
Journal of Mathematical Economics 84 (2019) 207–224

Contents lists available at ScienceDirect

Journal ofMathematical Economics

journal homepage: www.elsevier.com/locate/jmateco

A dynamic analysis of nash equilibria in searchmodels with fiat
money✩

Federico Bonetto a, Maurizio Iacopetta b,c,∗

a School of Mathematics, Georgia Tech, United States of America
b SKEMA Business School, Université Côte d’Azur (GREDEG), France
c OFCE, Sciences Po Paris, France

a r t i c l e i n f o

Article history:
Received 2 January 2019
Received in revised form 16 April 2019
Accepted 3 August 2019
Available online 29 August 2019

Keywords:
Acceptability of money
Perron
Search

a b s t r a c t

We analyze the rise in the acceptability fiat money in a Kiyotaki–Wright economy by developing
a method that can determine dynamic Nash equilibria for a class of search models with genuine
heterogeneous agents. We also address open issues regarding the stability properties of pure strategy
equilibria and the presence of multiple equilibria, numerical experiments illustrate the liquidity
conditions that favor the transition from partial to full acceptance of fiat money, and the effects of
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1. Introduction

One central question of monetary economics is how an object
that does not bring utility per se becomes accepted as a means
of payment. It is well understood that the emergence of money
depends on both trust and coordination of beliefs. While some
recognize this observation and simply assume that money is
part of the economic system, others have tried to explain the
acceptance of money as the result of individuals’ interactions
in trade and production activities.1 Among the best-known at-
tempts to formalize the emergence of money in decentralized
exchanges is Kiyotaki and Wright (1989, henceforth, KW). The
static analysis in KW provides important insights on how the
specialization in production, the technology of matching, and
the cost of holding commodities condition the emergence of
monetary equilibria. Nevertheless, important issues are yet to be
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1 Economic textbooks sometimes warn readers that the acceptance of fiat

money cannot be taken for granted. For instance, Mankiw (2006, pp. 644–45),
observed that in Moscow in the late 1980s, when the Soviet Union was breaking
up, some preferred cigarettes to rubles as means of payment.

resolved. First, one would like to know if and how convergence to
a particular long run equilibrium occurs from an arbitrary initial
state of the economy. Historical accounts describe the different
patterns that societies have followed in adopting objects as a
means of payment.2 What are the dynamic conditions that lead
individuals in a KW economy to accept either commodity or fiat
money? Second, static analysis gives little guidance about the
short run consequences of a shock that causes, for instance, a
sudden rise in inflation. How does the degree of acceptability of
commodity and fiat money change with inflation?

The determination of dynamic equilibria in a KW environment
is challenging. In an effort to improve its tractability, new classes
of monetary search models have been proposed. These have in-
corporated some features of centralized exchanges but have also
eliminated others, most notably the genuine heterogeneity across
individuals and goods, and the storability of goods (see Lagos et al.
(2017), for a recent review). Restoring these features turns out
to be a useful exercise for characterizing the rise of money as a
dynamic phenomenon.

The study of money acceptance in a KW environment requires
a departure from the conventional set of tools employed to char-
acterize the dynamics of an economy with centralized markets.
Our method combines Nash’s (1950) definition of equilibrium
with Perron’s iterative approach to prove the stable manifold
theorem (see, among others, Robinson (1995)). This is the first
work, to our knowledge, that shows how to determine pure strat-
egy dynamic Nash equilibria in a KW search environment with

2 For a classic review of the rise of early means of payments see Quig-
gin (1949). For the institutional and historical conditions that favored the
dissemination of fiat money see Goetzmann (2016).
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fiat money. Previous works on the subject considered economies
without fiat money, and often assumed bounded rationality.3
An exception is Iacopetta (2019) that also studies dynamic Nash
equilibria in a KW environment, but does not consider fiat money.
The work presented here extends the KW environment of Ia-
copetta (2019) in that it introduces fiat money and also considers
seignorage (Li, 1994, 1995). In the present environment it is
possible to explicitly address how the distribution of individuals’
characteristics affects the emergence of a partial or full monetary
equilibrium.

Steady-state results echo those of the inventory-theoretic
models of money (e.g., Baumol (1952), Tobin (1956), and Jo-
vanovic (1982)). For instance, higher levels of seigniorage may
induce some to keep commodities in the inventory instead of
accepting money, as a way to minimize the odds of being hit by
seignorage tax. The dynamic analysis, however, generates novel
results: it shows how changes in the liquidity of assets other than
money can alter the proportion of individuals who accept fiat
money in transactions. For instance, it reveals that an economy
that converges to a long run equilibrium in which all prefer
fiat money to all types of commodities (full acceptance) may go
through a phase in which only a fraction of individuals do so
(partial acceptance).4

The remainder of the paper is organized as follows: Section 2
describes the economic environment, characterizes the evolu-
tion of the distribution of inventories and money and defines a
Nash equilibrium. Section 3 overviews steady-state Nash equi-
libria for some specifications of the model. Section 4 presents a
methodology to determine Nash equilibria. Section 5 illustrates
the acceptability of money and discusses multiple steady states
through numerical experiments. Section 6 contains welfare con-
siderations. Section 7 comments on future research. Appendix A
contains proofs and mathematical details that are omitted in the
main text. Appendix B explains how the stable manifold theorem
is related to our solution algorithm.

2. The model

This section describes the economic environment, character-
izes the evolution of the distribution of inventories and money
and defines a Nash equilibrium.

2.1. The environment

The model economy is a generalization of that described in
KW. There are four main differences. First, to facilitate the anal-
ysis of the dynamics, time is continuous. Second, the model is
extended to deal with seignorage, following the approach devised
by Li (1994, 1995): government agents randomly confiscate bal-
ances from money holders and use the proceedings to purchase
commodities. Third, as described in Wright (1995) agents are not
necessarily equally divided among the three types. Fourth, similar
to Lagos et al. (2017), we obtain the type of equilibria that emerge

3 See, for instance, the works of Marimon et al. (1990) and Başçi (1999)
with intelligent agents, and of Brown (1996) and Duffy and Ochs (1999, 2002)
with controlled laboratory experiments. Matsuyama et al. (1993), Wright (1995),
Luo (1999) and Sethi (1999) use evolutionary dynamics. Kehoe et al. (1993)
show that mixed strategy equilibria could generate cycles, sunspots, and other
non-Markovian equilibria. Renero (1998), however, proves that it is impossible
to find an initial condition from which an equilibrium pattern converges to a
mixed strategy, steady-state equilibrium. Oberfield and Trachter (2012) find that,
in a symmetric environment, as the frequency of search increases, cycles and
multiplicity in mixed strategy tend to disappear.
4 Shevchenko and Wright (2004) also study partial acceptability in pure

strategies. They focus, however, on steady-state analysis.

in the Model B of KW by reshuffling the order of the storage costs
across the three types of goods, rather than altering the patterns
of specialization in production.

The economy is populated by three types of infinitely-lived
agents; there are Ni individuals of type i, with i = 1, 2, 3, where
Ni is a very large number. The total size of the population is
N = N1 + N2 + N3 and the fraction of each type is denoted with
θi =

Ni
N . A type i agent consumes only good i and can produce

only good i + 1 (modulo 3). Production occurs immediately after
consumption. Agent i’s instantaneous utility from consuming a
unit of good i and the disutility of producing good i + 1 are
denoted by Ui and Di, respectively, with Ui > Di > 0, and their
difference with ui = Ui − Di. The storage cost of good i is ci,
measured in units of utility.5 In addition to the three types of
commodity, there is a fourth object, called money and denoted by
m, which does not bring utility per se: it only serves as a means
of transaction. Fiat money is indivisible. Denoting with M the
fraction of the population holding fiat money, the total quantity
of fiat money is Q = NM . There is no cost for storing money. At
each instant in time, an individual can hold one and only one unit
of any type i good or one unit of money.6

The discount rate is denoted by ρ > 0. A pair of agents is
randomly and uniformly chosen from the population to meet for
a possible trade. The matching process is governed by a Poisson
process with exogenous arrival rate αN

2 , where α > 0, i.e., there
is a constant return to scale matching technology. Hence, after
a pair is formed, the expected waiting time for the next pair
to be formed is 2

αN . A bilateral trade occurs if, and only if, it
is mutually agreeable. Agent i always accepts good i but never
holds it because, provided that ui is sufficiently large, there is
immediate consumption (see KW, Lemma 1, p. 933). Therefore,
agent i enters the market with either one unit of good i + 1, or
i + 2, or with one unit of m.

We introduce seignorage following Li (1994, 1995): The gov-
ernment extracts seignorage revenue from money holders in the
form of a money tax — this device has been used by many others,
including in the recent work of Deviatov and Wallace (2014). In
particular, government agents meet and confiscate money from
money holders. The arrival rate of a government agent for a
money holder is δm. As described in Li (1995), this arrival rate
is independent from the matching rate α — government agents
are not counted as part of the N traders. A rise in δm can be
interpreted as the result of an increase of the government agents’
confiscation effort. A money holder of type i, whose unit of money
is confiscated, returns to the state of production without con-
sumption, produces a new commodity i+1, and incurs a disutility
Di. With the proceedings of the tax revenue, the government
purchases goods from commodity holders. These encounters are
governed by a Poisson process with arrival rate δg . The govern-
ment runs, on average, a balanced budget. This requires that
δmM = δg (1−M), implying that δg =

δmM
1−M . We allow the govern-

ment to alter the rate of seignorage δm, but, in order to simplify
the dynamic analysis, the government does not change the real
balances in circulation, i.e., the initial level of fiat money is given
and does not change over time. We will compare, however, steady
state equilibria of economies with different levels of M .

