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Preface (2003)

This book started as a translation of an earlier Italian book by one of us.
The present book is not only a substantial revision of the earlier book but
it also deals with a number of problems that were not treated there. The
main novelty is the systematic treatment of a few characteristic problems
of ergodic theory by a unified method in terms of convergent power series
expansions. The methods of resummation necessary to deal with such se-
ries have become familiar as “renormalization group methods” and in our
opinion provide the simplest and most intuitive approach to the problems
that we discuss (like KAM theory and Anosov maps).

A substantial number of questions, some even more interesting than the
ones in the main body of the book, are treated in the form of guided prob-
lems. This is not done to save space (in spite of the importance of such
saving) but mainly because we feel that it constitutes, for the interested
reader, a more stimulating way of presenting the matter.

We are grateful to Dr. Alessandro Giuliani for his many critical comments
and suggestions. And we warmly thank Professor Wolf Beiglböck for his
continuous support and encouragement.

version 3.1.

Roma 18 july 2003. Giovanni Gallavotti

Federico Bonetto

Guido Gentile

Preface to the Italian book (1980)

In recent years books on problems of ergodic theory appeared with the
common theme of stressing the close relations observed between it and the
theory of Gibbs states.

In these lectures I collect the contents of several courses and seminars that
I presented in various occasions (mainly Courant Institute, (1972), EPF of
Lausanne (1979), Scuola di perfezionamento in Fisica di Roma (1980)).

The organization and the choice of the arguments has been largely in-
fluenced by the monographs of R. Bowen and D. Ruelle: this book mainly
deals with the ergodic theory of maps (one dimensional ergodic theory). My
intention has been to exhibit the existence of a tread connecting apparently
different problems by always selecting, for illustration purposes, simple ex-
amples and by often avoiding formulating results in the widest generality:
this collection of lectures is intended for beginners in ergodic theory and it
follows a particular point of view: that of keeping always contact with sta-
tistical mechanics (from which the problems originated but which no longer
appears clearly as the source of the main problems, ideas and conjectures).

The problems at the end of every section are an essential complement to
the text and they are not always obvious or of easy solution. In using this
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book as a textbook for a course it would be useful to solve many of the
problems leaving to the students the task of studying the main part of the
textbook: it is only through the problems that the student can reach and go
beyond the formal (hence superficial) level of understanding and to master
the technical difficulties and to reach at the roots of the ideas. Almost all
problems propose a proof of a classical result that, although I consider it
not very useful to describe explicitly in the text, nevertheless cannot be
neglected of skipped if one is attempting to study the subject of ergodic
theory.
At the same time the problems provide a guide to the systematic study
of related results or of results traditionally pertaining to other disciplines;
the guide is meant to put within the frame of ergodic theory a certain
number of them and to show their connection with some basic achievements
in ergodic theory. Such a guide is necessary because the extraordinary
variety of techniques and methods that constitutes one of the reasons of the
fascination that ergodic theory exerts on mathematicians becomes also the
main difficulty for a beginner.
The lectures on Gibbs states concern only one–dimensional systems: nev-
ertheless a good part of the results extends with obvious modifications to
systems in higher dimensions (which are more directly related to the sta-
tistical mechanics) and this holds in particular for the §(6.1)§(6.2) and to
a fair extent for §(5.1), §(5.2), §(6.1), §(6.4), §(6.4). Therefore I think that
what is discussed in this book could also serve as an introduction to the
theory of Gibbs states and of stochastic processes in more dimensions.
In the references the publication years refer to the quoted edition rather
than to the original edition.
While writing up these lectures I benefitted from several discussions with
students and collaborators or colleagues whom I wish to thank because
without their help and encouragement this work would have been impossi-
ble. In particular I thank G. Benfatto, M. Campanino, F. Ledrappier, G.
Pianigiani.
I am also indebted to several institutions for invitations to give courses
and seminars providing me the chance and the means to learn and to or-
ganize the topics treated here: among them in particular Institut Hautes
Etudes Scientifiques (IHES), Scuola Matematica Internazionale (SMI), Is-
tituto Nazionale di Alta Matematica (INDAM), Scuola di Perfezionamento
in Fisica di Roma.
Finally the encouragement to start writing these notes from Unione Mate-
matica Italiana and Carlo Pucci has been essential.

Roma 15 giugno 1980 Giovanni Gallavotti
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§1.1: Historical note 1

CHAPTER I

General qualitative properties

§1.1 Historical note

We begin with a few comments on the meaning of the word ergodic.

At the beginnings of Statistical Mechanics a “collection of time evolution
invariant probability distributions on phase space” or a “collection of sta-
tionary distributions on phase space” for a given Hamiltonian system, was
called by Boltzmann, see [Bo09] and pag. 85 of [Bo96], a monode: the mod-
ern abbreviated locution describing this notion is a “statistical ensemble”
(or simply an “element of a stationary ensemble”).

The wordmonode, one among many coined by Boltzmann who clearly loved
to invent this kind of words, is of greek origin: it is composed by mìnos ,
unique, and by eÙdos , aspect, appearance. Probably because this suggests
the image of a collection of copies of the considered system which keeps, as
a collection, its appearance as time evolves: each copy being subjected to a
motion whose only global effect is a permutation of the various copies.

Boltzmann, then, called ergode a monode characterized by a uniform dis-
tribution on a surface of constant energy: a monode is ergodic if it is an
ergode.

Hence it looks difficult or, better, impossible to attribute a literal meaning
to ergodic theory, a locution that has not been used by Boltzmann. The
origin of the word seems to go back to the Ehrenfests who, in the their
important work of interpretation and popularization of Boltzmann’s ideas,
called “ergodic” any mechanical systems whose surfaces of constant energy
consist of a single trajectory (which had been named, instead, isodic by
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2 §1.1: Historical note

Boltzmann, from Ò�s , same, ådìs , road, path), see footnote 93 in [EE59].
They called quasi-ergodic any mechanical system whose trajectories invaded
densely the surface ΣE of constant energy E, see footnote 98/99 in [EE59],
and concluded with words of discomfort and doubt on the actual existence of
systems endowed with the ergodic property, see pag. 25, line 15, of [EE59].
In this respect see also the footnote 97 in [EE59], where one cannot avoid
being surprised by the depth of Boltzmann’s intuitions. The meaning of
these intuition, we feel, still escaped the Ehrenfests in 1912. Indeed Boltz-
mann chooses, in quoting an example of an ergodic system, a system which
is still today considered a possible example. The work of the Ehrenfests
generated renewed efforts, by many mathematicians, to interpret formally
Boltzmann’s ideas. Thus the true and proper ergodic theory began and the
first fundamental result has been the classical formulation by Birkhoff of
the ergodic hypothesis: a precise mathematical translation of a nice formula
by Boltzmann, see formula (34) at pag. 25 of [EE59].
Such a hypothesis also called metric transitivity hypothesis, supposes that
for “interesting” mechanical systems the trajectories of almost all points of
the surface ΣE invade it densely and, furthermore, spend in each of its parts
Λ ⊂ ΣE a fraction of time proportional to its Liouville measure:

∫
Λ
δ(H(p, q)− E)dpdq∫

ΣE
δ(H(p, q)− E)dpdq

(1.1.1)
e1.1.1

having denoted with p, q the canonical coordinates of the system and with
H(p, q) its Hamiltonian function.
Ergodic theory thus acquired the precise meaning of “theory of the ergodic
hypothesis”: i.e. it became the complex of mathematical propositions con-
nected, or held as connected, with attempts of showing the validity (or the
falsity) of the hypothesis in the case of various mechanical systems.

As a curiosity it can be interesting to note that, oddly, the Ehrenfests
derive the ethimology of the word ergode from êrgon , energy, and ådìs ,
road, rather than from êrgon and eÙdos , as it seems to be beyond doubt:
by reading Boltzmann the word ergode comes out as a natural abbreviation
of the word (more clearly explicative of the concept but lengthier hence,
perhaps, less satisfactory) ergomonode, see footnote 93 in [EE59].

Mathematicians and physicists made efforts (with increasing vigor, par-
ticularly after the 1950’s) directed to obtain a proof of the validity of the
ergodic hypothesis in particular mechanical systems: although the efforts
did not lead to a solution of the original problem, at least not in a generality
relevant for applications, they led to extensions of the problem and to a vast
class of mathematical results that encompass fields which at a first sight are
rather inhomogeneous (like number theory or information theory). It is to
this set of results, a mixture of results on diverse fields and in continuous
expansion, that we refer today when we talk of ergodic theory which is,
therefore, a name characterizing rather unprecisely each of its arguments.
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§1.1: Historical note 3

In this book we shall select and illustrate several different problems that
represent aspects of ergodic theory, trying to stress the common features
that justify their classification as elements of a single mosaic.

Note to §1.1
(1) The use of the axiom of choice seems to have influenced in an essential
way the interval of time that has been necessary for the correct mathemat-
ical formulation of the metric transitivity hypothesis: this appears quite
clearly from the footnote 87 of the quoted book of the Ehrenfests, [EE59],
that seems to consider as an insuperable obstacle to the otherwise natural
formulation of the hypothesis a (probably unconscious) application of the
axiom.
Indeed the σ0(p, q) of the quoted footnote would be, in a metrically tran-
sitive system, a nonmeasurable function whenever really varying from a
G–path to another and it would not be possible to construct it without us-
ing the axiom of choice, that is therefore implicitly used, see problem [2.2.54]
for an example of the construction of such a function along the argument
of [EE59].
This instance is likely to be the only one in which the axiom of choice has
exerted its sinister influence over a fundamental question of physical and
applicative interest.

(2) A detailed critical analysis, and an exegesis in contemporary language,
of Boltzmann’s work would be very interesting. Until now such an enterprise
has not been really undertaken, obviously because of the prohibitive amount
of work that it implies. Nevertheless the literature on Boltzmann is large and
rich of ideas and proposals for a deeper understanding, as the fascination of
his personality allows anyone (even a profane) to predict, see [Ce99]. A first
bibliography of studies on Boltzmann is given here although it is possibly
seriously incomplete.

Bibliographical note to §1.1
On the foundations of statistical mechanics many of the original works are
interesting. Among these we mention those of Boltzmann, Gibbs, Maxwell;
see [Bo09], [Bo02], [Bo03],[Gi60], [Ma65]
Among the works of critique on the foundations see for instance Ehrenfest
and Ehrenfest, [EE59], and Krylov, [Kr79]. More recent discussions can be
found in [Br99], [Ga00].
The life and scientific achievements of Boltzmann are molded together in
the books [Ce99], [Li01]: the first being more informative on the scientific
aspects of Boltzmann’s figure while the second gives a very clear picture
of the aspects of his personality that made his life look to himself rather
unhappy.
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4 §1.2: Examples and some definitions

§1.2 Examples and some definitions

We begin our analysis by illustrating simple examples of “dynamical sys-
tems”: dynamical systems, indeed, constitute the fundamental mathemati-
cal entity of ergodic theory, [AA68].

Example (1.2.1)E1.2.1 : Let f ∈ C∞(Rd,Rd) be a function on R
d with values in

R
d
that we shall suppose to be uniformly bounded together with its first

derivatives. We denote by t → x(t) ≡ St(ξ) the solution of the differential
equation

ẋ = f(x) x(0) = ξ , ξ ∈ R
d. (1.2.1)e1.2.1

Then (St)t∈R is a group of maps of class C∞ of R
d into itself and

(Rd, (St)t∈R) is a dynamical system called the flow on R
d generated by

the differential equation (1.2.1) or by the vector field f .
Often f has other remarkable properties. For example sometimes f has
zero divergence:

d∑

i=1

∂fi
∂ξi

(ξ) = 0 for all ξ ∈ R
d, (1.2.2)e1.2.2

if f = (f1, . . . , fd). If λ denotes the Lebesgue measure on R
d
one has, in

the latter case,

λ(E) = λ(StE) for all t ∈ R, (1.2.3)e1.2.3

for every λ–measurable set E: i.e. the map St preserves the Lebesgue mea-
sure.
Sometimes f generates a group that leaves a closed set Ω invariant. For
instance this happens if Ω is a sphere or a torus or, more generally, a domain
with C∞–regular boundary ∂Ω and, denoting by n(ξ) the external normal
to ∂Ω in ξ,

f(ξ) · n(ξ) ≤ 0 for all ξ ∈ ∂Ω, (1.2.4)e1.2.4

holds everywhere on ∂Ω. In such a case St(Ω) ⊂ Ω, for all t > 0, and one
can consider the flow generated, for t ≥ 0, by equation (1.2.1) in Ω, that
will be denoted (Ω, (St)t∈R+

).
Invariant sets can also be constructed from first integrals, also called con-
stants of motion, of equation (1.2.1), when they exist. Indeed if F ∈
C∞(R

d
,R) is a first integral for equation (1.2.1), i.e. if F (Stξ) ≡ F (ξ),

for all ξ ∈ R
d and for all t ∈ R, given γ ∈ R the sets

Ω<γ = {ξ|F (ξ) < γ}, Ω>γ = {ξ|F (ξ) > γ}, Ωγ = {ξ|F (ξ) = γ} (1.2.5)e1.2.5

are obviously invariant under the flow generated by equation (1.2.1).

20/novembre/2011; 22:18



§1.2: Examples and some definitions 5

From example (1.2.1) that we have just discussed one derives as particular
cases, or as generalizations, the examples below (1.2.2) (Hamiltonian flows)
or (1.2.3) (flows on differentiable manifolds), respectively.

Example (1.2.2)E1.2.2 : (Hamiltonian flows) Let H ∈ C∞(R2N ,R) and E ∈ R be
such that

(i) Ω≤
E = {(p, q)|(p, q) ∈ R

2N
, H(p, q) ≤ E} is a bounded set.

(ii) ΩE = {(p, q)|(p, q) ∈ R
2N

, H(p, q) = E} is a bounded smooth surface of
dimension 2N − 1 with no equilibrium points, i.e. with no points such that
∂H = 0, where ∂ denotes the gradient.

Under such conditions the Hamilton equations

ṗi = −
∂H

∂qi
, q̇i =

∂H

∂pi
, i = 1, . . . , N, (1.2.6)e1.2.6

allow us to define a group (St)t∈R of maps of class C∞ on R
2N such that

for all E ∈ R:
(1) the sets Ω≤

E and ΩE are invariant.

(2) the maps preserve the Lebesgue measure λ restricted to Ω≤
E , or to ΩE .

1

N1.2.1

The dynamical systems (Ω≤
E , (St)t∈R), (ΩE , (St)t∈R) are calledHamiltonian

flow with energy ≤ E or with fixed energy E, respectively.
The hypotheses (i) and (ii) allow us to define the normalized Lebesgue

measures λE on Ω≤
E or on ΩE obtained by normalizing to 1 the restriction

of the Lebesgue measure to Ω≤
E or to ΩE : the normalization factor turns

out to be, indeed, < +∞.

The pairs (Ω≤
E , λE) or (ΩE , λE) are, in the language of probability theory,

probability distributions on Ω≤
E and on ΩE . Such distributions are invari-

ant with respect to the Hamiltonian flows on Ω≤
E or on ΩE , because the

Hamilton equations have zero divergence. When considered together with
the corresponding Hamiltonian flows, they are denoted with the symbol

(Ω≤
E , λ

≤
E , (St)t∈R) or (ΩE , λE , (St)t∈R), respectively, and their collections,

as the energy E varies, constitute two examples of invariant statistical en-
sembles or stationary ensembles. In Boltzmann’s nomenclature they are an
example of a monode (the first collection) and of ergode (the second), see
Sec.1.1.

