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The paper investigates localized deformation
patterns resulting from the onset of instabilities
in lattice structures. The study is motivated by
previous observations on discrete hexagonal lattices,
where a variety of localized deformations were
found depending on loading configuration, lattice
parameters and boundary conditions. These studies
are conducted on other lattice structures, with the
objective of identifying and investigating minimal
models that exhibit localization, hysteresis and path-
dependent behaviour. To this end, we first consider
a two-dimensional square lattice consisting of point
masses connected by in-plane axial springs and
vertical ground springs, which may be considered
as a discrete description of an elastic membrane
supported by an elastic substrate. Results illustrate
that, depending on the relative values of the spring
constants, the lattice exhibits in-plane or out-of-plane
instabilities leading to localized deformations. This
model is further simplified by considering the one-
dimensional case of a spring–mass chain sitting on
an elastic foundation. A bifurcation analysis of this
lattice identifies the stable and unstable branches
and sheds light on the mechanism of transition from
affine deformation to global or diffuse deformation
to localized deformation. Finally, the lattice is further
reduced to a minimal four-mass model, which
exhibits a deformation qualitatively similar to that in
the central part of a longer chain. In contrast to the
widespread assumption that localization is induced
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by defects or imperfections in a structure, this work illustrates that such phenomena can arise
in perfect lattices as a consequence of the mode shapes at the bifurcation points.

This article is part of the theme issue ‘Nonlinear energy transfer in dynamical and acoustical
systems’.

1. Introduction
Localized deformations resulting from instabilities arise naturally in a wide range of physical
systems, and across multiple length scales. Manifestations include plastic twinning in metals [1],
localized buckling of epithelial cells in biological media [2] and chevron folds in rocks [3],
among others. The study of instabilities, both at the microstructural scale in materials and at
the macroscopic structural level, is an area of renewed interest, and a timely research topic.
Several studies have focused on exploiting the formation of patterns resulting from instabilities
in engineered materials and structures to enable a variety of functionalities that are useful to
applications ranging from flexible electronics to architected adaptive materials [4]. Instabilities
and the ensuing pattern formations, or topological changes, for example, govern phase transitions
in materials such as shape memory alloys [5] and attempts have been made at replicating similar
principles in structural components. Extensive research has also been devoted to the study of
instabilities in thin films on soft substrates [6,7], periodic composites [8] and lattices [9–11].
Relevant examples include the investigation of global pattern formation in periodic composites
and lattices [12], and the onset of herringbone patterns in compressed thin films [13]. More
recently, Bertoldi & Boyce [14] demonstrated how instabilities in soft polymers induce changes in
the frequency band structure of periodic phononic systems, while Pal et al. [15,16] investigated the
static and dynamic properties of hexagonal lattices and demonstrated that instabilities can lead
to the surface confinement of elastic waves. Engineered defect distributions that induce desired
deformation patterns in thin shells have been investigated in [17], where the onset of instabilities
is shown to be associated with the breaking of discrete lattice translational symmetry and can be
predicted by a phonon stability analysis on a unit cell.

Of particular interest to the present study is the investigation of localized deformations
associated with the onset of instabilities. Methodologies for the prediction and design of localized
patterns are the objectives of numerous studies and are considered open challenges towards the
understanding of failure as well as the engineering of desired interfaces that act as tunable elastic
waveguides. The investigation of localization resulting from post-buckling in lattices and periodic
media is presented, for example, in [15,18]. Although localization in continuous media, which
manifests as discontinuous strain distributions, is typically assessed by examining the loss of
ellipticity in the Hessian of the strain energy [19], its relation to the microstructure and the effect
of the macroscopic geometry, including boundary conditions, remain elusive. Indeed, in contrast
to a phonon stability analysis on a single unit cell for identifying diffuse instabilities, no such
recipe exists for localization. Several studies [20,21] have demonstrated, both numerically and
experimentally, how buckling at the microstructural level evolves into localized deformations. In
this context, notable are the works of Papka & Kyriakides [22,23], who investigated the crushing of
honeycomb cellular lattices under a variety of loading conditions. More recently, d’Avila et al. [24]
have demonstrated that the onset of localization in a periodic composite depends on the effective
tangent stiffness of the composite and occurs only if this stiffness in the loading direction is
negative. There have also been studies on localized vibration modes called intrinsically localized
modes or discrete breathers, where localization arises as a consequence of discreteness and
nonlinear interactions [25,26].

The current study is motivated by the observation of localized deformation patterns following
the onset of instabilities in discrete, hexagonal lattices [15]. Notwithstanding the consideration
of an idealized model free from defects and imperfections, these deformations are observed
to occur as a result of the presence of nonlinearities corresponding to large displacements.
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(a) (b)

Figure 1. Deformed configurations having different localization patterns for different boundary conditions. (a) Biaxial loading
with displacement prescribed on all boundary nodes. (b) Compression prescribed onhorizontal direction andperiodic conditions
along vertical boundary nodes. (Online version in colour.)

Some of the localized deformation patterns observed in [15] are summarized here. Consider a
hexagonal lattice, which consists of point masses connected by linear longitudinal springs, and
includes angular springs that oppose the change in angle between neighbouring springs [15,16].
The lattice is constrained to deform in the x, y plane and undergoes large displacements
resulting from the imposed set of displacements on the boundary. Figure 1a illustrates the
lattice deformation corresponding to an imposed vertical displacement on the boundary. As the
imposed displacement is progressively increased, the deformation evolves from being initially
affine (linear in x and y) to subsequently achieving globally diffuse patterns. By contrast, figure 1b
displays the case of a biaxial loading corresponding to imposed displacements along both the
horizontal and vertical directions. The resulting deformed configuration is characterized by a
localized deformation along a ‘zig-zag’ interface.