5 There is no restriction on the sign of ci . A negative storage cost is equivalent
to a positive return.
6 The assumption that an individual can have either 0 or 1 unit of an asset

greatly simplifies the analysis and makes the decision about the acceptance of
money more transparent. There has been a significant amount of previous work
on asset-holding restrictions. See, among others, Diamond (1982), Rubinstein
and Wolinsky (1987), Cavalcanti and Wallace (1999), and Duffie et al. (2005).
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2.2. Distribution of commodities and fiat money

Let pi,j(t) denote the proportion of type i agents that hold good
j at time t . A type i with good j has to decide during a meeting
whether to trade j for k, where j, k = i+1, i+2, or m (henceforth
we no longer mention the ranges of the indices i, j and k, unless
necessary to prevent confusion). Agent i’s decision in favor of
trading j for k is denoted by sij,k = 1, and that against it by
sij,k = 0. The evolution of pi,j, for a given set of strategies, sij,k(t), is
governed by a system of differential equations7 (the time index
is dropped):

ṗi,i+1 =α

{∑
i′

∑
k

pi,kpi′,i+1sik,i+1s
i′
i+1,k +

∑
i′

pi,kpi′,isi
′

i,k

−

∑
i′

∑
k

pi,i+1pi′,ksii+1,ks
i′
k,i+1

}
+δmpi,m − δgpi,i+1 (1)

ṗi,i+2 =α

{∑
i′

∑
k

pi,kpi′,i+2sik,i+2s
i′
i+2,k −

∑
i′

∑
k

pi,i+2pi′,ksii+2,k

× si
′

k,i+2

}
− δgpi,i+2 (2)

ṗi,m =α

{∑
i′

∑
k

pi,kpi′,msik,ms
i′
m,k −

∑
i′

∑
k

pi,mpi′,ksim,ks
i′
k,m

}
−δmpi,m + δg (pi,i+1 + pi,i+2). (3)

Focusing on the top equation (ṗi,i+1), the first two sums inside the
brackets, starting from the left, account for events that lead to an
increase in the share of individuals i with i + 1. Specifically, the
term pi,kpi′,i+1 is the probability that a type i with good k meets a
type i′ with good i+1, and sik,i+1s

i′
i+1,k calculates their willingness

to swap goods: if they both agree to trade, sik,i+1s
i′
i+1,k = 1; if one

of the two does not, sik,i+1s
i′
i+1,k = 0. The term pi,kpi′,i considers

the residual case in which type i with good k meets a type i′ with
good i. Because type i always accepts good i, trade take places as
long as si

′

i,k = 1. The third sum accounts for events that cause a
decline in pi,i+1. Finally, the last two terms, δmpi,m and δgpi,i+1,
measure the overall amount of fiat money that the government
confiscates from money holders (pi,m) and the amount of goods
i+1 it buys from type i agents — δm and δg are the government’s
Poisson rates of intervention.

The extended form of Eqs. (1)–(3) consists of nine non-
autonomous non-linear differential equations in the nine un-
knowns pi,j(t), for i = 1, 2, 3, and j = i + 1, i + 2, m (they
are non-autonomous equations because sij,k(t) depends on t).
Nevertheless, because pi,i(t) = 0,

pi,i+1(t) + pi,i+2(t) + pi,m(t) = θi. (4)

Another restriction comes from the following accounting rela-
tionship:

p1,m(t) + p2,m(t) + p3,m(t) = M. (5)

Therefore, in (1)–(3), there are only five independent equations,
and the state of the economy can be represented by the five-
dimensional vector p(t) = (p1,2(t), p2,3(t), p3,1(t), p1,m(t), p2,m(t)).

7 We assume that the influence of any particular individual on the system
is negligible. Eqs. (1)–(3) should be interpreted as the limit of the stochastic
evolution of the inventories of an economy with a finite number of agents. See
Araujo (2004) and Araujo et al. (2012) for a discussion of the system properties
of similar economies with a finite number of agents.

Let Ω be the set of pij,k(t) that satisfies (4) and (5). For any
sets of strategies sij,k(t), the solution of (1)–(3) maps Ω into
itself. Because Ω is compact and convex, the system (1)–(3)
admits at least one fixed point for any constant sets of strategies
sij,k. Proposition 3 shows that in the simple scenario with no
fiat money (M = 0), the fixed point is unique and globally
attractive. Section 5 studies the uniqueness and global attrac-
tiveness of the fixed point numerically for an economy with fiat
money.

2.3. Value functions

The system of equations (1)–(3) specifies the evolution of the
economy for a given set of strategies sij,k(t). We turn now to the
individuals’ decisions about trading strategies. The strategies of a
particular agent of type i, ai are denoted with σ i

j,k(t). This agent
takes for given the strategies of the rest of the population, sij,k(t),
including agents of her own type, and knows the initial state p(0).
Let Vi,j(t) be the integrated expected discounted flow of utility
from time t onward of this particular agent ai with good j at time
t . Then,

Vi,j(t) =

∫
∞

t
e−ρ(τ−t)

∑
l

π i
l,j(τ , t)vi,l(p(τ ))dτ , (6)

where π i
l,j(τ , t) is the probability that ai, who carries good j at

time t and plays strategy σ i
j,k(t), holds good l at time τ ≥ t , and

vi,l(p) is ai’s flow of utility, net of storage costs, associated to the
distribution of holdings p. Observe that π i

l,j(τ , t) and vi,l(p) both
depend on what other individuals do, that is, they are affected by
si

′

j′,k′ (τ ), σ i
j′,k′ (τ ) — where i′ = 1, 2, 3, and j′, k′

= i + 1, i + 2,m.
Because ρ > 0 and vi,l(p) is bounded, the integral in (6) is
well defined for any sij,k(t) and any p(t). Appendix A contains the
expression of vi,l(p) and the evolution of π i

l,j(τ , t). It also shows
the following result about the evolution of Vi,j(t).

Proposition 1. The evolution of Vi,j in (6) satisfies (time index is
dropped):

(α + δk + ρ)Vi,j = V̇i,j + φi,j, (7)

where δk = δg and

φi,j =α

⎧⎨⎩∑
i′

∑
k̸=i

pi′,kσ i
j,ks

i′
k,jVi,k +

∑
i′

pi′,isi
′

i,j(Vi,i+1 + ui)

+

∑
i′,k

pi′,k(1 − σ i
j,ks

i′
k,j)Vi,j

⎫⎬⎭
+δgVi,m − cj, (8)

when j = i + 1 or i + 2, and δk = δm and

φi,m =α

⎧⎨⎩∑
i′

∑
k̸=i

pi′,kσ i
m,ks

i′
k,mVi,k +

∑
i′

pi′,isi
′

i,m(Vi,i+1 + ui)

+

∑
i′,k

pi′,k(1 − σ i
m,ks

i′
k,m)Vi,m

⎫⎬⎭
+δm(Vi,i+1 − Di), (9)

when j = m.

Proof. See Appendix A. ■
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The first sum in (8), counting from the left, is the expected
flow of utility of agent ai with good j conditional on meeting an
agent i′ who carries a good k ̸= i. Such a meeting occurs with
probability pi′,k, and trade follows if σ i

k,js
i′
j,k = 1. In such a case,

ai leaves the meeting with good k (i.e., with continuation value
Vi,k). Similarly, the second sum accounts for ai’s expected flow
of utility, conditional on meeting an agent i′ who carries good
i. The last sum refers to meetings in which no trade occurs, in
which case ai is left with good j. The term δgVi,m is the expected
continuation value for meeting government agents who buy ai’s
good j using fiat money, and cj is the cost of storage. Because the
term δgVi,m appears in (8) for both j = i+1 and j = i+2, the level
of the seignorage does not directly affect the optimal response
σ i
k,j(t) — it may do so only indirectly through p(t).

2.4. Best response and Nash equilibrium

Agent ai’s best response to the set of strategies of the other
agents, sij,k(t), is a set of strategy σ i

j,k(t) that maximizes her ex-
pected flow of utility in (6):

Vi,j

(
t,
{
σ i
k,l(τ )

}
k,l=i+1,i+2,m

τ>t

)
= sup

σ̃ i
k,j

Vi,j

(
t,
{
σ̃ i
k,l(τ )

}
k,l=i+1,i+2,m

τ>t

)
,

for ∀t and ∀j. (10)

A useful characterization of the best response function is the
following:

Proposition 2. Let ∆i
j,k(t) ≡ Vi,j(t)− Vi,k(t). The strategy σ i

j,k(t) is
a best response of ai to sij,k(t), for a given p(0) = p0, if and only if

σ i
j,k(t) =

⎧⎪⎪⎨⎪⎪⎩
1 if ∆i

j,k(t) < 0

0 if ∆i
j,k(t) > 0

s if ∆i
j,k(t) = 0 .

(11)

where 0 ≤ s ≤ 1.