Example (1.2.3)E1.2.3 : Let V be a compact differentiable Riemannian manifold
of class C∞ and let f a vector field tangent to V . The differential equation

ẋ = f(x), x(0) = ξ, (1.2.7)e1.2.7

1 The Lebesgue measure restricted to ΩE is, the measure λE(dpdq) = δ(H(p, q) −
E)dpdq = dσE

|∂H| if dσE is the surface element on ΩE . This is locally finite in all di-

mensions N > 1 if ∂H does not vanish to a too high order at the equilibrium points, if
any. See also Appendix (1.2).
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6 §1.2: Examples and some definitions

allows us to define a group of maps (St)t∈R of V into itself as we did in the
example (1.2.1). Such maps are of class C∞ and the pair (V, (St)t∈R) will
be the flow generated on V by (1.2.7).
We shall say that (St)t∈R preserves the volume on V if the volume measure
µ on V is invariant under the action of St, i.e. if for each E ∈ B(V ) = {Borel
sets of V } (see Appendix (1.2)) one has

µ(E) = µ(StE) for all t ∈ R. (1.2.8)e1.2.8

The measure µ will be always considered normalized (note that the volume
of V is certainly finite) and the probability distribution (V, µ) will be a
stationary distribution for the flow (V, (St)t∈R) when (1.2.8) holds. In the
last case µ will be called a stationary distribution for the flow (V, (St)t∈R).
A concrete case associated with the above example is described in the
following one.

Example (1.2.4)E1.2.4 : (Quasi-periodic flows) Let T
d be the standard d–

dimensional torus (i.e. Td is [0, 2π]d with “opposite sides identified” or,

more precisely, Td = R
d/Zd) and consider the differential equation on T

d

ϕ̇ = ω, (1.2.9)e1.2.9

where ω ∈ R
d
. It defines the group (St)t∈R:

Stϕ = ϕ+ ωt = (ϕ1 + ω1t, . . . , ϕd + ωdt) mod 2π (1.2.10)e1.2.10

The flow (T
d
, (St)t∈R) is called a rotation flow or a quasi-periodic flow of

the torus Td with velocities ω ∈ R
d. It preserves the volume measure λ on

T
d (thought of as a flat Riemannian manifold with the natural metric)

λ(dϕ) =
dϕ

(2π)d
. (1.2.11)e1.2.11

If ρ ∈ R
d the map

Sϕ = ϕ+ ρ = (ϕ1 + ρ1, . . . , ϕd + ρd) mod 2π (1.2.12)e1.2.12

will be called a rotation map of Td with rotation vector ρ. Obviously S = S1

if (St)t∈R is the rotation flow of Td with velocities ρ.
Many important examples of maps S of manifolds do not correspond to dif-
ferential equations on the same manifold (in the sense that S = S1 if (St)t∈R
is the flow associated with a suitable differential equation). A classical case
is the following.2N1.2.2

2 Another one which is widely studied in literature is the standard map which will be
discussed in Sec. (9.2).
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§1.2: Examples and some definitions 7

Example (1.2.5)E1.2.5 : (Arnold’s cat map) Let S be a d× d matrix with integer

entries and define, for all ϕ ∈ T
d
,

(Sϕ)i =
d∑

j=1

Sijϕj mod 2π, i = 1, . . . , d. (1.2.13)e1.2.13

Then S maps the torus Td into itself and is of class C∞. Furthermore, if
detS = ±1 then S is invertible and preserves the volume.
In general even if detS = 1, it is not possible to find a differential equation
on T

d generating a flow (St)t∈R that interpolates S (i.e. such that S1 = S).

A typical and important example is provided by the map of T2 associated,
via (1.2.13), with the matrix:

S =

(
1 1
1 2

)
; (1.2.14)e1.2.14

see problem [1.2.9].
If the map S defined by (1.2.13) has detS 6= ±1 then it is not invertible:

every ψ ∈ T
d is an image of | detS| pairwise distinct points ϕ of Td. In this

case the pair (Td, S) is a noninvertible dynamical system.

Example (1.2.6)E1.2.6 : (Lorenz’ equation) Noninvertible systems have usually
origin in connection with the theory of equations, or maps, that model
dissipative phenomena. Consider the equation in R

3

ẋ =σ(y − x),
ẏ = − σx − y − xz,
ż = − bz + xy − α;

(1.2.15)e1.2.15

then the solutions of this equation exist globally for t ≥ 0 for every initial
datum if, as we shall suppose, σ, b, α > 0. If (St)t≥0 is the semigroup that
solves the (1.2.15) it is, furthermore, true that the sphere

Ω0 =
{
ξ | ξ ∈ R

3, | ξ | ≤ ρ0 =
2α

min{1, σ, b}
}

(1.2.16)e1.2.16

is invariant (as a consequence of (1.2.4), see also problem [1.2.11]): StΩ0 ⊂
Ω0, for all t ≥ 0. The pair (Ω0, (St)t≥0) is a noninvertible dynamical system
or a noninvertible flow on Ω0, because St fails to be surjective from Ω0 to
Ω0. Note however that St is invertible as a map from R

3 into itself, see
problem [1.2.11].
Note that the divergence of the second member of (1.2.15) is−(1+b+σ) < 0
and, hence, the measure of every (measurable) set A contracts according to

λ(StA) = e−(1+b+σ)tλ(A) t ≥ 0 (1.2.17)e1.2.17
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8 §1.2: Examples and some definitions

i.e. the Lebesgue measure is not invariant under the flow (St)t≥0 and there
can be no invariant measure on Ω0 equivalent to it.3 If a measure µ isN1.2.3

absolutely continuous with respect to the Lebesgue measure or with respect
to the volume measure on a manifold one often omits the reference measure
and one says simply that µ is absolutely continuous.
The equation (1.2.15) is usually written using x, y, z + r + σ, instead of
x, y, z, and is called Lorenz’ equation, see equations (25),(26),(27) in [Lo63].

Example (1.2.7)E1.2.7 : (Interval maps) Another example of noninvertible dynam-
ical system is provided by a continuous, piecewise C∞, map S : [0, 1]→ [0, 1]
with a graph of the form

1
x

f(x)1

0

Fig.(1.2.1)F1.2.1 : A map of the interval [0, 1].

In general the map S will not be invertible and the pair ([0, 1], S) will form,
therefore, a noninvertible dynamical system.

The above are examples of the mathematical entities called dynamical sys-
tems. Because of their obvious interest, they motivate the following defini-
tions that summarize and put in abstract form their main properties.

(1.2.1) Definition:D1.2.1 (Topological dynamical systems and metric dynami-
cal systems)
Let Ω be a compact separable metric space and let S be a continuous map of
Ω into itself. The pair (Ω, S) will be said a discrete topological dynamical
system on Ω. (Ω, S) will be said invertible if S has a continuous inverse
S−1.
Let µ be a complete probability measure defined on a σ–algebra B of sets
of Ω and let N ∈ B be a set with zero µ–measure, and suppose that S is a
map measurable with respect to B outside N , see Appendix (1.2). If

µ(A) = µ(S−1A) for all A ∈ B∩N c, (1.2.18)e1.2.18

where N c = Ω/N is the complement of N , we shall say that (Ω, S) is µ–
preserving or that µ is S–invariant. The triple (Ω, S, µ) will be called a

3 Given two measures µ and ν defined on the same σ–algebra B, see Appendix (1.2), ν
is absolutely continuous with respect to µ if there exists f ∈ L1(µ) such that ν = fµ.
The measures µ and ν are equivalent if µ is absolutely continuous with respect to ν and
ν is absolutely continuous with respect to µ.
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§1.2: Examples and some definitions 9

(discrete) metric dynamical system mod 0 defined outside N . If N = ∅ the
triple (Ω, S, µ) will be called a (discrete) metric dynamical system.

Often the set N of “singularities of S” is not explicitly mentioned and one
simply talks of a metric dynamical system (Ω, S, µ). We shall try to avoid
this practice because of the risks of confusion it generates. Analogously:

(1.2.2) Definition:D1.2.2 (Topological flows and metric flows)
Let Ω be a compact separable metric space. Let (St)t∈R or (St)t∈R+

be a
group or a semigroup, homomorphic to R or to R+, of maps that act with
continuity on Ω.4N1.2.4

The pair (Ω, (St)t∈R) or (Ω, (St)t∈R+
) will be called respectively an invert-

ible topological flow or a topological flow on Ω.

Let µ be a complete probability measure on a σ–algebra B and let (St)t∈R
be a group of µ–measurable maps homomorphic to R and preserving µ.
Suppose that the function (t, x) → Stx defined on R × Ω with values in
Ω is µ–measurable with respect to the σ–algebra generated by the sets in
B(R) × B. Then the flow (Ω, (St)t∈R, µ) will be called a invertible metric
flow on Ω.

If, mutatis mutandis, we replace (St)t∈R by a semigroup (St)t∈R+
, B(R+)×

B–measurable, we obtain the notion of metric flow.

Flows will also be called, sometimes, continuous dynamical systems because
their time “elapses continuously”.

Speaking of dynamical systems one often omits the qualifications (topolog-
ical, metric, discrete, continuous, invertible,...) that are usually supposed
to be understandable from the context. One can (generously) even consider
the (here seldom used) notions of abstract discrete dynamical system (Ω, S)
with Ω being a “space” and S a “map” acting on it, as well as the similar
notion of abstract flow.

Before proceeding to analyze the structure of certain classes of dynami-
cal systems it is convenient to set up the notion of isomorphism between
dynamical systems.

(1.2.3) Definition:D1.2.3 (Isomorphisms)
If (Ω, S) and (Ω′, S′) are two abstract discrete dynamical systems, we shall
say that they are isomorphic, or conjugated, when there exists an invertible
map I : Ω↔ Ω′ such that

IS = S′I. (1.2.19)e1.2.19

If the systems (Ω, S) and (Ω′, S′) are discrete topological dynamical systems
we shall say that they are topologically isomorphic if they are isomorphic
and if the isomorphism I can be chosen bicontinuous.

Let (Ω, S, µ) and (Ω′, S′, µ′) be two discrete metric dynamical systems
mod 0, defined outside the sets N,N ′ of zero µ, µ′ measures and defined
on the σ–algebras Bµ and Bµ′ respectively. If (Ω/N, S) and (Ω′/N ′, S′) are

4 This means that the functions (t, x)→ Stx of R×Ω or of R+×Ω into Ω are continuous.
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10 Appendix 1.2: Basic definitions of measure theory

isomorphic and if I can be chosen bimeasurable outside N,N ′ with respect
to the σ–algebras Bµ and Bµ′ and if, furthermore,

µ′(IA) = µ(A) for all A ∈ Bµ (1.2.20)e1.2.20

we shall say that the systems are isomorphic mod 0.

In the latter case there exist two zero measure sets N ∈ B and N ′ ∈ B′

such that S−1N = SN = N and S′−1
N ′ = S′N ′ = N ′ and furthermore

(Ω/N, S, µ) and (Ω′/N ′, S′, µ′) are isomorphic in the sense that there is a
bimeasurable map I of Ω/N to Ω′/N ′ verifying IS = S′I on such sets and
mapping µ onto µ′. One can formulate, in an analogous fashion, various
notions of isomorphism between flows.

Appendix 1.2: Basic definitions of measure theory

We recall here some basic defintitions of measure theory. A collection of
sets among which is the empty set and that is closed under the operations
of complementation and of finite union is called an algebra; if it is also
closed under countable union is called a σ–algebra. The smallest σ–algebra
containing a given family F of sets is called the σ–algebra generated by
F . The σ–algebra generated by the open sets of a topological space Ω is
called the Borel σ–algebra B(Ω) and its elements are called Borel sets. A
measure µ on a σ–algebra B is a countably additive non-negative function
of the sets of B, which are called µ–measurable sets. Given a σ–algebra
B and a measure µ we can consider the σ–algebra Bµ generated by B and
all the sets contained in a µ–measurable set with zero µ measure. The
σ–algebra Bµ is called the µ–completion of B. A measure µ can always
be extended uniquely to a measure on the σ–algebra Bµ. If B = Bµ the
measure µ is called complete. A measure µ which is defined on the Borel
sets of a topological space is called a Borel measure, while a measure that is
the completion of its restriction to the Borel sets is called a complete Borel
measure.
The usual Riemann measure on R

d is defined over the algebra of sets which
are approximable from inside and from outside by unions of rectangles with
an arbitrarily small volume in between. It is not countably additive but it
can be extended to the Borel sets and then completed defining in this way
the Lebesgue measure. On Riemannian manifolds the Riemann measure is
defined in the same way by using local charts and the volume form generated
by the metric. The usual Lebesgue measure and, more generally, the volume
measures λ on Riemannian manifolds will be regarded as complete measures
defined on the Borel sets B(Ω) and extended to Bλ(Ω), see problem [1.2.19].
Given a function S from Ω to Ω′ the inverse image S−1(E) of a set E ⊂ Ω′

is the set of all x ∈ Ω such that S(x) ∈ E. A function (map) S between
two spaces Ω and Ω′ is measurable with respect to the σ–algebras B and B′,
defined respectively on Ω and Ω′, if the inverse image of every set E ∈ B′ is
an element of B. A function S measurable with respect to the completion
Bµ of B relative to a measure µ is called µ–measurable. A function S is
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called bimesurable if S−1 exists and if both S and S−1 are measurable. If
Ω = Ω′ and B = B′ we simply say that S is measurable with respect to B.
Given a set N in B we call B(Ω)∩N c the σ-algebra generated by the sets
Aν for A ∈ B. If N,N ′ are sets in B,B′ and the map S of Ω\N into Ω′ \N ′

is such that S−1E′ ∈ B(Ω)∩N c for all E′ ∈ B(Ω′)∩N ′c then S is said to
be measurable with respect to B,B′ outside N,N ′. If both S and S−1 are
defined and both are B,B′ measurable outside N,N ′ then the map S is said
bimeasurable with respect to B,B′ outside N,N ′.

Problems for §1.2

[1.2.1]:Q1.2.1 Show that the differential equation (1.2.1) admits, as stated in example (1.2.1),
global solutions under the assumptions considered there.

[1.2.2]:Q1.2.2 (Liouville theorem)

Show that equation (1.2.2) implies equation (1.2.3).

[1.2.3]:Q1.2.3 Show that equation (1.2.4) implies the invariance of Ω.

[1.2.4]:Q1.2.4 Construct an example of a non-Hamiltonian differential equation in R
2 possess-

ing first integrals in the sense of example (1.2.1), in C∞(R2).

[1.2.5]:Q1.2.5 Show that ẋ = −x is a differential equation with no non-constant C∞ first
integrals.

[1.2.6]:Q1.2.6 Consider a differential equation in R
d of the type considered in example (1.2.1)

and suppose that for every x ∈ R
d the limit limt→+∞ Stx exists and takes only a finite

number of values as x varies in R
d. Show that the differential equation does not admit

non-constant C∞ first integrals.

[1.2.7]:Q1.2.7 Find some other criterion of non-existence of first integrals for a differential

equation inspired by that of problems [1.2.5], [1.2.6].

[1.2.8]:Q1.2.8 Show that, in the case of equation (1.2.13), if detS = ±1 then S is invertible
and it is of class C∞ together with its inverse.

[1.2.9]:Q1.2.9 (A map not embeddable into a flow)

Show the non-existence of a differential equation on the torus T
2 such that S1 = S

where S is the map of T2 into itself defined by (1.2.14). (Hint: Show that if ϕ̇ = f(ϕ)

were such an equation we would have:
∑

j
Sijfj(ϕ) ≡ fi(Sϕ) and, more generally:∑

j
(Sn)ijfj(ϕ) ≡ fi(Snϕ) for alln ∈ Z. This is absurd. In fact since the ma-

trix S is Hermitian with eigenvalues (3 ±
√
5)/2, one greater and one smaller than 1,

lim sup
|n|→∞

|Snv| = +∞, for all v ∈ R
2 \ {0}, while |f(Snϕ)| ≤ maxψ |f(ψ)| <∞).

[1.2.10]:Q1.2.10 (Toral maps)

Show that if S is a matrix with integer entries and if N = |detS| 6= 0 then S is a

continuous map of the torus into itself and every point of Td is the image of N points of
T
d. Furthermore S is of class C∞ on T

d.

[1.2.11]:Q1.2.11 (Lorenz’ equation)

Show that Lorenz’ equation (of example (1.2.6)) admits global solutions (in the past
and in the future); and show that Ω0 is invariant only in the future. (Hint: Multiply
scalarly the (1.2.15) by (x, y, z) and deduce an a priori bound on the solutions of (1.2.15)
by noting that the cubic terms obtained in this way disappear. Use criterion (1.2.4) to
conclude.)