This example illustrates how instabilities in lattices leading to localized deformations or diffuse
pattern formation depend on several factors, including lattice geometry, material parameters,
boundary and loading conditions. Elucidating the interplay between these factors is a daunting
challenge and is the subject of ongoing investigations. To address some of these questions, this
paper focuses on progressively simpler lattices with the objective of identifying configurations
that are characterized by localized deformations and may provide useful insight into the most
relevant parameters that govern the behaviour of interest. An overview of the considered lattice
configurations is shown in figure 2, which presents an elastically supported square lattice
capable of both in-plane and out-of-plane motion (figure 2a). The dimensionality of this problem
is reduced by extracting the single lattice strip shown in figure 2b, which then leads to the
elementary case of the elastically supported one-dimensional (1D) spring–mass chain shown in
figure 2c. The thin lines in figure 2 describe longitudinal springs that provide a restoring force
aligned with the spring itself and proportional to the relative displacements of the two nodes it
connects. The onset of localized deformation is initially based on observation of the deformed
equilibrium configurations, which are evaluated through a Newton–Raphson procedure. For
the low-dimensional cases of figure 2b,c, a linear bifurcation analysis and the application of a
shooting method support the interpretation of the observed solutions, the prediction of stability
characteristics, the evolution of the equilibrium deformed configurations with applied strain
as well as the evaluation of loading path-dependent or hysteresis behaviours. A rich set of
equilibrium solutions are illustrated which evolve from diffuse patterns to strongly localized
ones. We remark that the transition and localization which we observe are not trivial. There is
a vast literature on various physical models that show a variety of instabilities, including folds,
crevices and wrinkles (e.g. [7] and subsequent papers citing this paper). Currently, there is a
lack of understanding on the mechanics leading to symmetry-breaking transitions that lead to
these deformations (the review paper [27] highlights some related challenges). The current work
provides a simple model which may form the basis to understand such complex phenomena.
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Figure 2. Summary of discrete lattices considered for observation and analysis of instability-induced localization: (a) square
lattice with ground springs (i) and detail of unit cell (ii), (b) 1D square lattice strip and (c) 1D spring–mass chain. (Online version
in colour.)

The paper is organized as follows. Following this introduction, §2 presents two distinct kinds
of instability that arise in square lattices interacting with ground springs: a localized deformation
and a globally uniform pattern. Next, §3 investigates this localized deformation in an analogous
1D lattice using a combination of numerical simulations and bifurcation analysis. Finally, the
conclusions of this work are summarized in §4.

2. Square lattice model
Let us consider a square lattice of N × M nodes, that is (N − 1) × (M − 1) unit cells, which includes
point masses at the nodes and three types of springs connecting them. This lattice model is
inspired by a membrane on an elastic foundation with point masses embedded in a square lattice
network and undergoing small strains. The lattice may be considered as a discrete version of
this structure. Each point mass has three translational degrees of freedom and can move in three
spatial dimensions. The diagonal springs and the springs connecting nearest neighbours both
have stiffness k0. There is a ground spring of stiffness kg, which resists motion in the out-of-
plane z-direction. The quasi-static behaviour of a lattice of a given dimension is governed by a
single non-dimensional stiffness parameter, γ = kg/k0. In all the subsequent calculations in this
work, we investigate the behaviour of a lattice under uniaxial compression. Both the in-plane
displacement components are prescribed at all the boundary nodes corresponding to this uniaxial
strain, while the out-of-plane displacement component is free at all the nodes. Note that, although
additional effects like bending energy may come into play in a real membrane undergoing large
deformations, we only consider the above interactions here, as our objective is to understand the
mechanism of transition from diffuse to localized deformations.

(a) In-plane and out-of-plane instability
We first investigate the quasi-static behaviour of this lattice under uniaxial compression along
the x-direction with the strain denoted by δx. To this end, we conduct numerical simulations
to determine the deformed configuration by increasing the strain incrementally from the
undeformed configuration. At each strain level, the equilibrium configuration is obtained by
minimizing the potential energy E of the lattice subject to the appropriate boundary conditions.
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(a) (b)

Figure 3. Two kinds of instabilities in square lattices subjected to compression. (a) The deformation is in-plane and globally
uniform at high stiffness parameter γ = 1.0, in contrast to (b) the out-of-plane and localized deformation at low γ = 0.1.
(Online version in colour.)

The problem may be expressed as

minimize
X

E(X) = k0

2

M−1∑
m=1

N−1∑
n=1

[(‖xm,n − xm+1,n‖ − a)2 + (‖xm,n − xm,n+1‖ − a)2

+ (‖xm,n − xm+1,n+1‖ −
√

2a)2 + (‖xm+1,n − xm,n+1‖ −
√

2a)2]

+ kg

2

M∑
m=1

N∑
N=1

z2
p

subject to xq = (1 + δx)Xq, yq = 0, q = 1, . . . , Nb,

zq = 0, q = 1, . . . Nc.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.1)

Here Nb is the total number of boundary nodes, Nc is the number of nodes on the boundary
along the y-direction, while (Xp, Yp, Zp) and xp = (xp, yp, zp) denote, respectively, the undeformed
and deformed positions of node p and X = (x1,1, x1,2, . . . , xM,N). Finally, a is the distance between
nearest-neighbour masses in the lattice.