Proof. See Appendix A. ■

In the isolated episodes in which ai is indifferent in trading j
for k, with j ̸= k, that is, ∆i

j,k(t) = 0, we adopt the tie-breaking
rule σ i

j,k(t) = 0.5.8 Clearly, (11) implies that σ i
j,k = 1 − σ i

k,j.
We also set σ i

j,j = 0, that is, ai never trades j for j. There-
fore, the strategy set of agent ai can be represented by σ i(t) =

(σ i
i+1,m(t), σ

i
i+2,m(t), σ

i
i+1,i+2(t)), a piecewise continuous function

from R+ into Σ = {(1, 1, 1), (1, 0, 1), (1, 1, 0), (0, 1, 0), (0, 0, 1),
(0, 0, 0)}. Although agent ai has eight possible trading choices at
each point in time, a simple transitivity trading rule (for instance,
if σ 1

2,3 = 0 and σ 1
2,m = 1, then it must also be that σ 1

3,m = 1)
reduces her choices to the six contained in Σ — this applies to
any type i = 1, 2, 3. We call σ(t) = (σ1(t), σ2(t), σ3(t)) ∈ Σ3 the
best responses of the three particular agents ai. Similarly, s(t) =

(s1(t), s2(t), s3(t)) ∈ Σ3 denotes agents’ symmetric strategies,
with si(t) = (sii+1,m(t), s

i
i+2,m(t), s

i
i+1,i+2(t)) ∈ Σ . Next, following

Nash (1950), we define an equilibrium by means of a function σ =

B(s) that associates the best response σ(t) to a set of strategies
s(t). The function B transforms a piecewise continuous function
s : R+

→ Σ3 into another piecewise continuous function σ =

B(s) : R+
→ Σ3.

8 In all our applications, ∆i
j,k changed sign along the transition only in a finite

set of instances tl , l = 1, . . . , L. Therefore sij,k is discontinuous at tl . The value
of sij,k(tl) at such points of discontinuity is not relevant. Shevchenko and Wright

(2004) make a similar observation.

Definition 1 (Nash Equilibrium). Given an initial distribution p0,
a set of strategies s∗ is a Nash equilibrium if it is a fixed point of
the map B 9:

s∗
= B(s∗). (12)

This definition equilibrium requires, therefore, that σ, the best
response to the set of strategies s, be equal to s.

A general proof of the existence of such an equilibrium, for
any given p0, cannot be obtained with the standard fixed-point
argument based on Kakutani or Brouwer theorems applied to
finite games. These theorems would require the best response
function to be a continuous map on a convex and compact set.
Compactness, however, cannot be verified in our infinite time
horizon set up. Nevertheless, Proposition 4 in Section 4 states
that sometimes the existence of Nash equilibria can be estab-
lished analytically near Nash steady states. Section 4 constructs
Nash equilibria numerically, even when their existence cannot be
established analytically.

3. Overview of steady states

To assess the stability properties of steady state equilibria, it
is useful to begin by considering an economy with no fiat money
(M = 0) and θi =

1
3 . Iacopetta (2019) presents a more detailed

analysis of such a simpler environment.

3.1. Economy with M = 0

Since the first two rows of s refer to the acceptance of fiat
money – recall that the rows of s are associated to objects and the
columns to types – we henceforth focus on the third row entries,
s3, which show how agents i order good i + 1 and good i + 2.
For instance, when s3 = (0, 1, 0), type 2 trade i + 1 for i + 2
(i.e. 3 for 1), whereas types 1 and 3 do not. In addition, because
p1,m = p2,m = 0, it is convenient to shorten p into p̂ = (p1,2, p2,3,
p3,1).

Assume c1 < c2 < c3 (model A of KW). There are eight
possible combinations of (pure) strategies. Two of them are Nash
equilibria:

s3=(0, 1, 0) with p̂ =
1
3

(
1,

1
2
, 1
)

, (13)

if
c3 − c2
u1α

> p3,1 − p2,1 =
1
6
, (14)

and

s3=(1, 1, 0) with p̂ =
1
3

(
1
2

√
2,

√
2 − 1, 1

)
, (15)

if
c3 − c2
u1α

< p3,1 − p2,1 =

√
2
3

(
√
2 − 1), (16)

where the pi,j in (14) and (16) are evaluated in the respective
steady states. These are usually referred as the fundamental and
speculative steady states, respectively.

Rearranging the ranking of the storage cost to become c3 <
c2 < c1, one obtains steady states similar to those in Model B of
KW. The equilibrium

s3=(1, 0, 1) with p =
1
3

(
√
2 − 1, 1,

√
2
2

)
,

9 Because when ∆i
j,k = 0 the response σ i

j,k can take any value between 0
and 1, a more refined definition of the map B would be that this is a set of
functions. Nevertheless, as we set σ i

j,k = 0.5 when ∆i
j,k = 0 on a finite set, our

definition is sufficient.
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always exists. The equilibrium

s3=(0, 1, 1) with p =
1
3

(
1,

√
2
2

,
√
2 − 1

)
,

exists if
c3 − c1
u2α

> p3,2 − p1,2 =

√
2
3

(1 −
√
2) , (17)

and
c2 − c3
u1α

< p2,1 =

√
2
6

(18)

are satisfied, where p1,2, p3,2, and p1,2 are evaluated on the
s3=(0, 1, 1) steady state. Other equilibria emerge under other
rearrangements of the storage costs. The next proposition states
which steady state equilibria are globally stable.

Proposition 3. With the possible exception of s3 = (1, 1, 1),
under any other constant set of strategies s3 = (s12,3, s

2
3,1, s

3
1,2), p̂(t)

converges to a stationary distribution, p̂∗, from any p̂(0).10

3.2. Economy with M > 0

Consider now the full-fledged model with M > 0. Adding fiat
money into the model greatly increases the number of steady
states that could qualify to be Nash equilibria. Considering that
each type has six possible choices, there are 63 steady states to
be verified. Fig. 1 illustrates how variations of M and δm affect
the emergence of a particular equilibrium for a Model A economy
(c1 < c2 < c3). It considers equilibria with s3 = (0, 1, 0)
or s3 = (1, 1, 0) — the same two types of equilibria reviewed
above for the economy without fiat money. In reviewing the
monetary equilibria, it is useful to keep in mind that money is
accepted for liquidity reasons and to save on storage costs. Money
holders, however, incur a seignorage tax. When this becomes
sufficiently large, some may prefer to face longer waiting times
for the preferred consumption good (lower liquidity), and to
pay a higher storage cost, rather than holding fiat money. Since
liquidity depends both on the distribution of commodities and on
the magnitude of storage costs, it is conceivable that some do not
accept money even when others do.

Fig. 1 shows that an s3 = (1, 1, 0) full monetary equilibrium,
i.e., with s1 = s2 = (1, 1, 1), emerges for a relatively low stock of
fiat money and for low rates of seignorage. As seignorage gains in
importance, however, fiat money becomes less desirable, to the
point that a type 2 is no longer willing to sell good 1 against
fiat money, that is, s21,m switches from 1 to 0, so that the set of

strategies becomes s =

(1 1 1
1 0 1
1 1 0

)
.

At higher levels of fiat money, good 3 loses its role of commod-
ity money, even at low seignorage rates, because a type 1’s odds
of meeting type 3 holding good 1 shrink. Therefore, a type 1 no
longer finds it convenient to pay the high storage cost of good 3.

Hence, the Nash equilibrium is characterized by s =

(1 1 1
1 1 1
0 1 0

)
.

At intermediate rates of seignorage, s21,m can be either 1 or 0 or
both, that is, s3 = (1, 1, 0) and s3 = (0, 1, 1) — a case of multiple
equilibria due to inflation.

4. Finding Nash equilibria

This section studies the conditions for obtaining a Nash equi-
librium (p(t), s(t)) that converges to a steady state equilibrium,

10 The proof can be found at the following link: http://people.math.gatech.
edu/\char126\relaxbonetto/Deposit/App.pdf.

starting from an arbitrary initial distribution p(0). It begins with
a proposition that deals with convergence in the neighborhood of
a Nash steady state equilibrium.

Proposition 4. Let (p∗, s∗) be a Nash steady state equilibrium, with
p∗ being asymptotically stable for (1)–(3). There exists an ϵ > 0 such
that, if ∥p0 − p∗

∥ ≤ ϵ, the pattern (p(t), s∗), with p(0) = p0, is a
Nash Equilibrium.11

Proof. See Appendix A ■

Clearly, when the initial condition p(0) is outside of the small
range of the Nash steady state, (p∗, s∗), the Nash set of strategies
s(t) may be different than s∗. In such a case, to evaluate whether
an s(t) is a Nash solution, one needs to verify whether any agent
has an incentive to deviate from such an s(t). In terms of (10),
one needs to check if there is any gap between si(t) and σ i(t).
The best response σ i(t) can be computed on the basis of the value
functions Vi,j(t) defined in (10). Eq. (7) specifies the time variation
of Vi,j(t). Unfortunately, the initial value Vi,j(0) is unknown. What
is known, however, is the value of Vi,j on the Nash steady state
(p∗, s∗). This information can be used to integrate (7) backward
in time, starting from a neighborhood of the Nash steady state.
We then proceed as follows.

First, we integrate the system (1)–(3) starting from the initial
condition p(0), under the set of strategies s(t), an operation that
yields p(t), for 0 ≤ t ≤ T , where T must be sufficiently large so
that ∥p(T ) − p∗

∥ ≤ ϵ. Let Tϵ be a T that satisfies this constraint.
Second, we set Vi(Tϵ) = V∗

i , where Vi(t) = {Vi,j(t)}j=i+1,i+2,m,
and use (7) to compute Vi(t) for t < Tϵ . In other words, we
use V∗

i as final condition and integrate (7) backward in time.
The resulting Vi(t), however, is not yet necessarily the true value
function because Tϵ is finite.

