block matrix consisting of N
blocks of dimension 6 x 6 on the principal diagonal of the matrix. This,
assuming ergodicity, implies that the mutilated spectrum for this system
consists of only 6 different characteristic exponents, each of which is N
times degenerate. This allows a very easy check on the convergence of the
spectra of the characteristic exponents associated with T, as N goes to
infinity.

Fig. 5 shows the behavior of the pairing error as a function of time,
each graph reporting the observed pairing error for the IK, IE, IPK systems

Fig. 6. Ratio IIe of the pairing error Pe and - <x> , as a function of the number of particles
for the IK, IE, IPK systems. The IK values provide an estimate of the computer program
accuracy, since they should vanish.
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at a fixed number of particles. To make the comparison more informative
we decided to plot the behavior of the ratio IIe between the pairing error
Pe and — <«>, , i.e., the value at which the exponents would pair if pairing
were to occur. Observe that in this situation the number of pairs is no more
2, as it was in the one particle system. Therefore, we adopted as a definition
of pairing error the variance of the values observed, i.e., calling mi = /l,+
*-6N-1-i We Set

Fig. 7. Comparison of the Lyapunov spectrum /I, of an IE system with the spectrum of
characteristic exponents associated with T, defined above Eq. (4.5), for (a) 4 particles; (b) 8
particles; (c) 16 particles; (d) 32 particles.
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where the summations over i go from 1 to 3N — 1. Observe that the
behavior in time of the pairing error for the IE and IPK systems becomes
more and more regular and similar to that of the IK system as the number
of particles increases. In Section 2 we argued that the smooth behavior of
the pairing error of the form C/t for the IK system can be deduced from the
existence of strong cancellations leading to a proof of SCPR. This suggests

Fig. 7. (Continued)
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that a form of SCPR could hold when the number of particles goes to
infinity or, at least, that the local Lyapunov exponents in a proper sub-
space will pair faster and faster in time.

In Fig. 6 we report the values after 5,000 time units for IIe of the three
systems as a function of the number of particles N.

We see that the pairing error for the IK, IE and the IPK systems is
a decreasing function of N. Moreover the final value of the last two systems
gets closer to the final value obtained for the IK system, where we know

Fig. 8. Comparison of the Lyapunov spectrum A, of an IPK system with the spectrum
of characteristic exponents associated with T with o.,PK instead of o.IE for (a) 4 particles;
(b) 8 particles; (c) 16 particles; (d) 32 particles.



Validity of Conjugate Pairing Rule for Lyapunov Exponents 617

that the exponents should be paired. Thus it appears that our simulations
are consistent with pairing for the IE system in the thermodynamic limit.

Finally, as noted before, the characteristic exponents associated with
the matrix T have a particularly simple structure and are quite easy to
evaluate. So we checked to what extent the Lyapunov spectrum converges
to this simple spectrum. Figure 7 reports the results for the IE system while
Fig. 8 reports those for the IPK system. Note that in these figures only
3N—1 pairs of exponents are shown, because one pair can be easily
deduced, i.e., it is a pair of zero exponents for the Lyapunov spectrum,

Fig. 8. (Continued)
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while it is identical to the (3N— 1 )th for the mutilated spectrum. Moreover,
one would expect in general that the IE system and the IK system would
become more and more similar as the number of particles goes to infinity.
This is indeed seen in Fig. 9. Note that this argument does not apply to the
IPK case. In fact this thermostat has a different and more physical nature
in that the velocity of the center of mass is not constrained and only the
energy with respect to the center of mass is fixed, so that we cannot expect
any equivalence between the IE or IK systems and the IPK system.