Figure 3 illustrates the typical deformation field for two values of stiffness parameter γ .
The two chosen γ values are representative of the behaviour of lattices with high and low γ .
Figure 3a displays the in-plane deformation field when γ = 1.0. The out-of-plane displacement
is zero and a globally diffuse pattern forms after the onset of an instability. The displacement
field is affine for small strains δ near the undeformed configuration. This range of δ may be
determined numerically using a procedure similar to the stability analysis presented later in
§3b. With increasing strain, this affine solution loses stability, leading to the evolution of globally
diffuse patterns with a wavelength of two unit cells along the loading direction and uniform
along the transverse in-plane direction. We remark here that this deformation mode arises as
a bifurcation since the affine solution satisfies the equilibrium equations. Figure 3b displays
the deformation field for a square lattice with a lower stiffness parameter value γ = 0.1. Here
the deformation happens along the out-of-plane direction too and leads to a localization which
consists of one layer of the lattice folding over its adjacent layer. We observe that the deformation
field is essentially two-dimensional, with no displacement in the transverse in-plane direction (y).
Thus, we see that the patterns that form after the onset of a bifurcation depend on the material
property, stiffness parameter γ in this case, and it can range from globally diffuse patterns to
localized folding behaviour. We remark here that the folding after the localized deformation is a
purely mathematical solution and may not always have physical relevance. In particular, other
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(a) (b) (c)

(d) (e) ( f )

Figure 4. Snapshots of the folding transition process from the fully expanded and undeformed configuration (a) to the folded
configuration (f ),γ = 0.1. The process involves two distinct bifurcations, with the vertical deformation first increasing globally
and then getting localized at the centre as the lattice is compressed. (Online version in colour.)

nonlinear effects, not considered here, may become relevant at this stage. Our focus in this work
is to understand the transition from affine to global to localized deformations.

(b) Deformation sequence leading to localization
Let us examine the sequence of deformations that result in a localized folding pattern in a lattice
with γ = 0.1. Since there is no displacement in the transverse in-plane direction, we consider
a single strip of the square lattice with N × M = 2 × 8 nodes. Figure 4 illustrates the sequence
of deformations as this lattice is subjected to a uniaxial compression. For small strains close
to the undeformed configuration, the deformation field is affine and there is no out-of-plane
displacement. As the strain increases, this affine solution becomes unstable and the lattice deforms
out of plane in a zig-zag manner (figure 4b). The out-of-plane displacement is maximum at the
centre and decreases away from it. As the strain increases further (figure 4c), the out-of-plane
displacement increases for the centre nodes, while it decreases for nodes away from the centre.
The out-of-plane displacement becomes localized at the two centre nodes of the lattice and it
decreases rapidly to zero away from these nodes. As the strain increases, the centre square folds
over (figure 4e–f ), thereby resulting in a localized zone. Note that this localized deformation
field will have zero-energy at a strain level δ = −2/(M − 1) ≈ −0.29 when all the axial springs are
unstretched and the out of plane displacement is zero. The existence of multiple zero-energy states
(undeformed and folded configurations) implies that the potential energy is not quasi-convex. It
also points to the existence of negative stiffness regions and the possibility of this lattice to exhibit
hysteresis. A negative effective stiffness results in a snap-through type behaviour as the lattice
transitions from the unfolded to the folded configuration or vice versa. We examine this rich set
of behaviours arising due to this localized solution in the next section using a 1D model which
turns out to be quite adequate for our purposes.

3. Chain on elastic support
To understand the mechanism of the snap-through behaviour during localization, let us further
simplify the square lattice and consider an equivalent 1D model obtained by taking one section of
the square lattice deprived of the diagonal springs. Figure 5 displays a schematic of the considered
lattice model. There are N nodes along a strip indexed from 1 to N. The potential energy E of the
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Figure 5. Schematic of a 1D latticemodel,with pointmasses at thenodes interactingwithnearest-neighbour horizontal springs
and vertical ground springs. Each mass has two degrees of freedom and can move in the x–z plane. (Online version in colour.)

undeformed
configuration

diffuse deformation

transition:
diffuse to local

localization

Figure 6. Sequence of deformed configurations as the lattice transitions from the undeformed to the localized deformation
configuration. (Online version in colour.)

lattice may be written as

E(X) =
N∑

i=1

kg

2
z2

i +
N−1∑
i=1

k0

2
(‖xi − xi+1‖ − a)2, (3.1)

where xi = (xi, zi) and X = (x1, x2, . . . , xN). Here we can assume that the undeformed axial springs
have unit length (a = 1). Minimizing this energy subject to the boundary conditions yields the
equilibrium configuration. We illustrate the typical displacement response history as the folding
transition happens in this model (figure 6).

We first conduct numerical simulations on a lattice of N = 10 masses by subjecting it to
both a compressive strain from the unfolded configuration and a tensile strain from the folded
configuration. For both cases, we denote the strain by δ, measuring it from the reference unfolded
configuration. The numerical simulations are again conducted using a Newton–Raphson solver.
This numerical solver based on incrementally applying strain faces convergence issues in the
presence of instabilities and bifurcations. To overcome these limitations, we develop alternative
techniques in §3c.

(a) Folding behaviour
This 1D model also undergoes a folding-based localization and we will analyse the deformation
process leading to this localization in detail. In all our subsequent calculations, we consider a
chain of 10 point masses (nodes) connected by axial springs of stiffness k0. Similar to the square
lattice, each mass is also connected to the ground by a spring of stiffness kg and the quasi-
static behaviour is then governed by the non-dimensional stiffness parameter γ = kg/k0. The
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Figure 7. Vertical displacement of the nodes (i = 1 to 9) as the lattice is pulled from the folded configuration. Two bifurcation
points are observed at low stiffness parameterγ = 0.05 (a,c),while a single bifurcation and a jump in displacement is obtained
at high γ = 0.2 (b,d). (Online version in colour.)

chain starts from x = 0 and the undeformed lattice spans from x1 = 0 to x10 = 9. This is referred
to as the unfolded configuration. The first mass is kept fixed while the last mass is subjected
to a compressive displacement. The two end masses are also restricted from moving vertically
(z1 = z10 = 0). As the prescribed compressive displacement increases, the lattice folds at the centre
and now spans from x1 = 0 to x10 = 7. This is referred to as the folded configuration. Thus,
we have that δ = 0 for the unfolded configuration while δ = −2/9 for the folded one. Figure 6
displays snapshots of the deformed lattice as it deforms from one configuration to the other. We
will analyse the quasi-static response of the lattice as it deforms from the folded to the unfolded
configuration and vice versa.