Additional details must still be verified to arrive to the true
value function. Let Vi(t, T ,W) be the unique solution of (7), for a
given (s(t), p(t)), with t ≤ T under the condition that for t = T ,
Vi(T ) = W, i.e., Vi(T , T ,W) = W. The proposition below states
that it is reasonable to pick a W = V∗

i as an initial condition to
integrate the system (7) backward in time.

Proposition 5. Consider a pattern (s(t), p(t)) that converges to a
steady state Nash equilibrium (s∗, p∗). Let V∗

i be the value function
evaluated at the Nash steady state (s∗, p∗), and let Vi(t, T ,W) be
the unique solution of (7) with Vi(T , T ,W) = W. For every t ≤ T

∥Vi(t) − Vi(t, T ,V∗

i )∥ ≤
√
3e−ρ(T−t)

∥Vi(T ) − V∗

i ∥ .

Proof. See Appendix A. ■

The fact that ∥p(Tϵ) − p∗
∥ ≤ ϵ implies that ∥Vi(Tϵ) − V∗

i ∥ =

O(ϵ). Proposition 5 states that choosing V∗

i as a boundary value,
(7) yields a good approximation Vi(t, Tϵ,V∗

i ) for Vi(t). The re-
sponse σ i,ϵ(t) derived from Vi(t, Tϵ, V ∗

i ) is then an approximation
of the best response σ i. In particular, σ i,ϵ is a piecewise constant
function with a finite number of switching times tϵh , h = 1, . . . ,H ,
where one of the σ

i,ϵ
j,k changes from 0 to 1 or from 1 to 0. As ϵ

approaches zero, σ i,ϵ converges to σ i in the sense that limϵ→0 tϵh =

th, where th, for h = 1, . . . ,H , is the finite set of witching times
of σ i. In short, we have

σ i
= B(s) = lim

ϵ→0
σ i,ϵ . (19)

We deal with the problem of finding a fixed point for the
map B (see (12)) by designing a simple iterative scheme. It is
convenient to define V(t) = (V1(t), V2(t), V3(t)). The iteration

11 We define ∥p∥ =

√∑
i,j p

2
i,j .

http://people.math.gatech.edu/\char 126\relax bonetto/Deposit/App.pdf
http://people.math.gatech.edu/\char 126\relax bonetto/Deposit/App.pdf
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Fig. 1. Overview of equilibria. Note. There are four types of equilibria: Speculative equilibria s3 = (1,1,0) with full acceptance of fiat money are in the dark dotted
region; Fundamental equilibria s3 = (0, 1, 0) with full acceptance of fiat money are in the + light color region on the lower-right side; Speculative equilibria with
partial acceptance of fiat money (s21,m = 0 and sij,m = 1 when i ̸= 2 and j ̸= 1) are represented by the signs <; and Fundamental equilibria with partial acceptance
of money are represented by the sign –. In some regions two equilibria coexist. The population is equally divided between the three types of agents (θi =

1
3 ). The

remaining parameter values are in Table 1, Model A.

starts with a guess, s0(t), and then determines the best response
σ0(t) to s0(t), where σ0 = B(s0) and the associated pattern p0(t).
If σ0(t) = s0(t), the iteration stops and (s0(t), p0(t)) is the Nash
equilibrium. Otherwise, the iteration continues: It sets a new
guess s1(t) = σ0(t) and calculates a new path (s1(t), p1(t)). In
general, the iteration generates a sequence σn = B(sn). If the
sequence sn(t) converges to a s(t) then the couple (s(t), p(t)) is
a Nash equilibrium.

More specifically, to find a Nash equilibrium that starts from
p(0) and converges to a Nash steady state (s∗, p∗) we:

1. determine the Nash steady state (s∗, p∗);
2. choose an initial guess s0(t) for s(t) (for instance, s0(t) =

s∗);
3. integrate (1)–(3) forward in time, with s(t) = s0(t), until

the solution p0(t) is sufficiently close to the steady state
p∗;

4. compute V(t), by integrating (7) backward in time (with
V∗ as final condition) and contemporaneously determining
σ0(t) through (11), assuming p(t) = p0(t) and s(t) = s0(t);

5. set s1(t) = σ0(t) as the new guess for s(t) and compute a
new pattern (s1(t), p1(t)) and a new best response σ1(t);

6. repeat steps 3 through 5 to generate a sequence (σn(t),
sn(t), pn(t));

7. stop the procedure when the difference between σn(t) and
sn(t) is smaller than a predetermined error ϵ.12

Two observations are in order. First, there are no issues of
instability when computing p(t) and V(t): The system (1)–(3) is

12 We define the distance between σn and sn as the maxi=1,...,K |ti − τi|, where
ti is the switching time in σn and τi is that in sn . The (s(t), p(t)) obtained by
taking ϵ → 0 is a Nash equilibrium.

stable when integrated forward in time and so is (7) if integrated
backward in time. The iteration does not need to converge, but
if it does, it necessarily converges to a fixed point of B. In the
case of non-convergence, more refined iterative schemes or a
Newton–Raphson method could be employed. Nevertheless, in all
our numerical experiments (Section 5) this simple iterative algo-
rithm delivered a fixed point. Second, the design of the algorithm
presents similarities to the stable manifold theorem for ordinary
differential equations (see Appendix B for a formal discussion).
It differs, however, from the standard approaches employed to
study transitional dynamics of macroeconomic and growth mod-
els. Indeed, it is common to compute an equilibrium pattern by
integrating a system of differential equations that describe the
equilibrium conditions of the economy backward in time, starting
from a neighborhood of the steady state (see Brunner and Strulik,
2002). This approach usually works well when the dimension of
the system is small. At high dimensions it is sometimes possible
to approximate the manifold in the neighborhood of the steady
state by means of projection methods (see McGrattan (1999),
and Mulligan and Sala-i-Martin (1993)). Nevertheless, when the
dimension of the system is large, constructing the manifold in
regions away from the steady state is generally very problematic
— a serious limitation when the choice of an initial condition
away from the steady state is an important aspect of the exercise.

5. Numerical experiments

This section proposes a few applications for the dynamic anal-
ysis. First, it illustrates the transition from partial to full accep-
tance of fiat money. Second, it studies the effects of changes in
the rate of seignorage. It then discusses the issues of multiple
equilibria related to seignorage and to the distribution of the pop-
ulation across the three types. Finally, it briefly reviews equilibria
in Model B.
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Fig. 2. Acceptance of commodity and Fiat Money. Note: Panel A shows the convergence to a s3 = (1, 1, 0) steady state equilibrium with full acceptance of money.
The initial condition p(0) = (θ1, 0, 0, 0, M

4 ), and θi =
1
3 . Panels B.I–B.IV show the possible switch of s12,m , s

2
1,m and of s12,3 from 0 to 1, in the baseline case (B.I), and

then for the cases δm = 0.06, α = 1.2, ρ = 0.06, in panels B.II, B.III, and B.IV, respectively.

5.1. Partial and full acceptance of Fiat Money

Because the conditions for the full acceptance of money in
a steady state are different than those in other regions of the
inventory space, an economy may go through a phase, while
converging to a full monetary equilibrium, in which some do not
accept fiat money. For a start, over the transition, the degree of
acceptability of a low-storage commodity may simply decline,
and thus favor the acceptability of fiat money. In addition, the
cost of seignorage, given by Vi,m − Vi,i+1 − Di, may also decline

over the transition — the production cost, Di, is constant over time
but the difference Vi,m − Vi,i+1 is not. It could be, for instance,
that during the transition, the liquidity of commodity i+1 drops,
implying a reduction in the cost of seignorage. Panel A of Fig. 2
illustrates such a scenario in the phase diagram. Initially, type
1 prefers good 2 to fiat money s, and type 2 prefers good 1 to
fiat money, and only good 1 plays the role of commodity money.
The economy eventually converges to a full monetary equilibrium
and, furthermore, good 3 acquires the role of money. Throughout
the transition, not only fiat money is accepted by a larger share
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Fig. 3. Reduction of seignorage. Note: The seignorage rate, δm , goes from 0.1 to 0.02. The economy transits from a steady state equilibrium in which s1 = (1, 1, 1),
s2 = (0, 1, 1), and s3 = (0, 1, 0), to new equilibrium in which s1 = s2 = (1, 1, 1), and s3 = (1, 1, 0). The stock of fiat money is M = 0.3 and θi =

1
3 . The remaining

parameters are in Table 1, Model A.

of the population, but good 3 acquires the role of commodity
money, as type 1 agents switch from fundamental to speculative
strategies. The emergence of commodity money is driven by the
change in liquidity of good 3 relative to good 2: Fig. 2 shows that
along the transition path, p2,1−p3,1 declines, implying that agents
1 tend to shift their demand from good 2 to good 3. Next, with the
aid of Fig. 2B, we study how the switching time is affected by the
rate of inflation, the frequency of trade, and by the individual’s
discount rate.

Inflation (Fig. 2B.II). Lower rates of seignorage hasten the emer-
gence of money. The lower risk of confiscation induces some
individuals of type 1 and of type 2 to abandon their strategies of
holding inventories earlier, accepting to trade against fiat money
when the occasion arises. By doing so, they shorten the waiting
time for acquiring their consumption goods under the state in
which fiat money is not confiscated, but, at the same time, they
give up the option of being insured against the risk of inflation
sooner.

Higher trading frequency (Fig. 2B.III). A higher matching rate
facilitates trade both when individuals have fiat money and when
they engage in indirect trading. Nevertheless, fiat money is rel-
atively more accepted than other commodities; this is the ob-
ject that leads relatively more quickly to the consumption good.
Therefore, for a given inflation rate, the trading frequency favors
the emergence of fiat money over the transition.