[1.2.12]:Q1.2.12 (Expanding interval maps)

Let Sx = 2x, 0 ≤ x ≤ 1/2, Sx = 2(1 − x), 1/2 ≤ x ≤ 1, cf. example (1.2.7). Show that
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12 §1.2: Problems.

the Lebesgue measure λ on [0, 1] is S–invariant (λ(E) = λ(S−1E), for allE ∈ B([0, 1])).
[1.2.13]:Q1.2.13 (The equation for invariant density)

Consider a continuous piecewise smooth (in general noninvertible) map T of [0, 1] and
suppose that the measure µT (dy) = f(y)dy, absolutely continuous with respect to the
Lebesgue measure, is T–invariant, see definition (1.2.1): then the equation for its density
is f(y) =

∑
z:Tz=y

|T ′(z)|−1f(z).

[1.2.14]:Q1.2.14 Let S and T be two smooth maps of [0, 1] which are conjugated or isomorphic,

i.e. such that there exists an invertible C1([0, 1]) map F : [0, 1] → [0, 1] such that Ty =
FSF−1y, and suppose that µT (dy) = f(y)dy is T–invariant (see problem [1.2.13]). Check
that setting µS(E) = µT (F (E)), i.e. µS(dx) = f(F (x))|F ′(x)|dx, yields an S–invariant
measure µS .

[1.2.15]:Q1.2.15 (Ulam–von Neumann map)

Show that the Ulam-von Neumann map x → T (x) = 4x(1 − x) and the map x = Sx,
where S is defined as in problem [1.2.12], are conjugated via the map y = F (x) =
(2/π) arcsin

√
x. The map T (x) = ax(1− x), with a ∈ R, is sometimes referred to as the

logistic map.

[1.2.16]:Q1.2.16 It is known that every compact C∞ Riemannian manifold V can be smoothly
immersed into an Euclidean space of suitably large dimension n. Denoting by Y such

an immersion show that there exists a differential equation ξ̇ = ϕ(ξ) in R
n, of class C∞,

that admits the manifold Ṽ = Y (V ) as an invariant manifold and that induces on Ṽ a

flow (S̃t)t∈R that is the image of the flow on V generated by equation (1.2.7) so that,

denoting the latter by (St)t∈R, it is S̃tY x = Y Stx, t ∈ R, x ∈ V .

[1.2.17]:Q1.2.17 (Geodesic flow)
Let V be a C∞ Riemannian manifold, let g be its metric tensor and letW be the tangent
bundle, i.e. the manifold consisting of the points (x, v) with x ∈ V and with v tangent
to V in x. Define on W the geodesic flow (St)t∈R that associates with (x, v) the point
St(x, v) = (xt, vt) obtained by constructing the geodesic that starts in x in the direction

v and by running on it with uniform velocity given by |v| =
√∑

ij
gijvivj on a portion

of length |v| t (in the metric g) reaching in this way a point xt with velocity vt.

It is convenient to describe the geodesic flow as a flow on the space Ŵ of the pairs (x, p)
of points of V and of vectors cotangent to V in x. Recall that the vector p cotangent in
x and corresponding to the vector v tangent in x is, by definition:

pi =

d∑

j=1

gij(x)v
j , i = 1, . . . , d.

The geodesic flow on Ŵ is naturally described by the correspondence (x, p) → (xt, pt)
built by

(1) starting with (x, p) ∈ Ŵ and constructing, via the preceding construction, the vector
v tangent in x, namely v = g−1(x)p,
(2) associating with (x, v) the point St(x, v) = (xt, vt) and then

(3) defining (pt)i =
∑d

j=1
gij(xt)v

j
t .

A celebrated proposition of geometry and of mechanics states that the geodesic flow is

described on Ŵ , in every chart, by the Hamiltonian differential equations with Hamilto-
nian

H(x, p) =
1

2

d∑

j=1

(g−1(x))ijpipj .

Deduce that the geodesic flow on W preserves the measure that on Ŵ coincides with
the Lebesgue measure dx dp. Deduce that the geodesic flow on W conserves a measure
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§1.3: Harmonic oscillators and integrable systems as dynamicalsystems 13

that is absolutely continuous with respect to the volume measure on W considered as a

Riemannian manifold with the natural metric
( d∑
j=1

(gij(x)dx
idxi + gij(x)dv

idvj )
) 1

2 and

express the density with respect to the measure that in a natural chart for W becomes
the measure dx dv. Find its expression in terms of the metric tensor.

[1.2.18]:Q1.2.18 Deduce the differential equation of the geodesics on V and hence that of the

geodesic flow on W and Ŵ by using the definition of geodesic as an extremal curve for
the line element ds2 =

∑
i,j
gij(x)dxidxj and the principles of Mechanics. (Hint: The

geodesic flow takes place at constant speed and takes place over curves that minimize or

make stationary
∫ P2

P1

√∑
i,j
gijdxidxj over all lines joining P1, P2.).

[1.2.19]:Q1.2.19 (Incompleteness of the restriction of Lebesgue measure to Borel sets)

Assuming that there exist sets in [0, 1] that are not Lebesgue measurable show that there

exist sets in R
2 which are not Borel sets but that are contained in sets of 0–Lebesgue

measure. Show in fact that if L is a not Lebesgue–measurable set of the segment [0, 1]
then the set L × {0} ⊂ [0, 1] × [0, 1] is an example of a set which is not a Borel set
of the square [0, 1]2 and it is nevertheless contained inside the set [0, 1] × {0} with 0
Lebesgue measure. (Hint: Just show that L×{0} cannot be a Borel set as a subset of the
square [0, 1] × [0, 1]: if so it could be obtained by a transfinite induction via operations
of countable unions and intersections starting from open sets of the square. But the
same transfinite construction performed with the intersections of the open sets with the
segment [0, 1] × {0} would lead to the set L which would therefore be a Borel subset of
[0, 1].)

Bibliographical note to §1.2
Examples and definitions are taken from [AA68], [Si77], [Av76] where sev-
eral other examples can be found.

§1.3 Harmonic oscillators and integrable systems as dynamical
systems

We shall consider a few simple dynamical systems which provide us with
a first illustration of the just introduced notions and establish a relation
between the examples (1.2.2), (1.2.3), (1.2.4) of Section §1.2.
(1.3.1) Proposition:P1.3.1 (Harmonic oscillations)
Let G = (gij), V = (vij) be two positive definite symmetric matrices and let
G−1 = (g−1

ij ) be the inverse matrix of G. Consider the function

H = H(p, q) =
1

2

( r∑

i,j=1

g−1
ij pipj +

r∑

i,j=1

vijqiqj

)
(1.3.1)e1.3.1

on R
2r, and let η(1), . . . , η(r) be G–orthonormal vectors1 verifyingN1.3.1

(−ω2
kG+ V )η(k) = 0, k = 1, . . . , r, (1.3.2)

e1.3.2

1 i.e. such that (Gη(i) · η(j)) =
∑r

h,k=1
ghkη

(i)
h
η
(j)
k

= δij .
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14 §1.3: Harmonic oscillators and integrable systems as dynamicalsystems

where ω2
1 , . . . , ω

2
r are the roots, ordered and repeated according to multiplic-

ity, of the secular equation det(−ω2G+ V ) = 0.
Define x and ẋ in R

r so that

q =

r∑

i=1

x(i)η(i), G−1p =

r∑

i=1

ẋ(i)η(i), (1.3.3)e1.3.3

and consider the motion associated with the Hamiltonian H in R
2r with

given initial data p, q. This motion is described by t → St(p, q) ≡
(p(t), q(t)), with

q(t) =

r∑

i=1

(
x(i) cosωit+

ẋ(i)

ωi
sinωit

)
η(i),

p(t) =G
dq

dt
(t) ≡ Gq̇(t).

(1.3.4)e1.3.4

The proof of this well known proposition is, for instance, a simple check
by substitution of (1.3.4) into the equations of motion.

Remark: It is convenient to remark that the parameters x and ẋ are de-
termined by equation (1.3.3) simply by using the G–orthonormality of the
vectors η(1), . . . , η(r)

x(i) = Gη(i) · q ≡ (
√
Gη(i) ·

√
Gq),

ẋ(i) = η(i) · p ≡ (
√
Gη(i) ·

√
G−1p),

(1.3.5)e1.3.5

In other words (x(i), ẋ(i)) are the components of
√
Gq and of

√
G−1p on the

orthonormal basis in R
r formed by the vectors

√
Gη(i). Note that the map

p→ p′ = (
√
G)−1p and q → q′ = (

√
G)q is a linear canonical map.2

N1.3.2

From (1.3.5) and from the above proposition an easy, but remarkable,
corollary follows.

(1.3.1) Corollary:C1.3.1 (Action–angle coordinates for harmonic oscillations)

Under the assumptions of proposition (1.3.1) let, for (p, q) ∈ R
2r

Ai =
(
x(i)2 +

(
ẋ(i)/ωi

)2)1/2
,

cosϕi =
x(i)

Ai
, sinϕi =

ẋ(i)

Aiωi
,

(1.3.6)e1.3.6

2 We recall that a 2n× 2n matrix L =

(
A B
C D

)
is called canonical (or also symplectic)

if L−1 =

(
DT −BT
−CT AT

)
, where T denotes transposition: a map defined on an open

domain of R
2n into R

2n is called canonical (or symplectic) if its Jacobian matrix is
canonical at every point of the domain.
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where x(i) and ẋ(i) are determined by (1.3.5).
Let W ⊂ R

2r be the set of the points (p, q) ∈ R
2r for which Ai 6= 0,

i = 1, . . . , r. Define on W , via (1.3.6), the map I(p, q) = (A,ϕ) =
(A1, . . . , Ar, ϕ1, . . . , ϕr) ∈ (R+ \ {0})r × T

r
.

(1) The map I is invertible as a map betweenW and IW = (R+\{0})r×Tr;
furthermore it has a Jacobian determinant which does not vanish on W ,

∣∣∣
∂I−1(A,ϕ)

∂A ∂ϕ

∣∣∣ = (detG)

r∏

i=1

ωiAi, (1.3.7)e1.3.7

and, therefore, I is analytic and invertible on W .
(2) In the coordinates (A,ϕ) the motion (1.3.4) becomes

I(St(p, q)) = (A,ϕ+ ωt) mod 2π. (1.3.8)e1.3.8

Remarks: (1) For a = (a1, . . . , ar) ∈ (R+ \ {0})r we set

Ωa = {(p, q) ∈ R
2n|A1 = a1, . . . , Ar = ar}, (1.3.9)e1.3.9

and we denote with

λa(dpdq) =

∏r
i=1 δ(Ai(p, q)− ai)dpdq
“normalization to 1”

=

r∏

i=1

dϕi
2π

(1.3.10)e1.3.10

the Lebesgue measure dp dq restricted to Ωa and normalized to 1. If St de-

notes the Hamiltonian evolution on R
2r corresponding to (1.3.4), we can

say that Ωa is invariant, that λa is invariant and that the metric flow
(Ωa, (St)t∈R, λa) is isomorphic to the rotation of Tr with velocity ω, i.e. to

the dynamical system (T
r
, (S̃t)t∈R, λ) with S̃tϕ = ϕ + ωt(mod 2π) and

λ(dϕ) =
∏
i
dϕi
2π .

(2) This is an isomorphism to which one refers by stating that the Hamil-
tonian system (1.3.1) is a system of harmonic oscillators whose trajectories
develop with uniform velocity on r–dimensional invariant tori parameter-
ized by r parameters (each of which, of course, is a first integral).
(3) One says that the phase space W is foliated into analytic r–dimensional
invariant tori: this refers to the relation W = ∪a∈(R+\{0})r Ωa and to the
fact that Ωa topologically is a torus, which by (1.3.6), depends analytically
on r parameters.

The property of oscillators systems established by corollary (1.3.1) lead
to their natural generalization expressed by the following definition that
isolates a class of Hamiltonian systems whose phase space can be thought of
as foliated into r–dimensional invariant tori parameterized by r parameters
and such that the Hamiltonian flow on each of them reduces to a constant
velocity flow, i.e. to a quasi-periodic motion.

20/novembre/2011; 22:18



16 Problems for §1.3

(1.3.1) Definition:D1.3.1 (Hamiltonian integrability)

A Hamiltonian system of class C∞ in R
2r

is called integrable in an open
regionW ⊂ R

2r of phase space if there exists a regular change of coordinates
3 I that transforms W into V ×Tr, with V open subset of Rr, and, denotingN1.3.3

by (St)t∈R the Hamiltonian flow on W and setting

(A,ϕ) = I(p, q), (1.3.11)e1.3.11

one has
I(St(p, q)) = (A,ϕ+ ω(A)t)mod 2π (1.3.12)e1.3.12

where ω(A) = (ω1(A), . . . , ωr(A)) are r functions of class C∞ on V , called
velocities.
If the Hamiltonian is analytic and the map I and the functions A→ ω(A)
are analytic on the respective domains of definition the system is called
analytically integrable.
Finally if I is a canonical map, see footnote 2 above, we shall say that the
system is canonically integrable.

Remark: (1) The linear oscillators are an analytically integrable system in
the region W defined by proposition (1.3.1). The velocities ω are in this
case A–independent: this is the phenomenon of isochrony of harmonic os-
cillations.
(2) There exist several other examples, although not really many, of physi-
cally or mathematically interesting integrable systems. We refer to treatises
on Rational Mechanics for their list and analysis (such systems are classi-
cally called systems integrable by quadratures). Here we mention only the
system

H(p, q) =
1

2
p2 − g/|q| p, q ∈ R

d ×R
d, d = 2, 3, (1.3.13)e1.3.13

known as the Kepler system. This system is integrable in the region in
which H < 0 and |q ∧ p| 6= 0, but it is not isochronous (indeed the third
Kepler’s law shows that the period of a motion depends on parameters of
the motion itself).
We shall come back later to integrable systems to analyze some of their
aspects that are more interesting from a technical and conceptual point of
view: the above brief introduction is motivated by the simplicity of their
motions and their relevance for the discussion of complexity of a dynamical
system. The latter notion, of obvious interest, will be the first, among
several notions typical of ergodic theory: integrable systems will be the
prototype of systems exhibiting simple motions. They are well suited to be
discussed, from this point of view, as an introduction to the theory of more
complex motions.

3 This means that the change of coordinates is of class C∞, that it is invertible and that
it has non-zero Jacobian determinant.
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§1.4: Frequencies of visit 17

In the next section we begin this analysis by studying the simplest property
of regularity of a motion: namely the property of visiting given regions with
well defined frequency.

Problems for §1.3

[1.3.1]:Q1.3.1 (Analytical integrability of harmonic oscillations)

Show that the system of harmonic oscillators of proposition (1.3.1) is also analytically
canonically integrable (and not just analytically integrable): the analytic and canonical
map that integrates it on W is (p, q) → (B, ϕ) with ϕ defined by equation (1.3.6) and

Bi = ωiA2
i /2. In the new coordinates one has H(p, q) =

r∑
i=1

ωiBi. (Hint: (a) The map

(p, q) → (ẋ, x) is canonical as remarked after proposition (1.3.1); hence the problem is

reduced to the case r = 1; (b) the map (ẋi, xi) → (Bi, ϕi) is canonical for i = 1, . . . , r

because it has as generating function F0(xi, ϕi) =
1
2
ωix2i tanϕi.

4, cf. [Ga82].)
N1.3.4

[1.3.2]:Q1.3.2 (Analytical integrability of Kepler’s system)

Show that equation (1.3.13) is analytically integrable via a map which is canonical in the
region W = {p, q| |q ∧ p| 6= 0, H(p, q) < 0}. Compute explicitly the variables A, ϕ in the

bidimensional case. (Hint: Just suitably interpret the classical results of the two-body
Kepler problem).