Figure 7 displays the vertical displacement of the nodes as this lattice is subjected to a tensile
strain from the folded configuration. Note that the lattice in the initial configuration spans from
x1 = 0 to x10 = 7 in the axial direction. As the lattice is pulled from both ends, it reaches a final
unfolded and undeformed configuration ranging from 0 to 9. The horizontal and vertical axes
show, respectively, the compressive strain δ measured from the reference unfolded configuration
and the vertical displacement of all the nodes in between. Figure 7c displays the displacements
for stiffness parameter γ = 0.1. At small displacements from the initial configuration, the axial
displacement field is affine in the lattice and the vertical displacement is zero. At around δ =
−0.187, there is an instability and the lattice deforms out of plane, thereby initiating the unfolding
process. The vertical displacement decreases away from the centre nodes and it increases with
increasing tensile strain near the bifurcation point. The nodes to the right of the centre spring
have a positive vertical displacement while the corresponding nodes to the left have an equal and
opposite vertical displacement.
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As the tensile strain increases, the vertical displacement of the nodes away from the centre
decrease to zero at around δ = −0.139. Beyond this point, the shape of the displacement field
changes as the vertical displacements of adjacent nodes alternate in sign. They first increase and
then decrease in magnitude, reaching a zero value at around δ = −0.011. Beyond this point, the
displacement field is affine in the axial direction and has no vertical component. This deformation
mode corresponds to uniform compression of the lattice from the unfolded and undeformed
position, which is attained at x10 = 9. We thus see two distinct mode shapes arising from the onset
of two bifurcation points as the lattice deforms from the folded to the unfolded configuration.
We address the mechanism of transformation from one mode shape to another using a reduced
four-mass model later in §3c(ii).

Let us now examine the displacement when a lattice with a higher stiffness parameter value
γ = 0.2 is subjected to a similar tensile strain. Figure 7d displays the vertical displacement of the
interior nodes (z2–z9) as it deforms from the folded to the unfolded configuration. In contrast to
the low-stiffness-parameter case, here the vertical displacement remains zero for larger tensile
strains until around δ = −0.1, when the vertical displacement jumps sharply to a non-zero value.
The vertical displacement of the adjacent nodes has opposite sign and resembles the second mode
shape discussed above. As the tensile strain increases, the vertical displacement decreases and
reaches zero at around δ = −0.044. Beyond this point, the vertical displacement remains zero and
the axial displacement is affine, with equal compressive strain in each of the axial springs.

(b) Linear stability analysis
To investigate the local stability of the equilibria computed above, we need to look at the Hessian
H of the energy E(X), in (3.1). For a chain having N masses it can be expressed as

H = IN ⊗
(

0 0
0 γ

)
+

N−1∑
p=1

Kh,p, (3.2)

where IN is the N × N identity matrix and ⊗ denotes the tensor product. Here Kh,p is the
contribution due to the pth axial spring having a deformed length rp, with an angle θp with respect
to the horizontal axis (figure 5). It can be written as

Kh = Dp ⊗ (RpKloc,pRT
p ), (3.3)

where Dp is an N × N matrix with all 0 entries except for the (p, p + 1) principal minor,

Dp =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p p+1

0 · · · · · · · · · · · · 0
...

. . .
...

...
p 0 · · · 1 −1 · · · 0
p+1 0 · · · −1 1 · · · 0

...
...

. . .
...

0 · · · · · · · · · · · · 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

while Rp is the rotation of angle θp and Kloc,p is related to the stiffness of the axial spring in the
local coordinate system aligned with the spring axis:

Rp =
(

cos θp − sin θp

sin θp cos θp

)
and Kloc,p =

⎛⎝1 0

0 1 − 1
rp

⎞⎠ . (3.4)

It is easy to observe that if all the springs are horizontal, that is θp = 0 or π for every p, then the
x and the z parts of the Hessian H decouple. More precisely, let P be the permutation matrix that
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sends X to X̃ = (x1, x2, . . . , xN , z1, z2, . . . , zN) = (X, Z); then we get

H̃ = PHPT =
(

Hx 0
0 Hz

)
.

Moreover, one can verify that the x part of the Hessian Hx is always positive definite. Thus to
analyse the stability of an equilibrium with no displacement in the z-direction, we just need to
look at the eigenvalues of Hz.

Let us consider a lattice compressed from its initial unfolded configuration to a strain δ. The
affine deformation induced by such a strain is given by xp = (1 + δ)p and zp = 0 for all p. This is
clearly an equilibrium configuration. Since the first and last mass are fixed, the stability of this
configuration is controlled by the eigenvalues of the (N − 2) × (N − 2) matrix

Hu
z =

⎛⎜⎜⎜⎜⎜⎜⎝

2 3 N−2

2 α ζ 0 · · · 0
3 ζ α ζ · · · 0
...

. . .
. . .

. . .
...