The discount rate (Fig. 2B.IV). The effects of a higher rate of
discount are somewhat similar to those associated to a higher
trading frequency. This observation has been used, for instance,
in Araujo and Guimaraes (2014) to proxy the acceleration of
the frequency of trade with an increase in the individuals’ dis-
count rate. In the current set framework, however, there are
some interesting differences. While in the high-trade-frequency
economy the switches to both fiat and commodity money occur
earlier relative to the baseline economy, in the high-discount-
rate economy only the switch to fiat money takes place earlier.
Conversely, in the high-discount economy there is a delay in the
adoption of commodity 3 as money relative to the baseline econ-
omy. The results differ in the two comparative dynamics because
the cost of storage hits agents immediately, while that of inflation
is projected in the future. In a high-discount economy, on the
one hand, the storage cost becomes more relevant in relation to
the future advantage of obtaining a highly liquid object. For this
reason, the adoption of commodity money 3 is postponed. On the
other hand, individuals put a lower weight on the risk that their
fiat money will be confiscated. Therefore, the liquidity value of
fiat money becomes more important than the risk of inflation and
it is accepted sooner.

5.2. A monetary reform

This section studies the role of inflation in more detail. It
is a long-standing tenet of economics that inflation can create
inefficiencies because it distorts the choices of individuals. To
understand how people’s behavior is affected by seignorage, con-
sider an economy that is currently on a full monetary steady state
equilibrium, and where only good 1 is also used as commodity
money. Through a reduction of the seignorage rate, the govern-
ment may pull the economy out of this equilibrium and send it
into a full monetary equilibrium in which good 3 is also accepted
as money. In the latter equilibrium, on average, agents trade more
frequently and produce at a faster rate than in the former one.
For instance, a 2 percentage reduction of δm, from the initial state
M = 0.3 and δm = 0.1, would be sufficient to accomplish the task
(see Fig. 1). The dynamic consequences of the shock are depicted
in the phase diagram of Fig. 3. Because the drop in the seignorage
rate increases the value of fiat money relative to that of all other
commodities, type 2 agents are induced to sell good 1 against
fiat money. In addition, because the gap p2,1–p3,1 declines over
the adjustment period to the new equilibrium, type 1 agents, in
anticipation of such liquidity change, immediately switch from
fundamental to speculative strategies (s3 turns from (0, 1, 0) to
(1, 1, 0)). As a result, production booms right after the shock and
then stabilizes at a higher level relative to that of the initial
equilibrium (see Fig. 3b).

5.3. Inflation and beliefs

It is often argued that the effects of inflation on production
depend on the coordination of beliefs. This conjecture, in our
framework, emerges in Fig. 1, which reviews the type of equi-
libria associated with different combinations of M and δm. This
figure shows that in some regions of the (M, δm) space, two
steady state equilibria exist. For instance, when M = 0.3, and
δm is between 5 and 9 percent, the full monetary speculative
equilibrium coexists with a fundamental equilibrium in which
s22,m = 0. For an inflation rate above 9 percent, however, there
are unique fundamental equilibria with partial acceptability of
money. Hence, in an economy that is initially in such a state (with
s22,m = 0), a reduction of the seignorage rate, from 10 to 6 percent,
for example, may or may not induce type 1 agents to switch
from fundamental to speculative strategies (s3 may or may not
change from (0, 1, 0) to (1, 1, 0)). Agents may keep their actions
coordinated on the current fundamental equilibrium, in which
case the intervention policy generates only marginal changes in
the economy. Conversely, they may coordinate their actions on
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Table 1
Baseline parameters.
Model Discount Matching Utility Storage costs

δ α ui Di c1 c2 c3
A 0.03 1 1 0.028 0.03 0.1 0.2
B 0.03 1 1 0.028 0.1 0.05 0.03

the speculative equilibrium, in which case the adjustment process
would be very similar to that depicted in Fig. 3.

In brief, a modest reduction of the seignorage rate associated
with a dose of optimism can be effective in stirring up production.
But if agents are unresponsive to relatively modest changes in
the seignorage rate, the government would need to implement a
more radical monetary reform, and be prepared to give up a larger
share of its current seignorage revenue — in our example, below
δm = 0.05 there is a unique equilibrium with s3 = (1, 1, 0).

5.4. Uneven distribution of types and multiple equilibria

The distribution of the population across types affects the
emergence of a particular equilibrium. Wright (1995) established
the existence of multiple equilibria in a Model A economy with-
out fiat money. In particular, when the share of type 3 agents is
relatively high, the speculative equilibrium s3 = (1, 1, 0) coexists
with one in which all three agents flip their strategies, that is, a
s3 = (0, 0, 1) equilibrium. Seignorage promotes the emergence of
additional equilibria. Fig. 4a shows how the values of θi condition
the emergence of a particular equilibrium for a given stock of real
balances, and of the seignorage rate. With a symmetric distribu-
tion θi =

1
3 , under the current specification (M = 0.3, δm = 0.02;

see also Table 1), there exists a unique full monetary speculative
equilibrium. A unique full monetary fundamental equilibrium is
observed when type 3 individuals become less numerous and are
replaced by type 1 individuals. If instead type 1 replaces type 2
agents, multiple equilibria with partial and full acceptability of
money appear. Unique equilibria with partial acceptability of fiat
money are observed when θ1 is high and θ3 is low: a situation in
which type 2 easily trades 1 for 2.

At higher seignorage rates, regions of partial acceptability of
fiat money expand. For instance, a comparison of Fig. 4a and b
reveals that when the seignorage rate goes from 2 to 10 per cent,
the full monetary fundamental equilibrium disappears, and an
overlap between full and partial monetary speculative equilibria
is more commonly observed.
Multiple Equilibria. The presence of multiple monetary steady
states does not necessarily imply the existence of multiple Nash
equilibria. In principle, it could be that once the initial condition
is specified, the pattern converges to one and only one steady
state. Fig. 5 clarifies, however, that in our environment there is
multiplicity: two economies with the same set of parameters and
the same initial condition coordinate on different steady-state
equilibria.

5.5. Uneven distribution of types and dynamics in Model B

This section briefly discusses the acceptability of fiat money in
a Model B economy, for different values of θi. The effects of a rise
in the seignorage rate can be learned by comparing the equilibria
in Fig. 6b where δm = 0.1 and those in Fig. 6a where δm = 0.02.
In the low-inflation economy, larger regions of the full monetary
equilibria overlap with similar equilibria in which s13,m = 0. In the
space just below the 45-degree line, there are only full monetary
fundamental equilibria s3 = (1, 0, 1) because the scarcity of type
1 agents reduces the liquidity value of good 3 — there are too

few middle-men that bring good 3 from type 2 to type 3 agents.
Indeed, good 3 is dominated by fiat money even with a seignorage
rate three times larger than c3. For a more balanced distribution of
the population, however, at sufficiently high rates of seignorage,
equilibria with partial acceptability of money (s13,m = 0) become
unique.

As with model A, the liquidity conditions and the cost of
seignorage change over time, implying that, for a given spec-
ification of the economy, the fraction of the population that
accepts money changes over the transition to the Nash steady
state equilibrium. Fig. 7 shows a particular scenario where, as
the economy converges to the s3 = (1, 0, 1) full monetary
steady state equilibrium, type 3 agents switch their strategies
with respect to fiat money when holding good 2. As the transition
progresses, both good 2 and fiat money become more valuable
(see middle plot of Fig. 7) as their liquidity improves, but the
value of fiat money increases more rapidly and eventually catches
up with the value good 2.

6. Welfare

One standard question of monetary economics is whether the
acceptance of fiat money improves the allocation of resources and
stimulates production. The presence of matching frictions and
the assumption that agents incur a cost in holding commodities
gives fiat money a potential positive role. Nevertheless, it also
comes with costs at the levels of both the individual and society.
At the individual level, the risk of confiscation looms. At the
society level, fiat money reduces the availability of commodities
— money chases away consumption goods. To explore the welfare
implications of introducing fiat money and of altering seignorage
rates, we use, as KW, a utilitarian welfare criterion: Given the
highly symmetric type of environment it is unlikely to yield a
Pareto improvement from any given state. The payoff for a type i
agent is calculated as a weighted average of Vi,j:

Wi(t) =
1
θi
(pi,i+1Vi,i+1 + pi,i+2Vi,i+2 + pi,mVi,m).

Therefore, the welfare of the whole society is simply the average
of the three groups’ payoffs:

W (t) =

∑
i

θiWi(t).