§1.4 Frequencies of visit

Let (Ω, S) be a (discrete) invertible topological dynamical system. Motions
i→ Six, i ∈ Z, beginning in x ∈ Ω, will be usually described by selecting a
certain number of possible properties of a point of Ω can enjoy and, then, by
listing which of such property is actually possessed by the points successively
visited by x in its motion.
The mathematical model associated with the latter description is the his-
tory σ(x) of x on a partition P = {P0, P1, . . . , Pn} of Ω into n + 1, n ≥ 1,
pairwise disjoint sets where σ(x) = {σi(x)}i∈Z ∈ {0, . . . , n}Z is the sequence
such that

Six ∈ Pσi(x) for all i ∈ Z. (1.4.1)e1.4.1

The set Pi, i = 1, 2, 3, . . . , n, is the collection of the points of Ω that enjoy

the property indicated with the label i, so that the union
n∪
i=1

Pi is the set

of points that enjoy anyone of the properties labeled with 1, 2, . . . , n while
P0 = Ω \ ∪ni=1 Pi is the set of the points that do not enjoy any of them.
We will always require that the elements of the partition P (often called
atoms of P) be Borel sets in B(Ω) (see Appendix 1.2): one says that such a
partition is a Borel partition. For the time being, we do not impose further
regularity requirements on the atoms of P .

4 We recall that a sufficient condition for canonicity of a map I : W ←→ V × T
r is

that for all (p
0
, q

0
) ∈ W there exist a neighborhood U0 of (A0, q0

) and a function

F0 : (A, q)→ F0(A, q) in C∞(R2r) such that for all (A, q) ∈ U0 one has: p = ∂F0
∂q

(A, q)

and ϕ = ∂F0
∂A

(A, q) if (A,ϕ) = I(p, q).

20/novembre/2011; 22:18



18 §1.4: Frequencies of visit

It is nevertheless clear that in the applications we shall be interested only
on rather reasonable partitions. For example we often consider the following
types of partitions

(1.4.1) Definition:D1.4.1 (Topological, analytically regular, C∞-regular parti-
tions)
(i) Given a compact metric space Ω we call topological partitions Pthose in
which each Pi is either open or closed for all i = 0, 1, . . . , n, and, further-
more, the closure P i of Pi and the closure of its interior int Pi coincide:
P i = int Pi.
(ii) When Ω is a class C∞ or analytic manifold one often considers topo-
logical partitions P with C∞–regular or, respectively, analytically regular
atoms, cf. Appendix (1.4).
We often briefly call any such partition a regular partition.

Example (1.4.1)E1.4.1 : Let T be the unit circle and S the rotation by an angle
ρ ∈ (0, 2π) (one also says a rotation with rotation number ρ/2π). We can
consider the partion P for the dynamical system (T, S) formed by the sets
P0 = [0, π/2], P1 = (π/2, π), P2 = [π, 3π/2] and P3 = (3π/2, 2π). This sim-
ple example will be used in the problems to illustrate some of the concepts
discussed in what follows.

Before formalizing with a mathematical definition the notion of “observa-
tion” of a motion on a given partition of (Ω, S) and before introducing other
possible properties and restrictions on P it is convenient to introduce some
philosophical considerations that should elucidate such a notion avoiding a
too abstract tone and form.
It is natural to think of the result of “real observations” of a motion starting
at x as sequences σ ∈ {0, . . . , n}Z generated by making large the observation
time N during which the motion visits successively the elements Pσi , i =
−N, . . . , N . For all N the string σ(N) ∈ {0, . . . , n}[−N,N ] has the property

N∩
k=−N

S−kPσk 6= ∅, (1.4.2)e1.4.2

because Skx ∈ Pσk for all k, so that the intersection in (1.4.2) certainly
contains at least x.
Therefore a motion, or better an observation of a motion, will appear as a
sequence σ ∈ {0, . . . , n}Z that enjoys the finite intersection property, in the
sense that

∩
j∈J

S−jPσj 6= ∅ for all J ⊂ Z , |J | <∞, (1.4.3)e1.4.3

where |J | indicates the number of elements of J .
Hence it will be natural to identify the space of the motions observed on
P with the set of infinite sequences

Ω̂ =
{
σ |σ ∈ {0, . . . , n}Z, ∩

j∈J
S−jPσj 6= ∅ for all J ⊂ Z, |J | <∞

}
. (1.4.4)e1.4.4
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§1.4: Frequencies of visit 19

Furthermore, when possible, it will be convenient that the partition P be
fine enough to be S–separating. This means that if x, x′ have the same
history σ then x = x′: if P is a separating partition it will be possible to
identify the points of Ω with their histories.

We note, however, that even if P is S–separating it will not in general be
possible to identify Ω̂ with Ω: setting aside the important but trivial case
in which P0, . . . , Pn are all closed and pairwise disjoint and P is separating
we must expect that Ω̂ contains sequences that are not histories of points
of Ω.

In fact it is quite generally possible to find σ ∈ {0, . . . , n}Z for which there
is no x ∈ Ω with σ = σ(x) but such that for any arbitrarily long prefixed
time T we can find a point x whose history coincides with σ between −T
and T . The sequence σ is thus in Ω̂ but is not the history of any point in Ω.
The set of sequences in Ω̂ that are not histories of points in Ω is, however,
generally negligible is a sense that will be made clear in the following.

The above remark serves to clarify the interest of the space Ω̂ and why in
the study of the motions of (Ω, S) observed on P it is, in a certain sense,

natural to identify motions with sequences of Ω̂ rather than with trajectories
of points of Ω.

In applications the requirement that P be separating appears to be often
imposed via the requirement of expansivity of S on P : S is expansive with
respect to P if for all σ ∈ Ω̂ one has

lim
N→∞

(
diam

N∩
j=−N

S−jPσj
)
= 0. (1.4.5)e1.4.5

In this case it is clear that if x, x′ have the same history then they must
coincide.

The above analysis is conveniently summarized into a precise definition
that will be useful as a reference and as a basis for the future study of the
structural properties of dynamical systems.

(1.4.2) Definition:D1.4.2 (Symbolic motions)
Let (Ω, S) be an invertible topological dynamical system and let
{P0, . . . , Pn} = P be a partition of Ω into n+ 1, n ≥ 1, Borel sets.
(1) Consider the set 1

N1.4.1

Ω̂ =
{
σ |σ ∈ {0, . . . , n}Z ,

N∩
j=−N

S−jPσj 6= ∅ for all N
}
. (1.4.6)e1.4.6

We shall call Ω̂ the set of (P , S)–histories of the symbolic motions generated
by S on Ω as seen from P. When P and S are clearly implicit in the text

1 Remark that (1.4.6) is equivalent to (1.4.4)
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20 §1.4: Frequencies of visit

we shall simply call Ω̂ the set of symbolic motions (seen from P).
If x ∈ Ω we shall call (P , S)–history of x the element σ(x) of Ω̂ such that

x ∈ S−jPσj(x) for all j ∈ Z. (1.4.7)e1.4.7

(2) If the relation σ(x) = σ(x′) implies x = x′ we shall say that P is S–
separating. If P and S verify (1.4.5) we shall say that S is P–expansive or
that it is expansive on P.
(3) The correspondence defined by the map Σ : Ω → Ω̂ that associates with

every x ∈ Ω the sequence σ(x) ∈ Ω̂ will be called the code of the symbolic
dynamics of S with respect to P.
(4) Finally when considering sets J = (j1, . . . , jq) ⊂ Z, and sequences σJ ∈
{0, . . . , n}J we shall often employ the notation

P Jσ
J
≡ P j1...jqσ1...σq = ∩

j∈J
S−jPσj (1.4.8)e1.4.8

to denote the points whose history in J is specified by σJ .

Remarks: (1) If Ω = {0, . . . , n}Z, S = τ is the translation on {0, . . . , n}Z,
and Pi = {σ |σ0 = i}, i = 0, 1, . . . , n, the sets P Jσ will be denoted also CJσ
and will be called cylinders of {0, . . . , n}Z with “base J and specification
σ”, i.e.

CJσ = {σ′ |σ′ ∈ {0, . . . , n}Z, σ′
jk

= σk for all k = 1, . . . , q}, (1.4.9)e1.4.9

if J = (j1, . . . , jq) and σ = (σ1, . . . , σq) ∈ {0, . . . , n}J .
(2) If Ω = {0, . . . , n}Z one has Ω̂ = Σ(Ω), but this is essentially the only case;

if Ω is a connected space it will be, in general, Ω̂ ⊃ Σ(Ω) and Ω̂ 6= Σ(Ω).

(3) It is natural to consider the set of symbolic motions Ω̂ as a topological
space with the topology that it inherits as a subset of {0, . . . , n}Z which, in
turn, is always considered with the product topology of the discrete topolo-
gies on the factors {0, . . . , n}. The set Ω̂ is closed in {0, . . . , n}Z, see problem
[1.4.2].

If (Ω, S) is a topological dynamical system and P is an expansive partition

we can “invert” the coding map Σ. Given a point σ ∈ Ω̂ we can consider
the set X (σ) ∈ Ω defined by

X (σ) = +∞∩
j=−∞

S−j Pσj . (1.4.10)e1.4.10

where P j is the closure of Pj . The set X (σ) is not empty because Ω is
compact.

(1.4.1) Proposition:P1.4.1 (Symbolic codes)
Let (Ω, S) be an invertible topological dynamical system (cf. definition
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§1.4: Frequencies of visit 21

(1.2.1)); let P = {P0, . . . , Pn} be a topological partition of Ω on which S is
expansive.
(i) The set X (σ) defined by (1.4.10) contains one and only one point so that

we can define the map X : Ω̂→ Ω by setting X(σ) to be the unique point in
X (σ) or, with a slight abuse of notation,

σ → X(σ) =
+∞∩
j=−∞

S−j P σj . (1.4.11)e1.4.11

(ii) X is a continuos map;
(iii) Σ−1X−1(x) = x for every x of Ω;
(iv) X and Σ are the inverse of each other if considered as maps between Ω
and ΣΩ and, respectively, between ΣΩ and Ω;
(v) S(x) = X(τΣ(x)), where (τσ)i = σi+1 is the translation, by one time
unit to the left, of the sequence σ.

Remark: Note also that τΩ̂ = Ω̂, hence (Ω̂, τ) as well is an invertible topo-

logical dynamical system (indeed Ω̂ is closed in {0, . . . , n}Z and τ is a con-
tinuous map).

Proof: It is clear that the set X (σ) defined in (1.4.10) is not empty because
Ω is compact and the closed sets Pσj form a family with the property of

non empty finite intersection, if σ ∈ Ω̂.
The S–expansivity on P guarantees that X (σ) consists of a single point;

indeed, cf. definition (1.4.2) and (1.4.5), by assumption for all σ ∈ Ω̂:

diam
(

N∩
−N

S−jPσj
)
≡ diam

(
N∩
−N

S−jPσj
)
−−−−→
N→∞ 0. (1.4.12)e1.4.12

The continuity of σ → X(σ) also follows from the S–expansivity. If
σn−−−−→n→∞ σ we have that for every T there exists N such that σn coincides
with σ from −T to T , if n > N . This implies that eventually X(σn) is in
∩Tj=−T S

−j Pσj . The fact that the diameter of this set tend to 0 complete
the proof of (ii).
Since the history of x is uniquely determined by x and it determines x the
validity of (iii) follows. We can say that, among the various sequences that
determine x via the (1.4.10), only one is in ΣΩ. The validity of (iv) and (v)
is also clear.

One among the remarkable properties that a “simple” motion should have
is that of spending a well determined fraction of time visiting an arbitrary
“reasonable” set E ⊂ Ω. This means that for the motion (Six)i∈Z to be
“simple enough” the limit

lim
N→∞

N−1
N−1∑

j=0

χE(S
jx) = νx(E) (1.4.13)e1.4.13
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22 §1.4: Frequencies of visit

should exist (here χE denotes the characteristic function of E): this is, by
definition, the frequency of visit to E by the motion originating in x.
If E is an element of a partition P = {P0, . . . , Pn} of Ω, the existence of the
limit (1.4.13) is directly deducible from the (P , S)–history of x: if E = Pj
(1.4.13) becomes

νx(E) = lim
N→∞

N−1 {number of labels h between 0

and N − 1 such that σh(x) = j}.
(1.4.14)e1.4.14

From the history σ(x) of x one can obtain a more general information: one
can indeed deduce the frequency with which certain groups of p symbols
σ1, . . . , σp appear in the history σ(x) of x ∈ Ω, in sites which are translates
of given sites j1, . . . , jp ∈ Z. Such frequency, if defined, is the limit for
N →∞ of

N−1{number of labels h between 0 and N − 1 such that

σj1+h(x) = σ1, σj2+h(x) = σ2, . . . , σjp+h(x) = σp},
(1.4.15)e1.4.15

or, equivalently, it is the limit

p
(
j1 . . . jp
σ1 . . . σp

∣∣∣∣σ(x)
)
= lim

N→∞
N−1

N−1∑

h=0

χ
P
j1...jp
σ1...σp

(Shx). (1.4.16)e1.4.16

The number defined inside curly brackets in (1.4.15) will be called the

number of the strings homologue to

(
J
σ

)
≡
(
j1 . . . jp
σ1 . . . σp

)
that appear in

σ(x) between 0 and N − 1 and the value of the limit (1.4.15) will be the

frequency of appearance of the portion of history

(
J
σ

)
in σ(x).

Therefore we set a definition that will be useful in the following and that
fixes more precisely the above notion.

(1.4.3) Definition:D1.4.3 (Sequences with defined frequencies)

Let σ̂ ∈ {0, . . . , n}Z, {j1, . . . , jp} ⊂ Z and σ1, . . . , σp ∈ {0, . . . , n}.
(i) We define the number of strings homologue to

(
j1 . . . jp
σ1 . . . σp

)
appearing in

σ̂ between 0 andN−1 as the number of labels h between 0 and N−1 such that

σ̂j1+h = σ1, . . . , σ̂jp+h = σp. We denote such number NN
(
j1 . . . jp
σ1 . . . σp

∣∣∣∣ σ̂
)
.

(ii) We define the frequency of appearance in σ̂ of the string homologue to(
j1 . . . jq
σ1 . . . σq

)
as the limit, when it exists,

lim
N→∞

N−1NN
(
j1 . . . jp
σ1 . . . σp

∣∣∣∣ σ̂
)
= p
(
j1 . . . jp
σ1 . . . σp

∣∣∣∣ σ̂
)
. (1.4.17)e1.4.17
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(iii) A sequence σ̂ will be said with defined frequencies if the limit (1.4.17)
exists for all j1, . . . , jp ∈ Z, for all σ1, . . . , σp ∈ {0, . . . , n}, and for all
p = 1, 2, . . ..

In the following chapter we shall show that having defined frequencies is a
“not too rare” property for the sequences σ(x) that are (P , S)–histories of
x ∈ Ω, for the dynamical system (Ω, S).

Appendix 1.4: Analytically regular sets in R
n and T

n

An analytic system of coordinates defined on the open set U ⊂ R
n is a pair

(Ω,Ξ), where Ω is an open set of R
n
and Ξ is an invertible function from Ω

to U , analytic together with its inverse.
If x = Ξ(b), b ∈ Ω, we shall say that b = (b1, . . . , bn), are the coordinates
of x in (Ω,Ξ).
A surface M ⊂ R

n
will be called locally analytic in U if M ∩ U can be

covered by a finite family (Ua)a∈A of open set of Rn endowed with analytic
systems of coordinates (Ωa,Ξa) such that the points of M ∩ Ua have coor-
dinates bi = b̄i for i = 1, . . . , s, with s > 0 and b̄1, . . . , b̄s given; s is the
codimension of M , i.e. n− s is the dimension of M .
In the same way we can define a C∞ system of coordinates (Ω,Ξ) and a
locally C∞ surface M of dimension k in R

n
.