N−3 0 · · · ζ α ζ

N−2 0 · · · 0 ζ α

⎞⎟⎟⎟⎟⎟⎟⎠, (3.5)

where

α = γ + 2δ

1 + δ
and ζ = − δ

1 + δ
. (3.6)

By looking for eigenvectors Xp of the form Xp,q = sin(ωp(q − 1)), q = 2, . . . , N − 1, one immediately
gets ωp = πp/(N − 1) with associated eigenvalue

λp = γ + 2δ

1 + δ
(1 − cos(ωp))

and p = 1, . . . , N − 2. Thus, at the critical strain

δ∗
u = −γ

γ + 2(1 − cos(ωN−2))
,

λN−2 becomes negative and the affine configuration loses stability. The associated mode shape is
given by

XN−2,q = sin
(

(N − 2)(q − 1)π
N − 1

)
.

This shows a maximum value at the centre which explains the high deformation, which leads
to subsequent folding at the centre. The strain value and mode shape predicted by the above
stability analysis are in excellent agreement with the numerical solution.

Let us now consider what happens when a folded lattice is stretched. The folded reference
configuration is given by zp = 0 for all p while xp = p − 1 if p ≤ N/2 and xp = p − 3 if p > N/2.
Thus, the strain of this configuration is δ = −2/(N − 1). If we stretch this configuration and look
for an equilibrium still having zp = 0 for all p, we need all springs but the central folded one to
have the same strain 
 while the central one has strain −
. We thus get xp = (p − 1)(1 + 
) if p ≤
N/2 while xp = (p − 2)(1 + 
) − (1 − 
) if p > N/2. The total strain δ of this configuration is thus
δ = 
 − 2/(N − 1). Again we want the critical value of 
, and thus δ, for which this configuration
loses stability.

The Hessian Hf
z in this configuration is similar to (3.5), that is,

Hf
z =

⎛⎜⎜⎜⎜⎜⎜⎝
α2 ζ2 0 · · · 0
ζ2 α3 ζ3 · · · 0
...

. . .
. . .

. . .
...

0 · · · ζN−3 αN−2 ζN−2
0 · · · 0 ζN−2 αN−1

⎞⎟⎟⎟⎟⎟⎟⎠ , (3.7)
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where

αp = γ + 2


1 + 

and ζp = − 


1 + 

,

for all p except for

αN/2 = αN/2+1 = γ + 


1 + 

− 


1 − 

and ζN/2 = 


1 − 

.

Let Q be the reflection matrix such that (QX)p = XN−p. Clearly, Hf
z commutes with Q so that we

know all eigenvectors X of Hf
z must satisfy QX = ±X. This means that they are either symmetric

or anti-symmetric with respect to the reflection p → N − p. Taking this into consideration, we find

that the search for the eigenvalues of Hf
z can be reduced to that of the eigenvalues of the two

(N/2 − 1) × (N/2 − 1) matrices given by

H± =

⎛⎜⎜⎜⎜⎜⎜⎝
α ζ

ζ α ζ 0
. . .

0 α ζ

ζ β±

⎞⎟⎟⎟⎟⎟⎟⎠ , (3.8)

where

α = γ + 2


1 + 

, ζ = − 


1 + 

(3.9)

and

β+ = γ + 


1 + 

and β− = γ + 


1 + 

− 2


1 − 

.

Here β+ refers to the symmetric eigenvalues while β− to the anti-symmetric ones.
As before, it is natural to look for eigenvectors Xp of the form Xp,q = sin(ωp(q − 1)), q =

2, . . . , N/2 − 1. This leads to the condition

(β± − α) sin(ωM) = ζ sin(ω(M + 1)),

where M = N/2 − 1.
In the symmetric case this reduces to

sin(ωM) = sin(ω(M + 1))

so that we get the solutions ωp = πp/(2M + 1) with eigenvalue λp = α + 2γ cos(ωp). It is easy to
see that these eigenvalues are always positive for 
 > 0. In the anti-symmetric case, we get

sin(ω(M + 1)) = 3 + 


1 − 

sin(ωM). (3.10)

Observe that since

3 + 


1 − 

>

M + 1
M

,

then (3.10) admits also exactly one complex solution ωr = iνr. The associated eigenvector is thus
Xr

q = sinh νr(q − 1) with eigenvalue λr = α + 2γ cosh(νr). A complete basis of eigenvectors is then
obtained from the real solution of (3.10). It is not hard to see that if ω is real than the associated
eigenvalue is positive for 
 > 0.
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Figure 8. Tensile strain in the axial springwith stiffness parameterγ at the onset of unfolding for three different chain lengths.
A chain of six masses can essentially capture the onset of bifurcation from the folded configuration of a much larger chain with
reasonable accuracy. (Online version in colour.)

It is not easy to give an exact expression for νr for finite r. If we take the limit M → ∞ and
assume that νr has a limit, we obtain, after some algebra,

cosh(νr) = 1
2

(
3 + 


1 − 

+ 1 − 


3 + 


)
= 5 + 2
 + 
2

3 − 2
 − 
2 ,

so that

λr = (γ + 4)
2 + 2(γ + 2)
 − 3γ


2 + 2
 − 3
.

We thus obtain that the critical strain at which the folded configuration loses stability is given by


∗ = −(γ + 2) ± 2
√

(γ + 2)2 − 3
γ + 4

. (3.11)

To evaluate how close the above asymptotic value of 
∗ is to the real value for finite N, we
computed 
∗ numerically. Since the eigenvalues of H− in (3.8) are distinct, only one can become
zero at the onset of the instability and thus the stability of this configuration can be evaluated by
simply examining the sign of the determinant of the matrix H.