As mentioned in the introduction, the government derives
utility from consuming goods. These are purchased through the
seignorage tax δmM . One may argue that the government also
cares about the welfare of the population. This could reflect
a genuine interest in the society’s well-being, or more simply
the desire to maintain the population’s electoral support. The
government welfare function is then

WG(t) = (1 − λ)Q (t) + λW (t),

where

Q (t) = M
∫

+∞

t
e−ρG(τ−t)δm(τ )dτ ,

and where λ weighs the society’s welfare within the govern-
ment’s objective function. For the sake of illustration, we consider
an altruistic government (λ = 1) that wants to know how the
level of M or the rate of seignorage affects the population.
Real Balances. Fig. 8a shows the steady-state welfare levels for
different levels of fiat money and zero seignorage. When the
stock of fiat money is relatively large, any further increase tends
to make people, on average, worse-off because the chase-away-
good effect largely dominates. Observe that a change in M can
induce W1, W2 and W3 to move in different directions, indicating
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Fig. 4. Overview of the steady state equilibria, Model A. Note: On equilibria represented by a dot, sij,m = 1 and: s3 = (0, 1, 0) (red dot); s3 = (1, 1, 0) (blue dot);
s3 = (0, 0, 1) (magenta dot); s3 = (0, 1, 1) (green dot). On equilibria represented by a circle, s21,m = 0 and: s3 = (0, 1, 0) (red circle); s3 = (1, 1, 0) (blue circle), and
s3 = (1, 1, 0) (black circle). The triplets in parentheses in plot A denote s3 . M = 0.3 in both plots. For the remaining parameter values see Table 1, Model A. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

a conflict of interest in the society about which real balance level
is the most desirable. Type 3 individuals, for instance, prefer a
lower level of fiat money than the other two groups. As they carry
the low storage cost good, they are more preoccupied, relative to
the other two groups, by the displacement of commodities caused

by a further increase in fiat money than they are pleased by the
savings in storage costs.
Seigniorage. When the government confiscates fiat money, it
clearly reduces the welfare of the targeted individuals by Vi,m −

Vi,i+1 − Di. But it also alters the odds that an individual is
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Fig. 5. Multiple equilibria. Note: The distribution of the population is as follows: θ1 = 0.24, θ2 = 0.16, and θ3 = 0.7. The rate of seignorage and the stock of fiat
money is 0.05 and 0.2, respectively. The storage costs are: c1 = 0.03, c2 = 0.1, and c3 = 0.2. The initial condition is p(0) = (0.11, 0.06, 0.38, 0.02, 0.06).

able to exchange his commodity against money. While a private
agent in a match may refuse to buy, when a government agent
carrying money meets a private agent, there is always an ex-
change. Hence, seignorage can act as a stimulus for production.
However, seignorage also generates some income redistribution.
First, as noted earlier, the cost of seignorage differs across types:
Because a type 3 agent who relinquishes fiat money produces
the good with the lowest storage cost, his burden of seignorage
is lighter than that of the other two types. Second, because real
balances are not generally held in equal proportions across the
three groups, the probability of being hit by seignorage differs
across types. Similarly, the probability that the government will
purchase a commodity depends also on how commodities are
distributed across types. Fig. 8b, for instance, shows that over a
certain range of seignorage, an increase in seignorage causes a de-
cline in W1 and W2 and an increase inW3. Interestingly, the figure
also shows that an increase in seignorage can boost everybody’s
welfare Wi when starting from low levels of seignorage.

To make sense of these results, it is important to point out the
two effects of inflation in this framework. The first is purely redis-
tributive. In a given equilibrium balances are unevenly distributed
across the three types of individuals. Hence a flat tax on balances
is bound to strike the three groups unevenly. Similarly, the gov-
ernment purchases goods at a higher frequency from types that
hold relatively more of them. A second effect is the acceleration of
the frequency of production and trade. Although the government
consumes the confiscated goods, the acceleration of trade can be
large enough to more than compensate, at an aggregate level, for
the cost of seignorage. Specifically, if the government purchases
goods from individuals who value fiat money more than individ-
uals from whom the money had been confiscated, and if such a
difference is large enough to compensate for the production cost,
then the seignorage can increase global welfare. The experiment
in Fig. 8b suggests that such a possibility may arise only at low
levels of seignorage where the gap between the value of money
and the commodity value is more likely to be large.13 While

13 Integrating the utility the government derives from seignorage, would
enlarge the range within which inflation generates positive welfare effects.

the redistribution and the acceleration of production effects are
well aligned with other monetary models, the positive effect of
inflation, albeit in a limited inflation range, is more specific to
the current framework.

7. Further research

The set up of the problem (Section 2) and the procedure to find
Nash equilibria (Section 4) are valid for a more general search
model with N goods, and N types of agents, as described, for
instance, in Aiyagari and Wallace (1991, 1992, see Appendix A).
The analysis could also be adapted to allow for multiple holdings
(Molico, 2006; Lagos and Rocheteau, 2009; Chiu and Molico,
2010) and to study the dynamics of indivisible-asset models in
which heterogeneity is an essential ingredient, such as studies of
the middlemen by Rubinstein and Wolinsky (1987), international
currency by Matsuyama et al. (1993), banking by Cavalcanti and
Wallace (1999), and over-the-counter financial markets by Duffie
et al. (2005). Future research could also clarify whether the posi-
tive welfare effects of inflation at low ranges still stand when an
intensive margin of trade is added to the model.

Appendix A. Proofs and derivations

This Appendix contains the proofs of Propositions 1 to 5. While
the statements of Propositions 1, 2, 4, and 5 refer to a KW econ-
omy with three types of commodities, fiat money, and three types
of agents, the proofs we present here hold for a more general
environment with n objects and n types of agents. Specifically,
the size of the matrix Ai, defined in (25) of this Appendix, can be
augmented to consider more objects, and the index i, associated
with types of individuals, can run up to an n larger than three.

Proof of Proposition 1. Differentiation of (6) with respect to t
yields

V̇i,j(t) = −vi,j(p(t)) + ρVi,j(t) +

∫
∞

t
e−ρ(τ−t)

∑
l

π̇ i
l,j(τ , t)vi,l

× (p(τ ))dτ , (20)
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Fig. 6. Overview steady state equilibria, Model B. Note: On equilibria represented by a dot, sij,m = 1 and: s3 = (1, 0, 1) (red dot); s3 = (0, 1, 0) (blue dot); s3 = (1, 0, 0)
(green dot); and s3 = (0, 0, 1) (black dot). On equilibria represented by a circle, s21,m = 0 and: s3 = (1, 0, 1) (red circle); s3 = (0, 1, 0) (blue circle), s3 = (1, 0, 0)
(green circle); and s3 = (0, 0, 1) (black circle). The triplets in parentheses in the two plots denote s3 . M = 0.3 on both plots. For other parameters values see Table 1,
Model B. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

where

vi,j(p) =

∑
i′

pi′,isi
′

j,iui − cj (21)

(when j = m, cm stands for δmD) is the expected utility from
consumption, net of storage cost, for an agent of type i with good
j, and where π̇ i

k,j(τ , t) ≡
d
dt π

i
k,j(τ , t). To derive d

dt π
i
k,j(τ , t), first

observe that expressions similar to (1)–(3) imply that

d
dτ

π i
i+1,j(τ , t) =α

{∑
i′

∑
k

π i
k,jpi′,i+1σ

i
k,i+1s

i′
i+1,k +

∑
i′

π i
k,jpi′,is

i′
i,k

−

∑
i′

∑
k

π i
i+1,jpi′,kσ

i
i+1,ks

i′
k,i+1

}
−δgπ

i
i+1,j + δmπ i

m,j (22)
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Fig. 7. Acceptance of commodity and Fiat Money, Model B. Note: The values of the parameters are: δm = 0.1, M = 0.3, and θi =
1
3 . See (Table 1), Model B, for

remaining parameter values. The initial condition is p(0) = ( 12 θ1,
1
10 θ2, θ3,M, 0).

d
dτ

π i
i+2,j(τ , t) =α

{∑
i′

∑
k

π i
k,jpi′,i+2σ

i
k,i+2s

i′
i+2,k

−

∑
i′

∑
k

π i
i+2,jpi′,kσ

i
i+2,ks

i′
k,i+2

}
− δgπ

i
i+2,j (23)

d
dτ

π i
m,j(τ , t) =α

{∑
i′

∑
k

π i
k,jpi′,mσ i

k,ms
i′
j,m

−

∑
i′

∑
k

π i
m,jpi′,kσ

i
m,ks

i′
k,m

}

−δmπ i
m,j + δg (π i

i+1,j + π i
i+2,j) (24)

with initial condition π i
k,j(t, t) = 1 if k = j, and 0 otherwise.

For each i = 1, 2, 3, we consider the 3 × 3 matrix Ai
={

Ai
j,k

}
j,k=i+1,i+2,m

defined as:

Ai
i+1,i+1 = − α

∑
i′

∑
k̸=i+1

pi′,kσ i
i+1,ks

i′
k,i+1 − δg

Ai
i+1,i+2 =α

∑
i′

pi′,i+2σ
i
i+1,i+2s

i′
i+2,i+1

Ai
i+1,m =α

∑
i′

pi′,mσ i
i+1,ms

i′
m,i+1 + δg

Ai
i+2,i+1 =α

∑
i′

pi′,i+1σ
i
i+2,i+1s

i′
i+1,i+2 + α

∑
i′

pi′,isi
′

i,i+2

Ai
i+2,i+2 = − α

∑
i′

∑
k̸=i+2

pi′,kσ i
i+2,ks

i′
k,i+2 − α

∑
i′

pi′,isi
′

i,i+2 − δg

(25)

Ai
i+2,m =α

∑
i′

pi′,mσ i
i+2,ms

i′
m,i+2 + δg

Ai
m,i+1 =α

∑
i′

pi′,i+1σ
i
m,i+1s

i′
i+1,m + α

∑
i′

pi′,isi
′

i,m + δm

Ai
m,i+2 =α

∑
i′

pi′,i+2σ
i
m,i+2s

i′
i+2,m

Ai
m,m = − α

∑
i′

∑
k̸=m

pi′,kσ i
m,ks

i′
k,m − α

∑
i′

pi′,isi
′

i,m − δm .

The expressions in (22)–(24) then simplify to

d
dτ

π i
k,j(τ , t) =

∑
l

Ai
l,k(τ )π

i
l,j(τ , t).