Fig. 9. Comparison of the Lyapunov sprectrum /I, of an IE system with that of an IK system
for (a) 4 particles; (b) 8 particles; (c) 16 particles; (d) 32 particles.
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Both Figs. 7 and 8 show a weak similarity of the spectrum associated
with the matrix T and the real Lyapunov spectrum. However, the two spec-
tra do not seem to converge to each other for N-* oo. The spectra of both
models could in principle both split for N-> oo into six straight segments,
an indication of which is visible in Fig. 7, at two thirds of the Lyapunov
spectrum. Since it is rather unlikely that the spectrum associated with T
will become discontinuous when N-> oo, it seems much more likely that
the discontinuous spectrum associated with T will become continuous, if
direct interactions between the particles are introduced. It is interesting to

Fig. 9. (Continued)
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note that the two systems appear to pair to the same value and it is almost
impossible to see from the figures whether the exponents are exactly paired
or not. The observed pairing error of the Lyapunov spectrum is so small
that any deviation of pairing could well be due to numerical errors or to
too short a simulation time. The same cannot be said of the spectra them-
selves.

Finally we discuss Fig. 9. A generalization of the idea of the equiv-
alence of ensembles for large N, discussed formally in a different context by
a number of authors,(20) makes it quite reasonable to surmise that the IE
and IK systems should become equivalent for sufficiently large N. This is
quite consistent with our computations. We see that the mean phase space
contraction rate — <<x>, is the same for the two thermostatted system,
while the two spectra agree very well for the larger exponents, differing
only slightly for the smaller exponents, in the latter parts of the spectra.

5. DISCUSSION

1. One of the main results of this paper is the numerical proof of the
non validity of SCPR for a one particle Lorentz gas. This is obtained
through a careful evaluation of periodic orbits, meticulously keeping track
of the computational errors. In fact, Lyapunov exponents for periodic
orbits can be computed with very high accuracy if the periodic orbit is not
too long. The existence of periodic orbits that do not satisfy the pairing
rule shows that SCPR is not valid. We also note that periodic orbits form
a set of measure zero. This implies that no conclusion as to asymptotic
pairing of non-periodic trajectories can be drawn from the above observa-
tions. Nevertheless the violation of pairing in periodic orbits is consistent
with the results of the very long simulations for non-periodic trajectories of
Section 2, used to compute asymptotic Lyapunov exponents. Also these
simulations showed deviations from pairing for the IE systems, but the
deviations were too small to identify clearly a real effect, because of the
numerical errors always associated with this kind of simulations.

2. We have also tried to generalize the DM scheme for proving
strong pairing. This lead to a reformulation of the proofs in refs. 1, 2, and
8 by one of us (C.P.). With reference to the discussion and notation of Sec-
tion 2 sub B, we call a vector field g for the flow (p, defined on the energy
surface oc-symplectic if the eigenvalues of LJ r(x) Lt(X) are paired, where L,
is the linearized flow for the trajectory starting at x. Then it was possible
to give a necessary and sufficient condition on g to be a-symplectic directly
in terms of the equations of motion. More precisely, calling Vx the plane
orthogonal to g(x) in the point x and T(X) = (d/dt) Lt(x)|,=0, this implies
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that there must exist a function <x(x), such that the matrix M(x) = JT(\) +
T t r(X)J satisfies:

for any vectors w, w' e Vx. For more details we refer to Appendix A2.

3. To test the idea that for a large number of particles (i.e., in the
thermodynamic limit) the IK and IE thermostats should give identical
results we have done a number of simulations on a number of many par-
ticle Lorentz gases. The necessity to evaluate the full Lyapunov spectrum
with high accuracy made it necessary to use high order integration
methods leading to the impossibility of using a number of particles in
excess of 32. In this setting we have considered also a different kind of
thermostat (IPK) in which only the kinetic energy respect to the center of
mass of the moving particles is constrained. The results of the simulations
seem to be in good agreement with the hypothesis that pairing should hold
(possibly in a strong sense) for IE and IPK systems in the thermodynamic
limit. This hypothesis was first used heuristically in ref. 7. However, as
shown in Section 4, it cannot easily be converted into a proof of CPR.
Nevertheless, the numerical results obtained here are consistent with this
hypothesis, thus suggesting an interesting property of large thermostatted
Hamiltonian systems.