A closed set G ⊂ R
n
is said to be locally analytic if ∂G is a locally analytic

surface.
A set G ⊂ R

n is said analytically regular in U if it can be constructed via
a finite number of operations of union and intersection starting with sets
which are locally analytic in U .
The torus Tn can be thought of as an analytically regular set in R

2n via
the coordinate system:

(ρ1, . . . , ρn, φ1, . . . , φn)→ (ρ1e
iφ1 , . . . , ρne

iφn)→
→ (ρ1 cosφ1, ρ1 sinφ1, . . . , ρn cosφn, ρn sinφn)

(A1.4.1)eA1.4.1

by fixing ρ1 = . . . = ρn = 1. Then the analytically regular subsets of Tn

can be naturally defined as the intersections between analytically regular
subsets of R2n and T

n.
Analytically regular sets have, by definition, the property of being stable
with respect to operations of union and intersection. The most relevant
consequence of this is that the intersection of any pair E,F of them has the
property of being Riemann–measurable with respect to the Riemann mea-
sure restricted to E or F : thus the intersection of an analytically regular set
with an analytically regular surface is Riemann measurable with respect to
the Riemann area measure on the surface. Replacing, in the previous def-
initions, “analyticity” with “C∞–differentiability” the last property would
not be true in general: see problems [1.4.12] and [1.4.13].
Therefore we shall prefer to define, inductively, C∞–regular of dimension
k a set G in R

n if:
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(i) it is contained in a locally C∞ surface M of dimesion k;
(ii) its closure G in M coincides with the closure of its interior int G,
relative to the topology on M ;
(iii) its boundary ∂G in M is the union of a finite number G̃i, i = 1, . . . , n

of C∞–regular sets of dimension k − 1, i.e. ∂G = ∪ni=1G̃i;

(iv) G/G = ∪j∈N G̃j where N ⊂ {1. . . . , n}.
Finally we shall call C∞–regular of dimension 0 a finite collection of points.
Remark that this class of sets is not closed with respect to operation of
finite intersection, cf. problems [1.4.12], [1.4.13]. A C∞–regular set G is
Riemann measurable with respect to the Riemann measure restricted to
the locally C∞ surface M ⊃ G. However problem [1.4.13] shows that if G
and G′ are two C∞–regular sets contained in two surfaces M and M ′ then
G ∩ G′ needs not to be measurable with respect to the Riemann measure
on M ∩M ′. This is the main reason why we shall try to avoid the use of
C∞–regular sets.

Problems for §1.4

[1.4.1]:Q1.4.1 (Permutations as dynamical systems)

Let W = {1, . . . , n} and let y be a permutation i → y(i) of the n elements. Let P be
the partition of W into its points. Show that the (P, S)–history of every point of W is
periodic and, hence, with defined frequencies. What is the meaning of the frequency in
terms of the cycles that represent y?

[1.4.2]:Q1.4.2 (Ω̂ is closed)

Show explicitly that Ω̂ is a closed set in {0, . . . , n}Z, for any choice of dynamical system
(Ω, S) and of partition P.
[1.4.3]:Q1.4.3 (Non-expanding partitions)

Find an example of a dynamical system (Ω, S) with S 6= identity and such that no
partition is S–separating for it.

[1.4.4]:Q1.4.4 Let (T, S) and P be the dynamical system and the partition of example (1.4.1).

Show that P is S–separating if and only if the components of the vector (ρ, 2π) are
rationally independent (i.e. if ρ/2π is irrational).

[1.4.5]:Q1.4.5 (Ω̂ 6= ΣΩ)

Under the hypotheses of the previous problem with the components of the vector (ρ, 2π)

rationally independent find a sequence σ ∈ Ω̂ that is not the history on any point x in
Ω. (Hint: Let σ be the history of the point π. Clearly σ0 = 1. Consider the sequence σ
identical to σ but for σ0 = 2.)

[1.4.6]:Q1.4.6 (Arnold’s cat map expansivity)

Consider the dynamical system (T2, S) defined in the example (1.2.5), cf. (1.2.13). Show

that every partition P of T2 into Borel sets of the torus and with diameter small enough
is such that S is expansive on P.
[1.4.7]:Q1.4.7 (Sequences with undefined frequencies)

Find an example of a sequence σ ∈ {0, . . . , n}Z that does not have defined frequencies.
(Hint: 0 followed by ten 1’s followed by hundred 0’s followed by thousand 0’s,...)

[1.4.8]:Q1.4.8 Adapt this section definitions of (P, S)–histories, frequencies of visit etc to the

case of non-invertible dynamical systems. (Hint: “It suffices to replace Z with Z
+”.)

[1.4.9]:Q1.4.9 (Interval maps and cylinders)

Consider example (1.2.7) assuming that [0, 1] can be thought of as the union [0, 1] =
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∪n−1
σ=0[aσ , aσ+1] where 0 = a0 < a1 < . . . < an = 1 and that S is strictly monotonic on

[aσ, aσ+1], for all σ = 0, 1 . . . , n − 1. Consider the partition P0 = [a0, a1), . . . , Pn−1 =

[an−1, 1] of [0, 1]. Show that the sets P 0,...,N
σ0,...,σN are intervals, for all N .

[1.4.10]:Q1.4.10 (Tent map and binary expansion)

If S(x) = 2x, 0 ≤ x ≤ 1/2, and S(x) = 2(1 − x), 1/2 ≤ x ≤ 1, consider
P = {[0, 1/2), [1/2, 1]} and find the relation between the history of x, σ(x), on P and the

sequence of digits of the binary development of x : x =
∑∞

k=1
γk2

−k, γk = 0, 1.

[1.4.11]:Q1.4.11 (Expansive interval maps)

Under the hypotheses of problem [1.4.9] suppose S of class C1 in every interval (aσ , aσ+1),
σ =, 0, . . . , n− 1, and suppose |S′(x)| ≥ λ > 1, for all x ∈ ∪σ(aσ , aσ+1). Show that P is
S–separating and that S is expansive on P and, furthermore,

diam

(
N−1
∩
i=0

S−iPσi

)
≤ λ−N , for all σ0, . . . , σN−1 , for allN

[1.4.12]:Q1.4.12 Let x1, x2, . . . be an enumeration of the rationals in [0, 1]. For every xk consider

the open interval of length 2−1−k and center xk. Show that the union A of such intervals
is not Riemann measurable. (Hint: It has external measure ≥ 1 and internal measure
≤ 1/2.)

[1.4.13]:Q1.4.13 (A C∞ regular set with non-Riemann measurable intersection with another

C∞ regular set)
With the notation of problem [1.4.12], consider a function g(x) which is C∞(R) and pos-

itive in the open interval (− 1
2
, 1
2
) and zero elsewhere. Set f(x) =

∑∞
k=1

k!−1g(2k+1(x−
xk)). Show that f is C∞ and that it is positive in A and vanishes elsewhere. Show that

the set {x, y | y ≥ f(x)} ⊂ R
2 is a C∞–regular set but its intersection with the x–axis is

A which is not only not C∞–regular but it is not even Riemann–measurable with respect
to the Riemann measure on the x–axis ([Ga82], p. 337).

Bibliographical note to §1.4
The idea of studying motions by means of symbolic dynamics was essen-
tially born with ergodic theory: it can be found, for instance, in [Mo21],
[Bi35].
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CHAPTER II

Ergodicity and ergodic points

§2.1 Quasi-periodic motions and integrability

The problem of determining which sets are visited with defined frequency
by the motions of a dynamical system (Ω, S) can be satisfactorily solved in
the case of particularly simple systems. For instance in the case in which
S = St0 and (St)t∈R is a Hamiltonian flow which is analytically integrable

on a region W ⊂ R
2r and Ω = W , cf. definition (1.3.1). This means look-

ing at motions observed at time intervals t0. More precisely the following
proposition holds.

(2.1.1) Proposition:P2.1.1 (Existence of frequency of visit for motions inte-
grable by quadratures)
Consider a Hamiltonian system which is analytically integrable on a set
W ⊂ R

2r and consider the flow (W, (St)t∈R) associated with it. Let
P = {P0, . . . , Pn} be an analytically regular partition of W , i.e. such that
each Pi is an analytically regular subset or the complement of an analytically
regular subset of the interior int(W ) of W (cf. Appendix 1.4).
Then every x ∈ W has a (P , St0)–history σ(x) with defined frequencies, for
all t0 ∈ R, and hence the limits

p
(
j1 . . . jp
σ1 . . . σp

∣∣σ(x)
)
= lim

N→∞
N−1

N−1∑

h=0

χ
P
j1...jp
σ1...σp

(Sht0x) (2.1.1)e2.1.1

exist for all p > 0, for all {j1, . . . , jp} ⊂ Z, for all σ1, . . . , σp ∈ {0, . . . , n}p
if P

j1...jp
σ1...σp is the set of points which at times j1t0, . . . , jpt0 are in the sets

Pσ1 , . . . , Pσp respectively (see (1.4.8)).
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Remarks: (1) If H is a Hamiltonian function on W which is analytically
integrable there, such will also be tH , for all t ∈ R: therefore St0 can be
replaced by S1 without loss of generality.
(2) As one can see from the proof it would be enough to assume that the
sets Pi are Riemann measurable.

Proof: Set S = S1. Note that S−jkPσk is an analytically regular set (being
the image of such a set under an analytic map, cf. Appendix 1.4) hence

Riemann measurable so that also P
j1...jp
σ1...σp = ∩pk=1S

−jkPσk is Riemann mea-
surable.

By remark (1) it suffices to study the frequencies of appearance of strings

homologue to

(
j1 . . . jp
σ1 . . . σp

)
within the histories of points ϕ ∈ T

r under

the rotation S of T
r
with rotation numbers ω = (ω1, . . . , ωr) ∈ R

r
. We

shall show that the rotation S of Tr with rotation numbers ω is such that
(Skϕ)k∈Z+ visit with defined frequency every Riemann measurable set E ⊂
T
r
.

The proof of this statement is particularly simple in the case in which the
r + 1 numbers (ω1, . . . , ωr, 2π) are rationally independent.1 This case willN2.1.1

be treated first and the general case will be reduced to it later.

Since every analytically regular set E is Riemann-measurable, given ε > 0
there exist two C∞(Tr) functions f−, f+ such that

f−(ϕ) ≤ χE(ϕ) ≤ f+(ϕ),
∫

T
r

(
f+(ϕ)− f−(ϕ)

) dϕ

(2π)r
< ε.

(2.1.2)e2.1.2

see proplem [2.1.9]. This implies that it will suffice to show that if f ∈
C∞(Tr) and (ω1, . . . , ωr, 2π) are rationally independent one has, for all
ϕ ∈ T

r,

lim
N→∞

N−1
N−1∑

j=0

f(Sjϕ) =

∫

T
r
f(ψ)

dψ

(2π)r
, (2.1.3)

e2.1.3

to conclude from (2.1.2), that

lim
N→∞

N−1
N−1∑

j=0

χE(S
jϕ) =

∫

T
r
χE(ψ)

dψ

(2π)r
. (2.1.4)e2.1.4

In fact (2.1.3) can be seen as follows. If f̂ν are the Fourier coefficients of

1 A set H of real numbers is said to consist of rationally independent numbers if the
relation

∑
ω∈H nωω = 0, with nω integer and nω = 0 but for a finite subset of H,

implies nω ≡ 0.
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f ∈ C∞(T
r
), ν ∈ Z

r
, we shall have

N−1
N−1∑

j=0

f(ϕ+ jω) =
∑

ν∈Zr
f̂νe

iν·ϕ ·
{
N−1

N−1∑

j=0

eiν·ωj
}
=

= f0 +
∑

ν∈Z
r

ν 6=0

f̂νe
iν·ϕ ·

{
N−1 1− eiω·νN

1− eiω·ν
}
−−−−→
N→∞

−−−−→
N→∞ f0 ≡

∫

T
r
f(ψ)

dψ

(2π)r
.

(2.1.5)e2.1.5

since f̂ν decreases more rapidly than any power in |ν| for |ν| → ∞ allow us
to exchange the limit on N with the sum on ν. The absolute value of the
term in curly brackets in the first line of (2.1.5) is bounded above by 1 for
every N (being an average of N numbers each of absolute value 1), and it
tends to zero as N →∞ for each ν 6= 0 because ω · ν can never be multiple
of 2π by the assumed rational independence of (ω1, . . . , ωr, 2π).
More generally letM denote the set of the vectors ν ∈ Z

r
such that there

exists an integer m for which

ω · ν + 2πm = 0; (2.1.6)e2.1.6

then the above argument implies

N−1
N−1∑

j=0

f(ϕ+ jω)−−−−→
N→∞

∑

ν∈M
f̂ν e

iν·ϕ, (2.1.7)e2.1.7

thus completing the proof of the proposition.

In the course of the proof we have also obtained, see (2.1.2) and (2.1.3),
the following corollary on functions f on T

r which are Riemann integrable
in the sense that given any ε > 0 there exist f−, f+ ∈ C∞(Tr) such that
f−(ϕ) ≤ f(ϕ) ≤ f+(ϕ) for all ϕ and

∫
(f+(ϕ)− f−(ϕ))dϕ/(2π)r < ε.

(2.1.1) Corollary:C2.1.1 (Average of Riemann integrable functions)
If S is the rotation map of T

r with rotation vector ω such that
(ω1, . . . , ωr, 2π) are rationally independent and f is a Riemann integrable
function on T

r then for all choices of ϕ one has

lim
N→∞

N−1
N−1∑

j=0

f(Sjϕ) =

∫

T
r
f(ψ)

dψ

(2π)r
. (2.1.8)e2.1.8

Remark: Note that a Riemann integrable function in the above sense, see
(2.1.2), is necessarily bounded.

The preceding proof can be refined to obtain the following proposition.
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(2.1.2) Proposition:P2.1.2 (Rationally dependent rotations and foliations of
the torus)
Let S be a rotation of Tr with rotation numbers ω = (ω1, . . . , ωr). Then
there is an integer 0 ≤ g ≤ r such that T

r
can be thought of as a union of a

(r− g)–parameters family Tϕ′ , with ϕ′ ∈ T
r−g, of sets homeomorphic to the

torus Tg on which the map S acts as a rotation by a vector (ω′
1, . . . , ω

′
g) with

rationally independent components and such that either (ω′
1, . . . , ω

′
g, 2π) are

rationally independent too or ω′
1 = 2π/n for some integer n.

If (ω′
1, . . . , ω

′
g, 2π) are rationally independent and E is a analytically regular

set, one has

lim
N→∞

N−1
N−1∑

j=0

χE(S
jϕ) =

∫

E∩Tϕ′

dψ

(2π)g
, (2.1.9)e2.1.9

where ϕ ∈ Tϕ′ .

Remark: The following proof relies only on the property that the intersec-
tion between an analytically regular set and an analytically regular surface
is a Riemann measurable set: which allows us to reduce the proof to the
case treated in proposition (2.1.1): see Appendix 1.4 and problem [1.4.13].
Rationally dependent rotations are also called resonant rotations.

Proof: Let {ω̃1, . . . , ω̃g}, g ≤ r, be a subset of {ω1, . . . , ωr} consisting of
g rationally independent numbers and suppose that it is a maximal subset
among those sharing this property. Then there exist g numbers (ω1, . . . , ωg)
with ωj = ω̃j/M , M integer, j = 1, . . . , g, and a r×g matrix J with integer
entries such that

ωj =

g∑

k=1

Jjk ωk, j = 1, . . . , r. (2.1.10)e2.1.10

Furthermore the matrix J contains a g× g diagonal submatrix, that we can
suppose to be the first (we just imagine that ω1, . . . , ωr are ordered so that
ω̃1 = ω1, . . . , ω̃g = ωg), given by Jjk =Mδjk, j, k = 1, . . . g.

It is therefore possible to complete the matrix J into a square r × r ma-
trix with integer coefficients so that, still calling J this new matrix, one
has detJ 6= 0. This is possible in infinitely many ways and we select one
arbitrarily (for instance, in the case that Jjk = Mδjk, j, k = 1, . . . , g, we
can set Jjk = 0 if k > g and k 6= j, Jjj = 1 if j > g).

The map

ϕ = Jϕ′ mod 2π (2.1.11)e2.1.11

transforms T
r
into itself and it is of class C∞: it is not one–to–one but to

each ϕ there correspond | det J | values of ϕ′ such that Jϕ′ = ϕ mod 2π.