Observe that the matrix Ai satisfies Ai
j,k ≥ 0 for j ̸= k and∑

l

Ai
j,l = 0 , (26)

for every j. These properties are used in proving Proposition 2 and
Lemma 3 (see below).

Calling Π i(τ , t) the 3 × 3 matrix with entries (Π i)k,j(τ , t) =

π i
k,j(τ , t), the above equation can be written as

d
dτ

Π i(τ , t) = Ai(τ )TΠ i(τ , t) (27)

where Ai(t)T is the transpose of Ai(t). What is needed to compute
the evolution of Vi,j(t), however, is the derivative of Π i(τ , t) with
respect to t rather than with respect to τ . Note, however, that
from (27) it follows that

Π i(τ , t − dt) = Π i(τ , t)Π i(t, t − dt) = Π i(τ , t)
(
1 + dtAi(t)T

)
.
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Fig. 8. Welfare, Fiat Money, and seignorage. Note. The values of δm and M that maximize the society’s welfare are 0.04 and 0.14, respectively. The population is
equally split between the three types (θi =

1
3 ). For remaining parameters see (Table 1), Model A.

Consequently,
d
dt

Π i(τ , t) = −Π i(τ , t)Ai(t)T ,

that in extended form becomes
d
dt

π i
k,j(τ , t) = −

∑
l

Ai
j,l(t)π

i
k,l(τ , t). (28)

By inserting (28) in (20) we obtain

V̇i = ρVi − Ai(t)Vi − vi(t) (29)

where vi(t) = (vi,i+1(p(t)), vi,i+2(p(t)), vi,m(p(t))). Using the defi-
nition of the matrixAi in (25) and of vi,j in (21) we get, for j = i+1
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or i + 2,

V̇i,j =ρVi,j − α

⎧⎨⎩∑
i′

∑
k̸=i

pi′,kσ i
j,ks

i′
k,jVi,k +

∑
i′

pi′,isi
′

i,jVi,i+1

−

∑
i′,k

pi′,kσ i
j,ks

i′
k,jVi,j

⎫⎬⎭
−δg (Vi,m − Vi,j) −

∑
i′

pi′,isi
′

j,iui + cj.

Rearranging terms we get:

V̇i,j =(ρ + δg + α)Vi,j − α

⎧⎨⎩∑
i′

∑
k̸=i

pi′,kσ i
j,ks

i′
k,jVi,k

+

∑
i′

pi′,isi
′

i,j(Vi,i+1 + ui)

+

∑
i′,k

pi′,k(1 − σ i
j,ks

i′
k,j)Vi,j

⎫⎬⎭− δgVi,m + cj.

This is the expression in (7) when j = i + 1 or j + 2. Similarly,
when j = m

V̇i,m =ρVi,j − α

⎧⎨⎩∑
i′

∑
k̸=i

pi′,kσ i
m,ks

i′
k,mVi,k +

∑
i′

pi′,isi
′

i,mVi,i+1

+

∑
i′,k

σ i
m,ks

i′
k,mVi,j

⎫⎬⎭
−δm(Vi,i+1 − Vi,m) −

∑
i′

pi′,isi
′

i,mui − δmDi

=(ρ + δg + α)Vi,m − α

⎧⎨⎩∑
i′

∑
k̸=i

pi′,kσ i
m,ks

i′
k,mVi,k

+

∑
i′

pi′,isi
′

i,m(Vi,i+1 + ui)

+

∑
i′,k

(1 − σ i
m,ks

i′
k,m)Vi,j

⎫⎬⎭+ δm(Vi,i+1 − Di).

This is expression in (7) for j = m. ■

A.1. On the solution of value functions in (7)–(9).

For the proof of the remaining propositions we need a more
explicit representation of Vi(t). Thus we will obtain an integral
formula for the solution of (7)–(9) with the initial condition W
at time T , that is, with the condition Vi(T ) = W. To this end we
start with the equivalent formulation contained in (29). This is a
system of non-autonomous (since Ai(t) depends on t) and non-
homogeneous (due to the vi(t) term) ordinary linear differential
equations.

To solve this system we first look for the fundamental solution
of the associated homogeneous system, that is we consider the
3 × 3 matrix Φ i(t, T ) that solves the initial value problem⎧⎨⎩

d
dt

Φ i(t, T ) = −Ai(t)Φ(t, T )

Φ i(T , T ) = Id .

(30)

where Ai(t) is the matrix defined in (25) and Id is the 3 × 3
identity matrix. Further properties of Φ i(t, T ) will be studied in
Lemma 2.

Writing Vi(t) = Φ i(t, T )Z(t) we get the equation

Ż(t) = ρZ(t) − Φ i(t, T )−1vi(t)

that can be easily solved by

Z(t) = eρ(t−T )Z(T ) −

∫ t

T
eρ(t−τ )Φ i(τ , T )−1vi(τ )dτ .

Using that Φ i(t, T )Φ i(τ , T )−1
= Φ i(t, τ ) and observing that

Z(T ) = Vi(T ) = W we finally get

Vi(t) = eρ(t−T )Φ i(t, T )W −

∫ t

T
eρ(t−τ )Φ i(t, τ )vi(τ )dτ . (31)

Lemma 2. Let Φ i(t, T ) be defined by (30). Then for every t < T
we have

Φ i
j,k(t, T ) ≥ 0 Φ i

j,j(t, T ) > 0 (32)

and

∥Φ i(t, T )∥∞ ≤ 1 ∀t ≤ T (33)

where ∥Ui∥∞ = supj Ui,j.

Proof. Since Ai(t) is continuous in t , we can use Euler approxi-
mations for the solution of (30). This gives

Φ(t, T ) = lim
N→∞

N∏
k=1

(Id − δtA(tk)) Φ(T , T )

where

δt =
t − T
N

tk = T + kδt.

Observe that δt < 0 since t < T . Let C(tk) = Id − δtA(tk). For δt
small enough, Cl,j(tk) ≥ 0, Cl,l(tk) > 0 for every l, j and∑

j

Cl,j(tk) = 1 ∀l.

This implies (32). Moreover we have

∥C(tk)W∥∞ = sup
l

⏐⏐⏐⏐⏐⏐
∑

j

Cl,jWj

⏐⏐⏐⏐⏐⏐ ≤ sup
l

sup
j

|Wj|
∑

j

|Cl,j| = ∥W∥∞ .

This gives

∥Φ(t, T )∥∞ ≤ lim
N→∞

1∏
k=N

∥C(tk)∥∞ ≤ 1. ■

Proof of Proposition 2. Consider a variation of σ i
i+1,i+2(t) of the

form

σ̃ i
i+1,i+2(t) = σ i

i+1,i+2(t) + ϵη(t).

where η(t) = 0 for t > T and ϵ is a parameter. Differentiating
(29) with respect to ϵ delivers

∂ϵ V̇i(t) = ρ∂δVi − Ai(t)∂ϵVi − ∂ϵAi(t)Vi.

This system of equations is of the same form as (29) with ∂ϵV
as the unknown and ∂ϵAi(t)Vi as the non homogeneous term.
Following the same procedure that led to (31) we obtain

∂ϵVi(t) =

∫ T

t
e−ρ(τ−t)Φ(t, τ )

(
∂ϵAi(τ )

)
Vi(τ )dτ .

where we used that ∂ϵVi(t) = 0 if t ≥ T . From (25) it follows
∂ϵAi

i,k(τ ) ̸= 0 only if j = i + 1 and k = i + 1 or i + 2. Moreover

∂ϵAi
i,i+1(τ ) = −∂ϵAi

i,i+2(τ ) = αη(τ )
∑
i′

pi′,i+2(τ )si
′

i+2,i+1(τ )
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so that

∂ϵAi(τ )Vi(τ )
⏐⏐
ϵ=0 = −αη(τ )∆i

i+1,i+2(τ )

×

⎛⎜⎝
∑
i′

pi′,i+2(τ )si
′

i+2,i+1(τ )

0
0

⎞⎟⎠ .

Therefore,

∂ϵVi(t)
⏐⏐
ϵ=0 =

∫
∞

t
η(τ )∆i

i+1,i+2(τ )U(t, τ )dτ ,

where

U(t, τ ) = e−ρ(τ−t)Φ(t, τ )

⎛⎜⎝
∑
i′

pi′,i+2(τ )si
′

i+2,i+1(τ )

0
0

⎞⎟⎠ .

From (32) and the fact that pi+1,i+2(τ ) > 0 and si+1
i+2,i+1(τ ) = 1, it

follows that U(t, τ )i+1 > 0 and that U(t, τ )j ≥ 0 for j = i + 2,m.
Clearly, if ∆i

i+1,i+2(τ ) ̸= 0, the contribution of η(τ ) to the
variation ∂δVi(t) > 0 is different from zero and there is no critical
value for σ 1

i+1.i+2(τ ) ∈ (0, 1). We can then conclude Vi(t) reaches
a maximum at a boundary, i.e. σ 1

i+1.i+2(τ ) ∈ {0, 1}, and that

σ i
i+1,i+2(τ ) =

{
1 ∆i

i+1,i+2(τ ) < 0

0 ∆i
i+1,i+2(τ ) > 0 .

(34)

Finally, as already observed in footnote 8 after Proposition 2, since
∆i

i+1,i+2(t) = 0 for a finite set of switching times, the value of
σ i
i+1,i+2(t) on such a set does not affect Vi(t). Similar observations

hold for σ i
j,k with (j, k) ̸= (i + 1, i + 2). This concludes the proof

of (11). ■

Proof of Proposition 4. Since p∗ is a stable fixed point, for ϵ
sufficiently small, we can find Cϵ such that

∥p(0) − p∗
∥ ≤ Cϵ implies ∥p(t) − p∗

∥ ≤ ϵ ∀t > 0 .