Figure 8 displays the critical tensile strain 
∗ at the onset of the unfolding bifurcation transition
for a range of stiffness parameter values. Three distinct chain lengths are considered, with N = 4, 6
and 32 point masses. In each case, the critical spring length increases almost linearly with the
stiffness parameter γ . Furthermore, this critical value in a finite chain converges rapidly to the
corresponding value in an infinite chain. Indeed, the critical strain in a chain with six masses is
quite close to that in the 32-mass chain.

(c) Unfolded to folded transitions
Having clarified the folding transition and identified the onset of bifurcation points using a
stability analysis, let us now turn attention to analysing the transition path between the two
zero-energy configurations. We use two numerical techniques for this purpose. We first use a
standard shooting method-based procedure to investigate this localizing transition in detail in
§3c(i). We use this method to illustrate the stability regions as γ increases and the associated
hysteretic behaviour. For a moderate number of masses, 10 in our present study, we found this
approach hereafter outlined useful in understanding the bifurcation structure. We are aware that
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this approach may have limitations for a large number of masses. We then use a classical arc-
length solver-based continuation scheme in §3c(ii) on a further simplified four-mass chain which
confirms the folding transition.

(i) Shooting method for 10-mass chain

Here we cast the governing equations for the equilibria into the evolution of a dynamical system.
Note that the governing equation of an interior node p depends only on its nodal location and the
location of its nearest-neighbour nodes (p − 1 and p + 1). The governing equations may be used
to solve for the nodal location of the p + 1 node if the other two nodal locations are provided.
Accordingly, we may write a relation of the form

xp+1 = f (xp, xp−1), (3.12)

where xp = (xp, zp). To determine explicit expressions for xp+1 above, as before we let xp+1 − xp =
rp cos θp and zp+1 − zp = rp sin θp. Figure 5 displays a schematic of a part of the chain with the
relevant variables.

With this set-up, the equilibrium equations for the mass p, obtained by resolving the forces due
to the springs in the horizontal and vertical directions, may be written as

(rp − 1) cos θp = (rp−1 − 1) cos θp−1 (3.13a)

and
(rp − 1) sin θp = (rp−1 − 1) sin θp−1 + γ zp. (3.13b)

These equations can be unambiguously solved to obtain rp and θp as functions of xp−1 and xp. An
explicit formula for xp+1 is then easily obtained using

xp+1 = xp + rp cos θp and zp+1 = zp + rp sin θp. (3.14)

As discussed in §3b, the onset of instability for both the folded and unfolded configurations
happens along an anti-symmetric mode shape with respect to the reflection Q; see discussion after
(3.7). We thus expect that the deformation process from the unfolded to the folded configuration
will pass only through anti-symmetric configurations, that is configurations for which x10 −
x10−p = xp and z10−p = −zp. This is well verified in figure 7.

To find an equilibrium configuration for the chain, we first fix x5 and as a consequence x6.
Observe that, due to the symmetry of the configuration, this is equivalent to fixing θ5 and r5
which from now on we will call θ and r. Once x5 and x6 are fixed, we can use (3.12) to compute x7
up to x10 and as a consequence we get a full configuration for the chain.

At this point, there is no need for z10 to be 0. For a range of values of r, we search for the
value of θ for which z10 = 0. Finally, we relate back x10 to the strain δ. We call this procedure the
shooting method to find numerically an equilibrium configuration. Observe that high iterations of
f in (3.12) potentially present stability issues. This is the reason why we decided to compute only
anti-symmetric configurations starting from the centre of the chain. This is also the reason why the
application of this method to longer chains may require a more refined analysis of the dynamical
system generated by f .

To gain further insight into the difference between the high- and low-stiffness-parameter
responses (figure 7) and to understand the displacement jump in figure 7d, let us examine the
solution as the centre spring folds. Figure 9a displays the vertical displacement of the centre
mass z5 with compressive strain δ for four distinct stiffness parameter values. These curves are
obtained from the shooting method solution described above. For low γ , there is a single solution
for each strain value in the range δ ∈ [− 2

9 , 0]. However, as the stiffness parameter γ increases,
there are three possible solutions in a range of δ values. This multiplicity of solutions is evident
as the curve bends backwards yielding two stable and one unstable solution for each δ value.
By comparison, in figure 9b we show with black circles the stable solution computed with the
previously described Newton–Raphson approach, as the lattice is stretched from the folded to
the unfolded configuration. Obviously, there is an excellent agreement with the shooting method
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Figure 9. (a) Vertical displacement of the centre mass with the axial position of the last mass during the folding process for
different stiffness parameter γ values. The Newton–Raphson method solution (black circles) matches the shooting method
solution (curves) in both loading and unloading for γ = 0.1 (a,b), while the displacement jumps after the onset of instability
in both loading (c) and unloading (d) for γ = 0.2. (Online version in colour.)

solution (solid curve) over the entire range of the folding to unfolding transition. Furthermore,
the Newton–Raphson method solution of lattice compression from the unfolded to the folded
configuration also matches with this solution.

Let us now examine the response of a lattice having a higher stiffness parameter (γ = 0.2).
Figure 9c displays the Newton–Raphson method solution (black circles) as this lattice is stretched
from the folded to the unfolded configuration. As we discussed earlier, the solution is unstable
for high θ values and our Newton–Raphson method solution jumps to a stable branch, which
corresponds to a lower θ value. As the displacement increases, the solution follows this branch
until θ = 0 at around δ = −0.049 after which the vertical displacement of all the nodes is zero.
Finally, let us observe the behaviour of this lattice as it is compressed to deform from the unfolded
to the folded configuration. Figure 9d displays the Newton–Raphson method solution for this
case. The Newton–Raphson method solution matches with the shooting method solution until
the onset of instability, when the tangent to the red curve in the figure becomes vertical. Beyond
this point, our Newton–Raphson solver fails to converge to a stable equilibrium solution. The
black circle at around δ = −0.138 indicates the stable solution which a physical system is likely to
reach as the prescribed compressive strain increases, which corresponds to a folded configuration,
and then follows this horizontal branch (coinciding with the previous unfolding case). Thus, we
observe how the solution can be path-dependent for high stiffness parameter γ values when there
are multiple stable solutions.
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Figure 10. (a) Lattice energy and (b) force acting on the ends of the lattice as it deforms for different stiffness parameter values.
As the stiffness increases, the force is not unique in a range of displacements and allows for hysteresis during the folding process.
(Online version in colour.)