APPENDIX

A1. Hamiltonian Equivalence

In ref. 12 it was shown that an IK system for a given value of the
energy can be mapped into a Hamiltonian system on an energy surface by
a proper time rescaling and redefinition of the momenta. More generally it
was shown in ref. 2 that any a-symplectic dynamics can be mapped into a
symplectic one (a = 0) one. In ref. 12 there is no explicit derivation of the
proper rescaling, but it is quite easy to derive this starting from a
Hamiltonian system. We note that if such a transformation to a
Hamiltonian system can be found for an IE system, this will quite easily
lead to a proof of SCPR. Moreover we believe that, if SCPR holds for an
IE system, some kind of mapping into a Hamiltonian system should be
possible.(19) To be general enough we consider a Hamiltonian H of the
form Eq. (1.1) with equations of motion given by Eqs. (1.2), (1.4).

We now try to find a function t (A) of some new time variable /. such
that (1/2) X, q'i(tW)2 + < l > i n t ( q ) = £ for some constant S representing the new
fixed internal energy. Here the prime represents the derivative with respect
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to A, i.e., q'i(t(h)) = d ( } / ( t ( A . ) ) / d / This leads, if we restrict ourself to the
H=E energy surface, to:

Defining n = t'(X) p(t(W) we get

where

It is now easy to see that if we set ( j > i n t ( q ) = 0 we obtain:

which is exactly the inverse transformation of the one in ref. 12.
The system (A1.2) looks very much like an IE system. The only

problem is that the force F e x t ( q ) is not a gradient unless <j> e x t (q) is a mul-
tiple of < /> i n t (q ) . ( 2 1 ) This shows that it is, in general, not possible to map an
IE system into a Hamiltonian system, at least using the simple mappings
discussed here.

A2. A Geometric Condition for Strong Pairing

In general, for the thermostatted systems we are considering, the
Lyapunov spectrum contains two zero exponents, one due to the presence
of a constant of the motion (kinetic energy for IK, internal energy for IE
and peculiar kinetic energy for IPK) and the other due to the motion in
the time direction. To see whether the other Lyapunov exponents pair to a
non zero value, one has to conceive a well defined procedure to split off the
two zero exponents from the spectrum. This is done in ref. 1 by a Poincare
section like procedure. We want to give here a general version of this
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procedure, leading to an explicit algebraic condition on the differential of
the flow for having strongly paired Lyapunov exponents.

As a general setting we consider the phase space of our system as
being a 2n — 1 sub-manifold E of R2n (the full (p, q) phase space) for some
integer n defined by a particular level set of the constant of the motion (i.e.,
the set of points on which the constant of motion takes a given value). The
flow itself, denoted by <pt, is generated by a vector field v, so that (Fig. 10):

for x e E.
We will also consider in R2n the standard symplectic matrix J =

( °-1 0), already defined in Section 2, where I is the n x n identity matrix. It
seems natural to introduce J considering that, both in the Hamiltonian and
in the IK case pairing comes from symplectic properties of the flow </>,. In
general, we can consider E as a 2n — 1 submanifold of some more general
symplectic manifold M but we will consider only the case M = R2n with the
symplectic structure given by J.

We now apply this to the pairing property. The Lyapunov spectrum
of the flow (/>t, with (p defined only on E, does not contain the zero expo-
nent due to the imposed constant of the motion. To eliminate also the
second zero exponent in the time direction we proceed as follows, following
ref. 1. At any point x e E we consider a hyperplane Vx of R2n at x and
uniformely transversal to vx, i.e., the angle between Vx and vx is every-
where bounded away from 0. The intersection between Vx and E defines a
(2n —2)-dimensional submanifold Qx whose tangent space Ex is just the
intersection between the tangent space of E at x, TXE, and Vx (here and
in what follows we will identify R2n with its tangent space at any point, so
that Tx Vx = Vx). Observe that the family Vx can be defined as the family
of hyperplanes orthogonal to a vector field gx on E (in general gx need not
be in TXE, it can be in R2n, but in what follows we will always consider
gxe Tx£). The family Vx will allow us to define a new flow, <Pt, whose
Lyapunov spectrum will not contain the second zero exponent as well.