If E ⊂ T
r
is an analytically regular set, the function

χ(ϕ′) = χE(Jϕ
′) ϕ′ ∈ T

r (2.1.12)e2.1.12
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is the characteristic function of a setE′ = J−1E which is analytically regular
in T

r and, if we set S′ϕ′ = ϕ′ + ω mod 2π, with ω = (ω1, . . . , ωg, 0, . . . 0)
we get, by construction,

J(S′ϕ′) = J(ϕ′ + ω) = (Jϕ′) + ω = S(Jϕ′). (2.1.13)e2.1.13

This shows that the set Tϕ′
g+1

,...,ϕ′
r
of the points ϕ ∈ T

r of the form of

(2.1.11) with ϕ′ = (ϕ′
1, . . . , ϕ

′
g, ϕ

′
g+1, . . . , ϕ

′
r) and ϕ′

g+1, . . . , ϕ
′
r fixed is an

invariant torus of dimension g. By the analytical regularity of E′ also the
intersection E′ ∩ Tϕ′

g+1
,...,ϕ′

r
is analytically regular,2 so that the restriction

N2.1.2
of S′ on Tϕ′

g+1
,...,ϕ′

r
acts as a rotation with rationally independent rotation

numbers ω1, . . . , ωg. If ω = (ω1, . . . , ωg, 2π) are rationally independent
(2.1.9) follows from proposition (2.1.1). See problem [2.1.8] for a more de-
tailed anaysis of what happens when ω = (ω1, . . . , ωg, 2π) are not rationally
independent.

Problems for §2.1

[2.1.1]:Q2.1.1 (One-dimensional Hamiltonian motions)

Consider a Hamiltonian system with Hamiltonian H(p, q) = p2/2 + V (q), with V ∈
C∞(R), V (0) = 0, V ′(q) > 0 for q > 0, V (q) = V (−q), lim

q→∞
V (q) = +∞. Show that its

motions of energy E > 0 are periodic with period T (E) = 2π/ω(E) where

ω(E) = π

(∫ x(E)

−x(E)

dq√
2(E − V (q))

)−1

, V (x(E)) = E, x(E) > 0.

[2.1.2]:Q2.1.2 (Energy–frequency dispersion relation analyticity)

Consider, in the context of problem [2.1.1], the case V (q) = aq4, a > 0, and show that

ω(E) = c(4aE)1/4 c =

(
1

π

∫ 1

−1

dξ√
1− ξ4

)−1

[2.1.3]:Q2.1.3 (Analyticity of the energy–frequency dispersion relation)

In the context of problem [2.1.1] show that if V is an even polynomial in q or, more
generally, an even analytic function in q, the function E → ω(E) is analytic for E > 0.

[2.1.4]:Q2.1.4 If V (q) = aq4, a > 0, the set of the data (p, q) that generate, in the case of

problem [2.1.1], a periodic motion with period rational with respect to 2π has measure
zero but it is dense.

[2.1.5]:Q2.1.5 (Anisochrony of one-dimensional motions)

By making use of the result in problem [2.1.3] show that the same conclusion of the
preceding problem holds in the general case contemplated in problem [2.1.3] unless V (q)
is proportional to q2.

[2.1.6]:Q2.1.6 Show that in general, under the assumptions of problem [2.1.1], E → ω(E) is

of class C∞ for E > 0 and, if ω′(E) 6= 0 for E ∈ (a, b), then the motions with energy in

2 If E was assumed to be only C∞–regular it would not be, in general, true that such
intersection remains C∞–regular or even Riemann measurable, see problems [1.4.12],
[1.4.13].
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(a, b) are such that ω(E) is incommensurable with 2π with the exception of a denumerable
infinity of values of E dense in (a, b).

[2.1.7]:Q2.1.7 (Analytic and canonical integrability in dimension one)

Show that the system of problem [2.1.1] is canonically integrable in the region W =
{p, q|H(p, q) > 0}. If V is an analytic function then the system is analytically and
canonically integrable.

[2.1.8]:Q2.1.8 Refine the statement of proposition (2.1.2) by showing that if the g–dimensional

vector ω of rationally independent components of ω with maximal g is such that (ω, 2π)
does not have rationally independent components then for some n > 0 the torus
Tϕ′

g+1
,...,ϕ′

r
can be further decomposed into a union of sets of dimension g − 1 each

consisting of n tori which are cyclically permuted by the rotation ω. (Hint: One can
reduce the problem to the case where ω1 = 2π/n for some integer n > 0.)

[2.1.9]:Q2.1.9 (Riemann integrabilty of sets and smooth approximations)

Given a Riemann measurable set E show that there exist two C∞ functions f+ and
f− such that (2.1.2) holds. (Hint: Being E Riemann measurable one can find two set
E+ and E− formed by rectangles such that E− ⊂ E ⊂ E+ and the areas of E+ and
E− differs by less than ε/2. One can now enlarge E+ obtaining Ẽ+ and restrict E−

obtaining Ẽ− such that ∂Ẽ± ∩ ∂E = ∅ and the areas of Ẽ+ and Ẽ− differs by less than
ε. By regularazing the characteristic functions of Ẽ+ and Ẽ− one can construct f+ and
f−).

Bibliographical note to §2.1
Propositions (2.1.1) and (2.1.2) are classical results attributed to Jacobi
(see [AA68]).

§2.2 Ergodic properties of quasi periodic motions. Ergodic se-
quences and measures.

The quasi-periodic motions examined in the preceding section have further
remarkable properties.
For example if S is a rotation of Tr with rotation numbers ω = (ω1, . . . , ωr)
such that (ω1, . . . , ωr, 2π) are rationally independent parameters then, given
an analytically regular or just Riemann–measurable set, the frequency of
visit νϕ(E) by the trajectory of ϕ ∈ T

r to E is, cf. equations (1.4.13),(2.1.4),

νϕ(E)
def
= lim

N→∞
N−1

N−1∑

k=0

χE(ϕ+ kω) =

∫

T
r
χE(ψ)

dψ

(2π)r
(2.2.1)e2.2.1

for all ϕ ∈ T
r
, hence, by dominated convergence,

lim
N→∞

N−1
N−1∑

j=0

νϕ(E ∩ S−jF ) =

= lim
N→∞

∫

T
r
N−1

N−1∑

j=0

χE(ψ)χF (S
jψ)

dψ

(2π)r
= νϕ(E) νϕ(F )

(2.2.2)e2.2.2
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for every pair of analytically regular sets.
The latter relation can be read in colorful language by saying “the visit to
E followed, after a long time j, by the visit to F are events that in average
happen independently in the history of ϕ”, or “knowing that the trajectory of
ϕ has visited E does not allows us to derive informations on the sequence of
times j in which the trajectory of ϕ will visit F with the exception, at most,
of a sequence of times with zero density in time”. The reader should spend
some time meditating on why such an interpretation of (2.2.2) is reasonable.

Property (2.2.2) is general within the class of motions studied in §2.1 and it
is not just characteristic of the case in which (ω1, . . . , ωr, 2π) are rationally
independent.
In general, under the hypothesis in which proposition (2.1.2) holds, i.e. for
the system (Tr, S) with S an arbitrary rotation with rotation numbers ω ∈
R
r one has

lim
N→∞

N−1
N−1∑

j=0

νϕ(E ∩ S−jF ) = νϕ(E)νϕ(F ) (2.2.3)e2.2.3

for all analytically regular E,F ⊂ T
r. In fact the function νϕ verifies

(2.2.3) although the last equality in (2.2.1) is not valid when (ω, 2π) are not
rationally independent.
This follows from proposition (2.1.2). If (ω, 2π) are rationally independent
the relation (2.2.3) follows directly from (2.2.1) and (2.2.2). Otherwise the
property (2.2.3) reduces again to the relations in (2.2.1) and (2.2.2) after
remarking that the case with (ω, 2π) not rationally independent can be
reduced to the case of rational independence via the arguments seen in the
proof of (2.1.2), see also problem [2.1.8].

A different way of expressing the above considerations is in the following
proposition.

(2.2.1) Proposition:P2.2.1 (Quasi-periodic frequencies)
Let S be the rotation on T

r with rotation numbers ω. Let
P = {P0, . . . , Pn} be an analytically regular partition of T

r and let

p
( j1 . . . jpi1 + k . . . iq + k

σ1 . . . σp σ′
1 . . . σ′

q

∣∣σ(ϕ)
)

be the frequency of visit of the points in

the trajectory of ϕ to the set

P
j1...jp i1+k...iq+k
σ1...σp σ′

1 ... σ′
q
=

p
∩

m=1
S−jmPσm ∩

q
∩
n=1

S−(in+k)Pσ′
n
. (2.2.4)

e2.2.4

Then the histories σ(ϕ) of ϕ ∈ T
r, with respect to P, have the following

property (cf. (1.4.16), (1.4.17)):

lim
N→∞

N−1
N−1∑

k=0

p
(
j1 . . . jp i1 + k . . . iq + k
σ1 . . . σp σ′

1 . . . σ
′
q

∣∣σ(ϕ)
)
=

= p
(
j1 . . . jp
σ1 . . . σp

∣∣σ(ϕ)
)
p
(
i1 . . . iq
σ1 . . . σ

′
q

∣∣σ(ϕ)
) (2.2.5)e2.2.5
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for all p, q = 1, 2, . . ., and for all σ1, . . . , σp, σ
′
1, . . . , σ

′
p ∈ {0, 1, . . . , n},

{j1, . . . , jp}, {i1, . . . , iq} ⊂ Z.

Proof: This proposition is just the statement (2.2.3) in which E = P
j1...jp
σ1...σp

and F = P
i1...iq
σ′
1...σ

′
q
because S−kP i1...iqσ′

1...σ
′
q
= P

i1+k...iq+k
σ′
1 ... σ′

q
.

Property (2.2.5) is, as we shall see, really remarkable: it tells us that
the frequency of appearance in σ(ϕ) of two strings of history homologue

to

(
j1 . . . jp
σ1 . . . σp

)
and

(
i1 . . . iq
σ′
1 . . . σ

′
q

)
is, “in average”, equal to the product of

the frequencies of appearance of each string. In other words strings of
history homologue to two given strings of history appear, in the average, as
independently distributed in σ(ϕ).

It is important to set up a definition for the purpose of formalizing and
generalizing the above properties.

(2.2.1) Definition:D2.2.1 (Ergodic and mixing sequences)

A sequence σ ∈ {0, . . . , n}Z is said ergodic if it has defined frequencies and
if

lim
N→∞

N−1
N−1∑

k=0

p

(
j1 . . . jp i1 + k . . . iq + k
σ′
1 . . . σ

′
p σ′′

q . . . σ
′′
q

∣∣∣∣σ
)

= (2.2.6)e2.2.6

= p

(
j1 . . . jp
σ′
1 . . . σ

′
p

∣∣∣∣σ
)
p

(
i1 . . . iq
σ′′
1 . . . σ

′′
q

∣∣∣∣σ
)

for all p, q = 1, 2, . . ., and for all σ′
1, . . . , σ

′
p, σ

′′
1 , . . . , σ

′′
q ∈ {0, . . . , n},

{j1, . . . , jp}, {i1, . . . , iq} ⊂ Z.

We shall say that σ is mixing if

lim
k→∞

p
( j1 . . . jp i1 + k . . . iq + k

σ′
1 . . . σ

′
p σ′′

1 . . . σ′′
q

∣∣σ
)
= (2.2.7)e2.2.7

= p
(
jp . . . jp
σ′
1 . . . σ

′
p

∣∣σ
)
p
(
i1 iq
σ′′
1 . . . σ

′′
q

∣∣σ
)

for all possible choices of the labels.

Remark: Obviously every mixing sequence σ ∈ {0, . . . , n}Z is also ergodic.

For a deeper understanding of the meaning of the names used above one
should keep in mind the statement of the next proposition (2.2.2) that,
among other consequences, shows that the existence of the frequencies of
visit of the (P , S)–histories of the points of a dynamical system is a general
fact, much more so than what one could be led to expect at first sight.

(2.2.2) Proposition:P2.2.2 (Birkhoff theorem)
Let (Ω, S, µ) be a discrete metric invertible dynamical system and let B be
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the σ–algebra on which µ is defined. If f is a µ–measurable function the
limit

lim
N→∞

N−1
N−1∑

j=0

f(Sjx) = f(x) (2.2.8)e2.2.8

exists µ–almost everywhere and if f ∈ L1(µ) the limit is also reached in
L1(µ).

Remarks: (1) This well known abstract theorem is proved in Appendix (2.2).
(2) The theorem implies that if E1, E2, . . . is a denumerable family of mea-
surable sets the limits

lim
N→∞

N−1
N−1∑

k=0

χEj (S
kx) = χEj (x), j = 1, 2, . . . , (2.2.9)e2.2.9

simultaneously exist µ–almost everywhere. Hence, if P = {P0, . . . , Pn} is a
partition of Ω into measurable sets the limits

lim
N→∞

N−1
N−1∑

k=0

χ
P
j1...jp
σ1...σp

(Skx) = p

(
j1 . . . jp
σ1 . . . σp

∣∣∣∣σ(x)
)

(2.2.10)e2.2.10

exist for all possible choices of the labels and for µ–almost all x. This
means that the (P , S)–histories of µ–almost all points of Ω have defined
frequencies.
(3) Let us, however, stress the deep difference between this statement and
that of proposition (2.1.1) (or of proposition (2.1.2)): the latter shows, in a
very particular case, that all points have histories with a defined frequency.
Proposition (2.2.2) above, instead, shows us that in a very general case
µ–almost all points have histories with defined frequencies.
In general, given a dynamical system, it is very difficult (and very interest-
ing) to find points, if any exists, that have singular histories, i.e. that do not
have defined frequencies with respect to a given partition P : if the points
are randomly chosen with distribution µ and µ is S-invariant proposition
(2.2.2) says that this is impossible.
(4) The proof of proposition (2.2.2) is rather simple and abstract and this
should help us to understand why it ends up by being not so useful in the
analysis of concrete problems. It is nevertheless obviously important and
very useful in theoretical questions of abstract ergodic theory and in the
analysis of structural problems.
(5) From proposition (2.2.2) one can easily understand why sequences σ ver-
ifying (2.2.6) are called ergodic. Let indeed (Ω, S, µ) be a metric dynamical
system for which the ergodic hypothesis of Section §1.1 holds. This means
that the system is such that for all E ∈ B

lim
N→∞

N−1
N−1∑

j=0

χE(S
jx) = µ(E) µ− almost everywhere, (2.2.11)e2.2.11
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i.e. it is such that µ–almost all points x ∈ Ω visit a given measurable set
for a time which is asymptotically proportional to its measure (in Section
§1.1 such a hypothesis was formulated in the particular case in which Ω is
the phase–space of given energy, S is a Hamiltonian evolution on Ω up to
time 1, and µ is the Liouville measure on Ω).
Then, by the definition of (P , S)–history with respect to a given partition
P = {P0, . . . , Pn} of Ω into µ–measurable sets, we shall have that, µ–almost
everywhere, x ∈ Ω has a history σ(x) with frequencies defined and indepen-
dent of x, given by

p
(
j1 . . . jp
σ1 . . . σp

∣∣∣σ(x)
)
= µ

(
P j1...jpσ1...σp

)
(2.2.12)e2.2.12

for every possible choice of the labels.
Furthermore (2.2.11) implies also, for all E,F ∈ B,

N−1
N−1∑

j=0

µ(F ∩ S−jE) =

∫

Ω

χF (x) ·N−1
N−1∑

j=0

χE(S
jx)µ(dx)−−−−→

N→∞

−−−−→
N→∞ µ(E)µ(F ), (2.2.13)e2.2.13

hence the (P , S)–histories have frequencies (2.2.12) that verify (2.2.6), µ–
almost everywhere: i.e. they are ergodic sequences in the sense of the defi-
nition (2.2.1).
(6) It is also interesting to remark that not only (2.2.13) is a consequence of
(2.2.11) but, vice versa, it implies it. This follows from proposition (2.2.2)
which says that the limit

χ(x) = lim
N→∞

N−1
N−1∑

j=0

χE(S
jx) (2.2.14)e2.2.14

exists µ–almost everywhere and defines an S–invariant function: i.e. χ(x) =
χ(Sx) holds µ–almost everywhere.
Suppose that χ was not almost everywhere constant; then there would be
an α ∈ R such that the sets E = {x|χ(x) ≤ α} and Ec = {x|χ(x) > α}
have respective measures µ(E) and µ(Ec) with 0 < µ(E), µ(Ec) < 1. The
latter sets are such that E = SE, up to a set of zero measure; hence
E ∩ SjE = E mod 0 and

µ(E) ≡ N−1
N−1∑

j=0

µ(E ∩ S−jE)−−−−→
N→∞ µ(E)2, (2.2.15)e2.2.15

if (2.2.13) holds. Therefore µ(E) = 0 or µ(E) = 1: the contradiction implies
that χ is constant µ–almost everywhere. Then integrating both members
of (2.2.14) we deduce (2.2.11) from the invariance of χ and µ.
(7) From the proof it will follow that the same theorem holds if instead
of a metric invertible dynamical system we considered a metric invertible
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dynamical system mod 0, i.e. if (Ω, S, µ) is replaced by (Ω \N,S, µ) with
N a set with zero µ–measure.