Having provided evidence for the existence of multiple stable solutions, let us see how the
lattice energy and force vary as the lattice deforms from one equilibrium configuration to another.
Figure 10a displays the lattice energy in the vertical axis as it deforms from the folded to the
unfolded configuration. The strain δ on the horizontal axis ranges from − 2

9 � −0.22 to 0. Three
curves corresponding to distinct values of stiffness parameter γ are shown. In each case, the lattice
energy is zero at both the folded and unfolded configurations, resulting in a double-well potential
in this range of deformations. At low γ values, there is a single energy value for each strain δ,
while at high γ , there are multiple energy values consistent with the observations above. For
γ = 0.2, we observe that the energy curve has three segments and folds back at around δ = −0.138
and −0.1. The middle segment joining the two end segments corresponds to the unstable branch.

Let us now illustrate how the corresponding horizontal force F acting on the chain varies
during the folding process. It is defined as the derivative of the potential energy with respect
to the chain length, given by

F = 1
N − 1

∂E
∂δ

,

and it is computed by taking the numerical derivative of the energy illustrated in figure 10a.
Figure 10b illustrates the force for the same three stiffness parameter values γ . In all cases, the
force is zero in the folded and unfolded configurations at δ = − 2

9 and δ = 0. For low stiffness
parameter values (γ = 0.05 and γ = 0.1 in the figure), there is again a unique force for each strain
value δ. The force–displacement response has three segments: two linear and one segment in the
middle joining them. The linear segments correspond to affine horizontal deformation about the
folded and unfolded configurations. The middle segment corresponds to the rotation of the centre
spring as θ varies from 0 to π and the effective stiffness of the chain is negative in this regime as
the force decreases with increasing prescribed displacement or tensile strain. Furthermore, there
are multiple values of force in a range of strains δ for the γ = 0.2 high-stiffness-parameter case. In
this range of displacements, there are two stable solutions and one unstable branch. The force–
displacement response illustrates the potential for achieving hysteresis in our lattice in two ways.
By prescribing displacement and alternating between the folded and unfolded configurations in
a lattice with high stiffness parameter γ , the lattice follows a different path around the unstable
branch. For example, in figure 10b, the force jumps down from 0.24 to −0.088 while unfolding and
it jumps up from −0.042 to 0.17 while folding.

Remark 3.1. We briefly remark on the alternative possibility of inducing hysteresis by
exploiting the negative stiffness zone. Instead of prescribing displacement, if we prescribe a
horizontal force at the ends of the chain, then the lattice solution will jump at the end of the
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broken mirror
symmetry

Figure 11. Deformation sequence for a chain with odd number of masses, showing an additional breaking of mirror symmetry
about the chain centre, during the transition from diffuse to localized deformation. (Online version in colour.)

first segment for all three stiffness values, for example at a force level F = −0.026 from δ = −0.013
while folding and at a force level F = 0.0710 from δ = −0.187 while unfolding. Thus, our results
illustrate the potential for hysteresis and localization guided programmable smart materials in
lattice-based media.

Remark 3.2. Finally, we remark on the behaviour of a chain with an odd number of masses.
Our preliminary investigations showed that such chains behave differently, although they
exhibit similar folding transitions. The difference arises due to an additional breaking of mirror
symmetry, as illustrated in figure 11.

(ii) Arc-length method for four-mass chain

Here we consider the simplest case of N = 4, that is a chain of four point masses anchored at its
extremes. As in previous sections, the unfolded and folded configurations of the four masses are

(0, 0), (1, 0), (2, 0), (3, 0) and (0, 0), (1, 0), (0, 0), (1, 0).

We can (and will) parametrize the x-coordinate of the last mass as 3l, with 1
3 ≤ l ≤ 1, ranging

through the folded and unfolded states. Alternatively, we can use the strain, which is related to l
by the linear relation

δ = l − 1 ∈ [− 2
3 , 0].

Calling xi = (xi, zi) the position of the ith point mass, the energy of the system, expressed in
non-dimensional form by normalizing it by a reference energy k0a2/2, is

E = γ

2

4∑
i=1

z2
i + 1

2

3∑
i=1

(‖xi+1 − xi‖ − 1)2, (3.15)

where the first sum is the potential energy of the vertical restoring force and the last sum is the
potential energy of the springs. In this last sum x1 and x4 represent the fixed extremes of the chain,
namely x1 = (0, 0) and x4 = (3l, 0).

Now, with N = 4, we assume that the equilibrium position satisfies x3 = 3l − x2 and z3 = −z2.
Let us call r the length of the segment from the middle point to the location of the second point
mass x2, and call θ the angle formed between the middle point and the horizontal. This way, the
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Figure 12. γ = 0.1. Stable equilibria connection between unfolded and folded configurations.

four point masses get located at the points

x1 = (0, 0), x2 =
(

3l
2 − r cos θ , r sin θ

)
, x3 =

(
3l
2 + r cos θ , −r sin θ

)
and x4 = (3l, 0).