Since p∗ is a steady state, V∗

i must be a fixed point of (29), that is

ρV∗

i − Ai,∗V∗

i − vi,∗ = 0 (35)

where Ai,∗ and v∗ are defined in (21) and (25) with p = p∗.
Calling δVi(t) = Vi(t) − V∗, by subtracting (35) from (29) we get
˙δVi = ρδVi − Ai(t)δVi − w(t)

where

w(t) =
(
Ai(t) − Ai,∗)V∗

i + (vi(t) − vi,∗).

This is a system of linear differential equations of the form of (29).
Thus we can write its solution as

δVi(t) = Vi(t) − V∗

i =

∫ t

∞

eρ(t−s)Φ(t, s)w(s)ds. (36)

Since Ai(t) and vi(t) are smooth functions of p(t), we can find
a constant K such that ∥w(t)∥ ≤ Kϵ when ∥p(t) − p∗

∥ ≤ ϵ.
From (33) and (36) we get that ∥Vi(t)− V∗

i ∥∞ ≤ Kϵ/ρ uniformly
in t . Since (p∗, s∗) forms a Nash steady state, s∗ and V∗ must
satisfy (11). It follows that Vi(t) and s∗ still satisfy (11) if ϵ is
small enough. Thus, if ∥p(0) − p∗

∥ is small enough, s∗ is the
best response to itself for all t > 0. It follows that (p(t), s∗)
is a Nash equilibrium. Observe that while the proof relies on a
simple continuity statement for the value functions Vi, the result
is significant, for it clears up an important potential hurdle for
the analysis of the dynamical system. Renero (1998) showed that

in this model with no fiat money, one can find a mixed strategy
steady state Nash equilibrium (p∗, s∗) asymptotically stable for
(1)–(3) and that nevertheless there is no mixed strategy Nash
equilibrium that starts near p∗ and converges to p∗. ■

Proof of Proposition 5. To prove the proposition, it is useful to
state the stability properties of (7). Let Vi(t, T ,W) be the solution
of (7) obtained by setting Vi(T , T ,W) = W.

Lemma 3. Given a set of strategies s(t) and σ(t), and a pattern
p(t), for any W1 and W2:

∥Vi(t, T ,W1) − Vi(t, T ,W2)∥∞ ≤ e−ρ(T−t)
∥W1 − W2∥∞ (37)

where t ≤ T . Thus the value function at time t of agent ai can be
computed as

Vi(t) = lim
T→∞

Vi(t, T ,W) (38)

where the limit does not depend on W and it is reached exponen-
tially.

Proof of Lemma 3. From (31) we have

Vi(t, T ,W) = eρ(t−T )Φ(t, T )W −

∫ t

T
eρ(t−τ )Φ(t, τ )v(τ )dτ , (39)

so that

Vi(t, T ,W1) − Vi(t, T ,W2) = eρ(t−T )Φ(t, T )(W1 − W2) .

This implies

∥Vi(t, T ,W1) − Vi(t, T ,W2)∥∞ = eρ(t−T )
∥Φ(t, T )∥∞∥W1 − W2∥∞

The thesis follows from Lemma 2. ■

Returning to Proposition 5, observe that Vi(t) = Vi(t, T ,Vi(T )).
From Lemma 3 we get

∥Vi(t) − Vi(t, T ,V∗

i )∥∞ ≤ e−ρ(T−t)
∥Vi(T ) − V∗

i ∥∞.

Finally, to go from the infinity distance ∥Vi(t) − Vi(t, T ,V∗

i )∥∞

to euclidean distance ∥Vi(t) − Vi(t, T ,V∗

i )∥ we observe that for
every W we have ∥W∥∞ ≤ ∥W∥ ≤

√
3∥W∥∞. The expression in

Proposition 5 can thus be obtained as

∥Vi(t) − Vi(t, T ,V∗

i )∥ ≤
√
3∥Vi(t) − Vi(t, T ,V∗

i )∥∞

≤
√
3e−ρ(T−t)

∥Vi(T ) − V∗

i ∥∞

≤
√
3e−ρ(T−t)

∥Vi(T ) − V∗

i ∥ . ■

Appendix B. Nash equilibria and the stable manifold theorem

The iteration procedure to find Nash equilibria is similar to
that used by Perron to prove the stable manifold theorem (for an
illustration see, among others, Robinson (1995)). Here, we discuss
similarities and differences. Consider the system of differential
equations{
ẋ = −λx + f −(x, y)
ẏ = µy + f +(x, y)

(40)

where x ∈ Rn, y ∈ Rm, λ, µ > 0 and

lim
|x|+|y|→0

|f −(x, y)| + |f +(x, y)|
|x| + |y|

= 0.

The system (40) is the sum of linear (−λx and µy) and non-linear
terms (f + and f −); its fixed point is (x, y) = (0, 0).

The stable manifold theorem states that for every x0 ∈ Rn,
with |x0| sufficiently small, there is unique y0 such that the
solution (x(t), y(t)) of (40) starting at (x0, y0) satisfies

lim
t→∞

(x(t), y(t)) = (0, 0). (41)



F. Bonetto and M. Iacopetta / Journal of Mathematical Economics 84 (2019) 207–224 223

Moreover, it says that the point y0 is given by a smooth function
of x0, that is y0 = W−(x0). The graph of W−, that is, the set
(x0,W−(x0)), is called the local stable manifold of (0, 0). Perron’s
proof is based on the following representation of the solution of
(40):

x(t) = e−λtx0 +

∫ t

0
e−λ(t−τ )f −(x(τ ), y(τ ))dτ (42)

y(t) =

∫ t

∞

eµ(t−τ )f +(x(τ ), y(τ ))dτ . (43)

The proof starts from a guess x0(t) = x0e−λt and y0(t) = 0
for all t > 0. It then computes a new approximation for the
evolution of the stable variable x(t), x1(t), through (42). Inserting
x1 and y0 into (43) yields an approximation for the unstable
variable y1(t). Note that while in (42) time runs forward (τ goes
from 0 to t), in (43) it runs backward (in τ goes from ∞ to t).
Therefore both integrations are stable. Iterating these two steps
yields a sequence (xn(t), yn(t)) that approximates the solution
(42)–(43). Because the exponential factors in the integrals of
(42) and (43) have negative exponents, if x0 is sufficiently small,
the map from (xn, yn) to (xn+1, yn+1) is a contraction. Finally,
the Banach fixed-point theorem guarantees that the sequence
(xn(t), yn(t)) converges uniformly to a solution (x(t), y(t)) of (40)
with x(0) = x0 and satisfying (41).

There are similarities between Perron’s approach in proving
the manifold theorem and the construction of Nash equilibria
discussed in Section 4. First, the Nash steady state (p∗, s∗) cor-
responds to the fixed point (0, 0) of (40). Second, the p in (1)–(3)
is comparable to the x in (40). Third, in (39) the discount rate ρ
plays the same role of the unstable exponent µ in (43). Fourth,
the value function Vi in (7) is somewhat comparable to y in
(40). But there is also an important difference: The value function
Vi affects the evolution of p through the intermediation of the
strategies s. Furthermore, in contrast to (40), the procedure we
presented in Section 4 does not split the evolution of (p(t), s(t))
near (p∗, s∗) between a linear and a nonlinear part. Therefore, it is
better suited to follow the dynamics away from the steady state.

As noted in Section 4, it is important to recognize that the
evolution of the distribution of inventories, p(t), and that of
the value functions V(t), can be studied jointly. Starting from
a p(T ) close to the steady state p∗, with a Vi(T ) = V∗

i and
σ i(T ) = σ∗

i , one may integrate (7) and (1)–(3) backward in
time — t goes from T to 0. To find the approximate solution
of the Nash equilibrium it would suffice to alter σ i(t) along the
integration process so as to be consistent with the value functions
Vi(t), i.e., to satisfy (11). While this procedure, sometime called
backward propagation, usually works well for low-dimensional
systems (see, for instance, Brunner and Strulik (2002)), it presents
limitations for the type of research question that we address. Our
objective is to obtain a pattern (s(t), p(t)) that goes through any
initial conditions, that is, through any arbitrary points in the space
of the distribution of inventories, p(0). As the dimension of the
manifold expands, guiding the system toward a particular point
on the state space by integrating (7) and (1)–(3) backward in time
becomes challenging because some regions of the manifold may
be hard to reach. Conversely, the method proposed here offers
total control over the initial condition, an indispensable feature
for running macroeconomic experiments.

Our algorithm presents some similarities with the policy it-
eration algorithm. A policy iteration algorithm would start with
a guess of s(p) given for every initial distribution of stocks p.
Next it would compute the best response σ (p), again for every
distribution of stocks p, as described in Section 4.14 By iterating

14 For a system with a finite number of states, the best response is the solution
of a linear system of equations. The situation is quite different in our case.

the procedure, it would yield a Markov Perfect Nash Equilibrium,
if convergence is attained (see, for example, Maskin and Tirole
(2001)). Observe that this algorithm would be numerically pro-
hibitive in our situation. The main difference with the algorithm
described in Section 4 is that we study σ as a function of time
t instead of stock p. In this respect our algorithm can be seen
as an efficient hybrid of the backward propagation and the policy
iteration algorithms.
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