It is useful to set one more definition, made natural by the previous ob-
servations, appending to it a comment to illustrate the adjective mixing
introduced in definition (2.2.1).

(2.2.2) Definition:D2.2.2 (Ergodic and mixing dynamical system)
If (Ω, S, µ) is a metric invertible dynamical system we shall say that it is
ergodic if, for all E, F ∈ B, one has

lim
N→∞

N−1
N−1∑

j=0

µ(E ∩ S−jF ) = µ(E)µ(F ). (2.2.16)e2.2.16

If, instead, for all E, F ∈ B, one has

lim
j→∞

µ(E ∩ S−jF ) = µ(E)µ(F ), (2.2.17)e2.2.17

we shall say that (Ω, S, µ) is mixing.
If (Ω, S) is a topological dynamical system we shall denote byMe(Ω, S) (or
byMm(Ω, S)) the set of the S–invariant probability measures on the Borel
sets B(Ω) of Ω and such that (Ω, S, µ) is an ergodic (or mixing) system: its
elements will be called S–ergodic measures (or S–mixing measures) on Ω.
More generally M(Ω, S) will be the set of all S–invariant Borel measures
andM0(Ω) will be the set of all Borel measures (S–invariant or not).

Remarks: (1) Remarks (5) and (6) to the (2.2.2) show that (2.2.16) is equiv-
alent to (2.2.11) so that the present definition of ergodicity coincide with
the definition given in Section §1.1.
(2)Mm(Ω, S) ⊂Me(Ω, S).
(3) The mixing property owes its name to the fact that if j is large the
set S−jF is, in mixing systems, very spread out in Ω and uniformly so
if the size of sets E is measured by µ(E). This means that the fraction
µ(E ∩ S−jF )/µ(F ) of its points that is found inside another set E (or
inside a finite number of such sets) is proportional to the measure of E.1N2.2.1

Every F ∈ B is mixed around in Ω in a uniform way after a time j large
enough, of course depending on F , under the action of the map S.
(4) The results in proposition (2.1.1) and corollary (2.1.1) prove that the
quasi-periodic rotations of the tori with rationally independent components
of the vector (ω1, . . . , ωn, 2π) are ergodic.

In this book we mostly consider maps: however it is convenient to have in
mind the definitions of ergodicity and mixing that can be given in the case
of flows, i.e. dynamical systems with continuous time.

1 Naturally the magnitude which j must reach in order that this happens within a prefixed
approximation depends both on E and F .
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(2.2.3) Definition:D2.2.3 (Ergodic and mixing flows)
Let (Ω, St, µ) be a metric flow. Then we shall say that it is ergodic if, for
all E, F ∈ B(Ω), one has

lim
T→∞

T−1

∫ T

0

µ(E ∩ S−tF ) = µ(E)µ(F ). (2.2.18)e2.2.18

If, moreover, for all E, F ∈ B(Ω), one has

lim
t→∞

µ(E ∩ S−tF ) = µ(E)µ(F ), (2.2.19)e2.2.19

we shall say that (Ω, St, µ) is mixing.

For flows one can also prove the analogue of Birkhoff’s theorem.

(2.2.3) Proposition:P2.2.3 (Birkhoff’s theorem for flows)
Let (Ω, St, µ) be a metric flow. If f is a µ–measurable function the limit

lim
T→∞

T−1

∫ T

0

f(Stx) = f(x) (2.2.20)e2.2.20

exists µ–almost everywhere and if f ∈ L1(µ) the limit is also reached in
L1(µ).

Remark: The proof of the latter proposition is very close to the correspond-
ing one of proposition (2.2.2) given in the following appendix.

A general proposition providing an equivalent definition of ergodicity is

(2.2.4) Proposition:P2.2.4 If (Ω, S, µ) and (Ω, St, µ) are, respectively, a metric
dynamical system or a metric flow then a necessary and sufficient condition
for ergodicity is that, for any given f ∈ L1(µ) the following limit relations
hold µ–almost everywhere

lim
N→∞

N−1
N−1∑

j=0

f(Sjx) =

∫
µ(dy) f(y), map case,

lim
T→∞

T−1

∫ T

0

f(Stx)dt =

∫
µ(dy) f(y), flow case.

Proof: Consider the case of a map S. Note that Birkhoff’s theorem implies
that

∫
f(y)µ(dy) ≡

∫
f(y)µ(dy). If f is ergodic in the sense of definition

(2.2.2) the average f(x) of a function must be constant almost everywhere
otherwise there would be a set E with 0 < µ(E) < 1 and a number a
such that E is the set of points where f(x) ≤ a. The set E would be
invariant and therefore by choosing E = F in (2.2.16) one would get the
contradiction µ(E) = µ(E)2. Vice versa if the time average of any function
is its µ–integral we can f(x) = χF (x) in (2.2.16) and note that its average
is µ(F ) so that (2.2.16) holds.
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Remark: Some simple, but classical and interesting, applications will be
found among the problems below: among them the theory of average rota-
tions in epicyclic and deferent motions.

Appendix 2.2: A proof of Birkhoff’s theorem

Proposition (2.2.2) is easily proved by following the classical scheme of
Garcia, see [Ja62], simpler than the original Birkhoff’s proof, [Bi31]. We
first prove the µ–almost everywhere convergence. Here (Ω, S, µ) is, quite
generally, an invertible metric dynamical system mod 0.
We first show (2.2.8) for f ∈ L∞(µ). Let

f+(x) = lim sup
N→∞

N−1
N−1∑

j=0

f(Sjx), f−(x) = lim inf
N→∞

N−1
N−1∑

j=0

f(Sjx).

Since f+(x) ≡ f+(Sx) ≡ f+(S−1x) and f−(x) ≡ f−(Sx) ≡ f−(S−1x) the
sets of B defined by Dab = {x|f−(x) < a < b < f+(x)} are S–invariant.
If f+(x) is not equal to f−(x) µ–almost everywhere then a < b must exist
such that µ(Dab) > 0. We show instead that µ(Dab) = 0, for all a < b.
To simplify notations set g(x) = f(x)− b, and h(x) = a− f(x). If x ∈ Dab

it is clear that either g(x) > 0 or there exists M ≥ 2 such that

k−1(g(x) + g(Sx) + . . .+ g(Sk−1x)) ≤ 0, k = 1, 2, . . . ,M − 1,

M−1(g(x) + g(Sx) + . . .+ g(SM−1x)) > 0.

If we call D(M) the set of the x ∈ Dab for which the latter relations hold
one has Dab = ∪∞M=1D

(M). By induction one can check that the integral
of g on ∪kM=1D

(M) is not negative.
For k = 1 the statement is obvious. Note that, for k = 2, D(2) consists of
points x such that Sx ∈ D(1) and, see Fig. (2.2.1), we see that

∫

D(1)∪D(2)

g(x)µ(dx)

=

∫

D(1)\SD(2)

g(x)µ(dx) +

∫

D(2)

(g(x) + g(Sx))µ(dx) ≥ 0,

having used here the invariance of the measure µ.
Analogously D(3) is made of points x such that S2x ∈ D(1) and Sx ∈
D(1)∪D(2). Then, see Fig. (2.2.2), the set D(3) can be divided in two parts

D
(3)
α and D

(3)
β such that x ∈ D(3)

α → Sx ∈ D(2) and x ∈ D(3)
β → Sx ∈ D(1).

Hence for k = 3, see Fig. (2.2.2), one has

∫

D(1)∪D(2)∪D(3)

g(x)µ(dx) =

∫

D(3)

(g(x) + g(Sx) + g(S2x))µ(dx)+

+

∫

D(2)\SD(3)
α

(g(x) + g(Sx))µ(dx) +

∫

D(1)\SD(2)∪SD(3)

β
∪S2D

(3)

β

g(x)µ(dx) ≥ 0,
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SD(2)
D(1)

D(2)
remainder

Fig.(2.2.1)F2.2.1 Illustration of the case k = 2: the negative contribution of the region D(2)

is compensated by the (larger) contribution from its image SD(2).

SD(2)
D(1)

D(2)

D(3)

α

α

α

β

β
β

remainder

Fig.(2.2.2)F2.2.2 Illustration of the case k = 3: the negative contribution of the region D(3)

can be divided in the part α, with S–image and S2–image respectively in D(2) and D(1),

and in the part β with both S–image and S2–image in D(1). Other cases are not possible

and the negative contibutions are compensated by larger positive contributions.

and obviously one can continue and formalize the above considerations
building an inductive proof. 2

N2.2.2

We can proceed in an identical fashion with the function h thus arriving

2 For instance: fix N > 1 (large) and let ∆N be the set of points x ∈ Dab such that the

sum
∑N−1

j=0
g(Sjx) ≥ 0 but the sums

∑k−1

j=0
g(Sjx) < 0 for k = 1, . . . , N−1. We define

the set ∆N−1 as the set of points in Dab\∪N−1
j=0 Sj∆N for which the sums

∑k−1

j=0
g(Sjx)

are negative if k < N − 1 and non-negative for k = N − 1 and we note that by con-

struction (∪N−2
j=0 Sj∆N−1)∩(∪N−1

j=0 Sj∆N ) = ∅: likewise we can define ∆j as a subset

of Dab/(∪N−1
i=j+1 ∪

i−1
k=0

Sk∆i) for j = N,N − 1, . . . , 1 and ∆i ∩∆j = ∅. The integral of

g over the set DN = ∪Nj=1 ∪
j−1
i=0 S

i∆j is therefore ≥ 0. Since (∪N−1
i=j+1 ∪

i−1
k=0

Sk∆i) is

a family of sets which increases to Dab, i.e. Dab = ∪N (∪N−1
i=j+1 ∪

i−1
k=0

Sk∆i) it follows∫
g(x)µ(dx) ≥ 0.
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to the two inequalities
∫

Dab

(f(x)− b)µ(dx) ≥ 0,

∫

Dab

(a− f(x))µ(dx) ≥ 0,

that summed yield µ(Dab) (a−b) ≥ 0 that implies, since a < b, µ(Dab) = 0.
Hence we have shown that if f is in L∞(µ) then the limit (2.2.8) exists
µ–almost everywhere. Since the sequence of averages of f is uniformly
bounded if f is bounded, the limit (2.2.8) exists also in L1(µ). However the

operator MN , defined as MNf(x)
def
= N−1

∑N−1
j=0 f(Sjx), is manifestly a

uniformly (with respect to N) continuous operator in L1(µ) (with norm 1)
and therefore the limit (2.2.8) exists also in L1(µ) for all f ∈ L1(µ) because
the space L∞(µ) is dense in L1(µ).

3

N2.2.3

Upon a more mindful examination we see that the proof of the almost
everywhere convergence could be repeated also for f just measurable with
the only difference that now f± could assume the values ±∞ on a set of
positive measure. So for all measurable functions the convergence takes
place µ–almost everywhere.

Problems for §2.2

[2.2.1]:Q2.2.1 (Continued fractions)
Let r > 0 be an irrational number represented by its continued fraction

r = a0 +
1

a1 +
1

a2 +
1

a3 + . . .

def
= [a0, a1, a2, . . .],

defined by setting, if [x] denotes the integral part of x (to not be confused with the symbol
[a0, a1, a2, . . .] denoting the continued fraction), a0 = [r], r1 = (r − a0)−1, a1 = [r1],
r2 = (r1 − a1)−1, a2 = [r2], . . .. The numbers aj are called the entries or the partial
quotients of the continued fraction. Check that one has aj > 0 for all j = 0, 1, 2, . . ..

[2.2.2]:Q2.2.2 In the context of problem [2.2.1] let

Rk = a0 +
1

a1 +
1

a2 +
1

a3 + . . .
. . .+ 1

ak

def
= [a0, a1, a2, . . . , ak].

Show that R2k < r < R2k+1 for all k ≥ 0.

[2.2.3]:Q2.2.3 (Convergents)

In the context of problems [2.2.1] and [2.2.2] note that if [a1, . . . , ak ] = p′

q′
then

3 More explicitly this means that, since
∫
Ω
|MNf(x)|µ(dx) ≤

∫
Ω
|f(x)|µ(dx), if fn(x)

is such that limn→∞
∫
Ω
|fn(x) − f(x)|µ(dx) = 0 then limn→∞

∫
Ω
|MNfn(x) −

MNf(x)|µ(dx) = 0 and this limit is reached uniformly in N : hence

limn→∞ limN→∞
∫
Ω
|MNfn(x) − MNf(x)|µ(dx) = 0, i.e. limn→∞

∫
Ω
| fn(x) −

f(x)|µ(dx) = 0. It is now enough to remark that if f ∈ L1(µ) then fn(x) =
min{f(x), n} ∈ L∞(µ).
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[a0, a1, . . . , ak ] = a0p
′+q′

p′
. Deduce from this that a vector vk = (pk, qk) ∈ Z

2
+ such

that Rk = pk/qk can be taken to be

vk =

(
a0 1
1 0

)(
a1 1
1 0

)
. . .

(
ak 1
1 0

)(
1
0

)
.

The quantities pk/qk are called the convergents of r.

[2.2.4]:Q2.2.4 (Convergents recursion)

Deduce from problem [2.2.3] that vk = akvk−1 + vk−2, i.e.

pk = akpk−1 + pk−2,

qk = akqk−1 + qk−2,

for k ≥ 2. (Hint:

(
ak 1
1 0

)(
1
0

)
=

(
ak
1

)
= ak

(
1
0

)
+

(
0
1

)
and

(
ak−1 1
1 0

)(
0
1

)
=

(
1
0

)
; then eliminate the last matrix in the product of matrices appearing in problem

[2.2.3].)

[2.2.5]:Q2.2.5 From the recursion relation in problem [2.2.4] deduce that

qkpk−1 − pkqk−1 = −(qk−1pk−2 − pk−1qk−2) = (−1)k ,
qkpk−2 − pkqk−2 = ak(qk−1pk−2 − pk−1qk−2) = (−1)k−1ak ,

for k ≥ 2, so that

pk−1

qk−1
− pk

qk
=

(−1)k
qkqk−1

,
pk−12

qk−2
− pk

qk
=

(−1)k−1

qkqk−2
ak .

(Hint: Multiply the first equation in the recursive formula in problem [2.2.4] by qk−1 and
the second by pk−1 and subtract, etc.)

[2.2.6]:Q2.2.6 (Convergents are relatively prime)

Show that the numbers pn, qn are relatively prime for all n. (Hint: Obvious for p0, q0,
p1, q1; for k ≥ 2 this follows from the first relation in problem [2.2.5].)

[2.2.7]:Q2.2.7 (Even–odd convergents)

From problem [2.2.5] deduce that

p0

q0
<
p2

q2
. . . < r < . . .

p3

q3
<
p1

q1
, and

∣∣r − pk

qk

∣∣ < 1

qkqk+1
.

[2.2.8]:Q2.2.8 Show that qk ≥ 2(k−1)/2, k ≥ 0 and pk ≥ 2(k−2)/2, k ≥ 1. (Hint: Note that

ak ≥ 1 for all k ≥ 1 and use the recursive relation in problem [2.2.4] and pj , qj ≥ 1.)