Clearly, we have only the variables r and θ to consider and the potential to minimize becomes

E(r, θ ) = γ r2 sin2 θ +
⎛⎝√r2 − 3lr cos θ + 9l2

4
− 1

⎞⎠2

+ 1
2

(2r − 1)2,

so that by taking derivatives we get the necessary conditions

Er ≡ 2γ r sin2 θ + (2r − 3l cos θ )

⎛⎝1 −
(

r2 − 3lr cos θ + 9l2

4

)−1/2
⎞⎠+ 2(2r − 1) = 0

and Eθ ≡ 2γ r2 sin θ cos θ + 3lr sin θ

⎛⎝1 −
(

r2 − 3lr cos θ + 9l2

4

)−1/2
⎞⎠= 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(3.16)

Now, observe that there are two solutions valid for all γ :

Unfolded r = l/2 and θ = 0;
Folded r = 2

3 − l/2 and θ = π .

Unlike our previous numerical experiments, here we implement a classic pseudo-arc-length
continuation algorithm starting with the trivial solution branch (l/2, 0) for l ranging from l = 1
to l = 1

3 , and monitoring branch points1 originating from this branch. Further following this
bifurcating branch, we will eventually connect the branch (l/2, 0) to the other solution branch
( 2

3 − l/2, π ). Stability monitoring is done by looking at the Hessian eigenvalues. In figures 12–14,
we show what happens for several different values of γ . The most insightful visualizations are
obtained displaying the values of cos(θ ), with the two trivial branches corresponding to the values
1 and −1; when not confusing, we also display the height value, as in the figures of the previous
sections. We will show in thick lines the stable portions of the equilibrium branches. In spite of
different values of γ , the picture we obtain in this simple case of N = 4 is quite similar to what we
observed in the previous sections for N = 10.

For γ small (γ = 0.1 in figure 12), we have a stable connection of equilibrium configurations
between the two trivial branches of equilibria. That is, for each value of the strain in [− 2

3 , 0], there
is always only one stable stationary solution.

1Namely, values where there is another solution branch passing through them.
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Figure 13. Partially stable equilibria connection between unfolded and folded configurations. Hysteretic behaviour.
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Figure 14. (a) γ = 2. Both folded and unfolded branches are stable for a range of strain values. (b) γ = 7. As γ becomes
large, the branch of equilibria connecting folded and unfolded states is fully unstable; the states themselves are stable for all
strain values.

As γ grows, the stable connection between the two trivial branches develops a fold and there
are two stable equilibrium solutions for a range of values of the strain: one of the trivial branches
and (a portion of) the connecting branch; see the case of γ = 1.05 in figure 13.

At the same time, as we increase γ further, there is a range of values of the strain where both
trivial branches are stable, as well as part of the connecting branch of equilibria; see γ = 2 in
figure 14a. Eventually, for γ sufficiently large (γ = 7 in figure 14b), the connecting branch is made
up entirely of unstable equilibria and the branch points on the trivial branches occur outside the
range of values of the unfolded/folded configurations.

Remark 3.3. As an alternative to the continuation technique we used, we also double-checked
our results by a more algebraic technique, obtaining the same results. Dividing the second
equation in (3.16) by r sin θ , and with some algebra, (3.16) can be rewritten as

(2γ r cos θ + 3l)2

(
r2 − 3lr cos θ + 9l2

4

)
= 9l2

and (2r − 3l cos θ )γ r cos θ − 3l(γ r sin2 θ + 2r − 1) = 0.

⎫⎪⎪⎬⎪⎪⎭ (3.17)

From (3.17), the second equation becomes

2γ r2 cos θ − 3l((γ + 2)r − 1) = 0,
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that is,

cos θ = 3l((γ + 2)r − 1)
2γ r2 , (3.18)

which, replaced in the first of (3.17), gives

(3l((γ + 2)r − 1) + 3lr)2(8γ r3 − 36l2((γ + 2)r − 1) + 18γ l2r) − 72γ l2r3 = 0

or

18l2 − 9l2(5γ + 16)r + 18l2(γ + 3)(2γ + 7)r2 − 9l2(γ + 3)2(γ + 4)r3

− 8γ (γ + 3)r4 + 4γ (γ + 3)2r5 = 0.

From the roots of this quintic, which we get by finding them as eigenvalues of the associated
companion matrix (and keeping only the real ones for which the relative cos θ given by (3.18) is
in [−1, 1]), we obtain the possible equilibrium solutions.

4. Conclusion
To understand, predict and control localization patterns in lattices, we considered a square lattice
on an elastic substrate. We exemplified how the type of instability changes from in-plane to out-of-
plane with increasing stiffness parameter. The latter instability evolves to a localized deformation
with increasing strain and it is investigated in detail using a 1D lattice. Using a shooting method-
based approach, we identified the stable branches of deformation as the lattice deforms from
one stable configuration to another with a localized deformation. For lattices with low stiffness
parameter, there is only one stable solution as the localized pattern forms, while if this spring
stiffness exceeds a critical value, there are two stable solutions in a range of displacements.
The lattice energy and force response demonstrate the potential for inducing hysteresis due to
the existence of the two stable solutions. Finally, we considered the simplest model possible,
four point masses with the two end points fixed. In this case, we used a classical continuation
technique and were able to confirm the transition from unfolded to folded quasi-static equilibrium
configurations.

In summary, we have illustrated that, in contrast to many other existing works where
localization is unpredictable and sensitive to the presence of defects, localized deformation can
be predicted precisely based on geometry and symmetry considerations. The model presented
here provides insight into the localization process and can, in principle, be extended to study
thin sheets, or lattices, or an appropriate realistic system, by adding further interactions. Our
analysis framework may open avenues for controlled design of interfaces for waveguiding and
programmable smart materials applications.
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