Given now a point x(0)e.T and its time evolved point X ( t ) = q(X(O))
after a given time t, we can define a new map 0, from a neighborhood of
x(0) in £2X(0) to £2x(r) as follows. Given a point x'(0)e£2x(0) close enough
to x(0), we consider the time r(x'(0), t) at wich the trajectory starting from
x'(0) intersects i2x(0. Here and in the following we suppress the depen-
dence on x(0). Setting then 0,(x'(0)) = <p r (xmr)(x'(0)) it is clear that <t>,(X)
can be considered as a new flow and that its Lyapunov spectrum, i.e., the
eigenvalues of A = lim t_ 00( 1/2t) log D<f>'t

r D&,, are identical to those of q>,
at x(0), except that they do not contain the two zero exponents. Here
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Fig. 10. Schematic representation of the construction of the flow <£,. Here x( t ) = <p,(x(0)),
x'(t) = <?/(X'(0)) and X'(T) = <£,(x'(0))e{2x(0. The other symbols are explained in the text.

D0,: Vx(0). -> Vx(t) is the differential of <P, and is given in local coordinates
by:

Oberve that, calling L, = D<Pt, we have L, = T ( X ( t ) ) L, where T(X) is
a matrix uniquely defined at every point x of L, independently of x(0), con-
trary to <ft and L,. In fact we have at t = <j>:

so that, for w € E^ one has, after straightforward algebraic manipulations:

where DT is the differential of i with respect to x.
Noting that (d/dt)(D(p,) = (Dv)(D<pt) we obtain:



Validity of Conjugate Pairing Rule for Lyapunov Exponents 625

It is now easy to show that (dDr/dt) = b + b with

and b || g. Moreover the component of the vector b along Vx is unique.
Thus Eq. (A2.5) can be written as:

where we£x and b is given by Eq. (A2.6).
It is known, see ref. 1 for a simple proof, that if for any w, w' e £XQ

where fi, = e x p ( f ' 0 a . ( x ( T ) ) dr) for some function <x(x) defined on Z, then if
X is in the spectrum of A, = LtrLt, so is nz/L This immediately implies that
if lim,_ „( 1/2?) log A, exists then its eigenvalues are strongly paired in the
sense of Section 1. Moreover, for any ergodic measure for (/>, the Lyapunov
exponents of <p, are paired. Observe that in order to give meaning to
Eq. (A2.8) we need that Vx is a symplectic plane, i.e., JVX = Vx. To achieve
this we must set g = Jn where n is the normal vector to Z at x. We will say
that L, is a-symplectic if Eq. (A2.8) holds. Moreover we will say that the
flow y>, is a-symplectic if for any x0 and for any t the matrix L, is a-sym-
plectic. We can now state the result.

Theorem A2.1. The flow q>, is a-symplectic if and only if for any
x e Z and for all w, w' e EK the skew symmetric matrix M = JT+ TtrJ
satisfies:

where a: Z -> R is a suitable function and T is given by Eq. (A2.7).

Eq. (A2.9) follows immediately by differentiating Eq. (A2.8) with
respect to t.

Theorem A2.1 provides a well defined algebraic condition that can be
easily checked in cases of interest. In fact, straightforward computation
shows that it is indeed satisfied in the case of the IK dynamics studied by
Dettmann and Morris in ref. 1 as well as in the case of constant a, studied
by Dressier in ref. 8.
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