[2.2.9]:Q2.2.9 (Rational approximations by convergents)
Show that

1

qk(qk + qk+1)
<
∣∣r − pk

qk

∣∣ < 1

qkqk+1
.

(Hint: If a
b
< c

d
then a+s c

b+s d
increases with s for s ≥ 0, while if a

b
> c

d
it decreases. Hence

if k is even
pk−2+s pk−1

qk−2+s qk−1
increases with s and for s = ak it becomes pk

qk
which is such

that
pk
qk

< r <
pk−1

qk−1
. Therefore

pk−2

qk−2
≤ pk−2 + pk−1

qk−2 + qk−1
< r,
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hence ∣∣r − pk−2

qk−2

∣∣ >
∣∣pk−2 + pk−1

qk−2 + qk−1
− pk−2

qk−2

∣∣ ≡ 1

qk−2(qk−2 + qk−1)
,

while the other inequality follows from problem [2.2.7].

The following definition will be used below: a rational number p/q is a best approxima-
tion for r if for any pair p′, q′ with q′ < q, one has |q′r − p′| > |qr − p|.
[2.2.10]:Q2.2.10 Assume r irrational, and set αj = pj/qj , where pj/qj are the convergents of
the continued fraction of r. Let j be odd. Let p and q be positive integers such that
αj−1 > α > αj+1, with α = p/q. Then q > qj . State and check the analogous result for j
odd, by showing that the two results can be summarized by saying that if p/q is between
two convergents of orders j−1 and j+1 then one has q > qj . (Hint: αj−1 > α > αj+1 >
r > αj so that 1/qjqj−1 > |αj−1 − r| > |αj−1 − α| = |pj−1q − qj−1p|/qqj−1 ≥ 1/qqj−1,
because |pj−1q − qj−1p| ≥ 1).

[2.2.11]:Q2.2.11 In the context of problem [2.2.10] show that if j is odd and if α = p/q,
with p, q relatively prime integers and αj−1 < α < αj+1, is not a convergent, then
qj |r − αj | < q |r − α|; a similar result holds for j even. (Hint: q|α− r| > q|α− αj+1| =
q|pqj+1 − qpj+1|/qqj+1 ≥ 1/qj+1 ≥ qj |αj − r|).
[2.2.12]:Q2.2.12 (Approximation by rationals)

Show that problems [2.2.9],[2.2.10],[2.2.11] imply that if p/q is an approximation to r
such that |q′r − p′| > |qr − p| for all q′ < q then q = qj , p = pj for some j. In other
words every best approximant is a convergent.

[2.2.13]:Q2.2.13 (Rational approximation and convergents)

Show that if r is irrational every convergent is a best approximant. (Hint: If not then
for some n there must exist q < qn with |rq − p| < |rqn − pn| = εn; let p̄, q̄ minimize
the expression |q′r − p′| for q′ < qn; if ε̄ is the minimum value, one has ε̄ < εn; hence
p̄/q̄ is a best approximation: so that p̄ = ps, q̄ = qs for some s < qn and 1/(qs +
qs+1) ≤ |qsr − ps| ≤ |qnr − pn| < 1/qn+1, i.e. qs + qs+1 > qn+1 which contradicts
qn+1 = an+1qn + qn−1).

[2.2.14]:Q2.2.14 (Best approximation and convergents)
A necessary and sufficient condition in order that a rational approximation to an irrational
number be a best approximation is that it is a convergent of the continued fraction of r.
(Hint: Just a summary of problems [2.2.6] through [2.2.13]).

[2.2.15]:Q2.2.15 Show that if qn−1 < q < qn then |qr − p| > |qn−1r − pn−1|. Show that this

can be interpreted as saying that the graph of the function η(q) = minp |qr− p| is above
that of the function η0(q) = εn = |qnr − pn| for qn ≤ q < qn+1. (Hint: If one had
|qr−p| ≤ |qn−1r−pn−1| and if ε̄ = min |qr−p| over qn−1 < q < qn and over p is reached
at some q̄, p̄ then p̄/q̄ would be a best approximation).

[2.2.16]:Q2.2.16 (Bounded entries continued fractions)
Show that if the entries aj of the irrational number r are uniformly bounded by N then
the growth of qn is bounded by an exponential (and one can estimate qn by a constant

times [(N + (N2 + 4)1/2)/2]n). Viceversa an exponential bound can hold if and only if
the entries of the continued fraction are uniformly bounded. (Hint: The denominator qn
is bounded by that of the number with continued fraction with entries all equal to N).

[2.2.17]:Q2.2.17 Show that if the inequality: |qnr − pn| > 1/Cqn holds for all n and for a

suitable C then qn cannot grow faster than exponentially. (Hint: Problem [2.2.9] implies
the inequality 1/Cqn < 1/qn+1.)

[2.2.18]:Q2.2.18 (Diophantine property and convergent growth)
One says that a number r verifies a Diophantine property with constant C and exponent
τ if |qr − p| > C−1q−τ . Show that if the convergents growth is bounded by the law
qn+1 < Cqn, for some constant C, then the number r verifies a Diophantine property with
exponent τ = 1. More generally relate the growth of the convergents to the Diophantine
property. (Hint: Refer to problem [2.2.9].)
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[2.2.19]:Q2.2.19 (Rotations and generation of the continued fractions entries)

Suppose n even and think the interval [0, 1] as a circle of radius 1/2π: the point qnr mod 1
can be represented as a point displaced by εn = |qn − pn| to the right of 0, while qn−1r
can be viewed as a point to the left of 0 by εn−1. Show that the points qr mod 1, with
qn < q < qn+1, are not in the interval [−εn−1, 0] unless q is of the form q = sqn + qn−1,
with s ≤ an+1 an integer. Furthermore show that the point rqn+1 = r(an+1qn + qn−1)
is closer than εn to qn−1r, and that it is the next position closest to 0 occurring after qnr.
Show that this provides a natural interpretation of the meaning of the numbers aj in the
continued fraction of r regarded as a rotation of the circle [0, 1], as well as a geometric
interpretation of the relation an+1qn+qn−1 = qn+1. (Hint: Use the construction given for
problem [2.2.9] to see that the points qr are between rqn−1 and rqn+1 for q = sqn+qn−1,
with 1 ≤ s ≤ an+1, while, for other values of q ≤ qn+1, their distance from a point inside
[−εn−1, 0] is greater than εn−1.)

ε(t), 1
t

t

123 5 8 13 21 34 55

0.62

Fig.(2.2.3)F2.2.3 Graph of the best approximants for the golden mean. The horizontal lines
end at the abscissa qn, n ≥ 1 and their height is the precision of the best rational
approximation p/q with q < qn. The continuous line is the graph of 1/t.

[2.2.20]:Q2.2.20 (Gaps in the rational approximations)

Show that the function ε(T ) = maximum gap between points of the form nr mod 1, n =
1, 2, . . . , T depends on T as

qn ≤ T < qn + qn−1 ⇒ ε(T ) = εn−1

qn + qn−1 ≤ T < 2qn + qn−1 ⇒ ε(T ) = εn−1 − εn
. . . ⇒ . . .

(an+1 − 1)qn ≤ T < an+1qn + qn−1 ≡ qn+1 ⇒ ε(T ) = εn−1 − (an+1 − 1)εn

and set Tn,k = kqn+qn−1, k = 0, . . . , an+1−1 and ε(t) = ε(Tn,k) for Tn,k ≤ t < Tn,k+1.
Draw the graphs of the function equal to ε(T ) for ε(T ) and its inverse T (ε) for the golden
mean, i.e. the number with a0 = 0 and aj ≡ 1, j ≥ 1. Explain why one should have
expected that the plot of (t, ε(t)) for t ≥ 1 and the plot of (t, 1/t) should have the form
in Fig.(2.2.3). Plot − log ε(T ) in terms of logT and show that is is above a straight line
with slope log r−1). (Hint: This is simply another interpretation of problem [2.2.19]).

[2.2.21]:Q2.2.21 (Quadratic irrationals)
Show that if a number has a continued fraction with entries which eventually are period-
ically repeated, then it is a number verifying a quadratic equation, i.e. it is a quadratic
irrational. Viceversa, see problems [2.2.22] and [2.2.23], it can also be shown that all
quadratic irrationals have a continued fraction with entries eventually periodic repeated.

[2.2.22]:Q2.2.22 Suppose that for some integers a, b, c one has ar2 + br + c = 0. Remark

that the argument in problem [2.2.3] shows that the number rn = [an, an+1, . . .] verifies
r = (pn−1rn+pn−2)/(qn−1rn+qn−2). Substituting the latter expression in the equation
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for r one finds that rn verifies an equation like Anr2n +Bnrn+Cn = 0. Check, by direct
calculation of An, Bn, Cn that

An = a p2n−1 + b pn−1qn−1 + c q2n−1,

Cn = An−1,

B2
n − 4An Cn = b2 − 4a c.

Show that |An|, |Bn|, |Cn| are uniformly bounded by H = 2(2|a|r+ |b|+ |a))+ |b|. Hence
all quadratic irrationals are Diophantine with exponent τ = 1. (Hint: It suffices to find
a bound for |An|. Write An = q2n−1(a(pn−1/qn−1)2 + b(pn−1/qn−1) + c) and use that

|r − pn−1/qn−1| < 1/q2n−1 and ar2 + br + c = 0).

[2.2.23]:Q2.2.23 (Eventually periodic fractions and quadratic irrationals)
Show that a quadratic irrational has an eventually periodic continued fraction because,
as a consequence of the results of the previous problem, the numbers rn can only take
finitely many values. Show that, if H is the constant introduced in problem [2.2.22], the
period length can be bounded by 2(2H+1)3 and that the periodic part has to start from
the j-th entry with j ≤ 2(2H + 1)3.

[2.2.24]:Q2.2.24 (Filling time bound)
Show that the maximum time that one has to wait until the quasi-periodic motion β +

ωt enters a ball of radius ε around β
1
∈ T

ℓ can be estimated to be not larger than

constCε−ℓ−τ if |ω · ν| > C−1|ν|−τ for all 0 6= ν ∈ Z
ℓ. (Hint: Suppose β

1
= 0 (not

restrictive). Let χ(x) = (1 − x2)τ+1 for |x| ≤ 1 and χ(x) = 0 otherwise. Define

χε(α) =
∏ℓ

j=1
(εγ)−1 χ(αj/ε), and γ = (2π)−1

∫ 1

−1
dx (1 − x2)τ+1; then the Fourier

transform of χε(α) is χ̂εν = ψ(εν) with ψ(0) = 1, |ψ(ν)| ≤ const.
∏
j

1
(1+|νj |)2+τ

. Note

that if T−1
∫ T
0
χε(β

0
+ ω t) dt > 0 then the motion will have visited the ball before time

T . Evaluate the integral as 1 +
∑

ν 6=0
χ̂ενe

iβ
0
·ν eiω·νT−1

i ω·ν T and bound it below with

(
1− const.

C

T

∑

ν 6=0

ℓ∏

j=1

1

(1 + |νj |ε)2+τ
|ν|τ
)
≥ 1− ΓC

Tετ+ℓ
,

where Γ ∼ const.
∫∞
−∞ dℓx |x|τ

∏
j

1
(1+|xj |)2+τ

.)

[2.2.25]:Q2.2.25 (Positive frequency time)

In the context of problem [2.2.24] estimate the maximum time one has to wait so that
while time varies between 0 and T the cylinder centered at β

0
with basis a disk of radius

ε and height 1 (say) has been visited a finite fraction of T . Show that it is not larger than

T = constCε−τ−ℓ+1: hence the estimate of the maximum filling time in problem [2.2.24]

can be improved to become T . (Hint: Just repeat the argument in problem [2.2.24] by
replacing χ(α) by a function which differs from 0 only in a cylinder centered at 0 and
having as basis a (ℓ − 1)–dimensional ball of radius ε and height 1 with axis parallel to
ω.)

[2.2.26]:Q2.2.26 (Minimum filling time)

In the context of problem [2.2.24] note that the first visiting time of a ball of radius ε
coincides with the first hitting time of a disk orthogonal to ω through the center of the

ball. This suggests that the estimate of T in problem [2.2.25] contains a factor ε−(ℓ−1)

which is a kind of “cross section” estimate and therefore the minimum time to enter
the ball could, in fact, be simply constC ε−τ . Check that in the case ℓ = 2 this is a
consequence of the result of problems [2.2.14] through [2.2.20]. This is in fact true for all
ℓ: see [BGW98].

[2.2.27]:Q2.2.27 Let r = [a0, a1, . . . , ak], ai ≥ 1, i > 0, be a rational number and let ω =

(r, 1). Consider the periodic motion on T
2 given by α0 + t ω. Estimate (from below) the
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maximum distance that a point can have from the trajectory of α0. (Hint: See problem
[2.2.20].)

[2.2.28]:Q2.2.28 The dynamical system with Ω = {0}, S0 = 0, µ({0}) = 1 is ergodic and

mixing. The system Ω = {0, 1}, S0 = 1 and S1 = 0, µ({0}) = µ({1}) = 1/2 is ergodic
but not mixing.

[2.2.29]:Q2.2.29 (S2 ergodic implies S ergodic)

If (Ω, S2, µ) is ergodic also (Ω, S, µ) is such. If (Ω, S, µ) is mixing such is (Ω, S2, µ) and
vice versa. Find an example of an ergodic system (Ω, S, µ) such that (Ω, S2, µ) is not
ergodic. (Hint: Look into problem [2.2.28].)

[2.2.30]:Q2.2.30 (Ergodicity of a non-resonant quasi-periodic flow)

The continuous dynamical system (Tr , St, λ) where St(ϕ) = ϕ+ω t mod 2π and λ is the

Lebesgue measure λ(dϕ) = dϕ/(2π)r is ergodic if and only if (ω1, . . . , ωr) are rationally

independent.

[2.2.31]:Q2.2.31 (Non-ergodicity of a resonant quasi-periodic flow)

Consider the flow of problem [2.2.30] and, by suitably interpreting proposition (2.1.2),
realize that it can be thought of as a “union” of ergodic systems.

[2.2.32]:Q2.2.32 (Quasi-periodic flows are not mixing)

The flow in problem [2.2.30] for all r ≥ 1 is not mixing.

[2.2.33]:Q2.2.33 (Epicyclic motion)
Let a1, a2, . . . , an be n > 2 non-zero complex numbers, let ω1, . . . , ωn be n rationally
independent numbers and let α1, . . . , αn be n angles. Consider the motion z(α + ωt) of
z(α) =

∑
i
aie

iαi (epicyclic motion): show that z(α) = 0 at most on a set of 0 volume

of α’s in T
n. Show that the function ϑ(α) = arg(z(α)) has derivatives ∂αjϑ(α) which

are measurable and the t–derivative of ϑ(α+ ωt) is given by f(α+ ωt) with

f(α) =

∑
i,j
aiajωi cos(αi − αj)∑

i,j
aiaj cos(αi − αj)

≡
n∑

i=1

ωi∂αiϑ(α),

in the case of real a’s. Check that f(α) and ∂αjϑ(α) are also Lebesgue integrable; if

z(α) cannot vanish they are in fact even Riemann integrable. (Hint: Let n = 3, for

instance; if x + iy
def
= z(α + ωt) the t–derivative of ϑ(α + ωt) is (ẏx − yẋ)/(x2 + y2),

and the denominator can vanish when two suitable combinations of the angles αj vanish;
hence if the denominator vanishes it does so at second order at a point on a plane and
at the same time the numerator vanishes to first order so that the divergence of f(α) is
integrable, if at all present (i.e. if a1, a2, a3 are the sides of a triangle).)

[2.2.34]:Q2.2.34 (Epicyclic mean angular motion with deferent circle)

In the context of problem [2.2.33] show that z(α+ωt) is a point which has a well defined

average rotation speed around the origin, given by Ω = limt→∞ 1
t
arg z(α + ωt) for all

α if |a1| >
∑n

j≥2
|aj |, or more generally, if z(α) cannot be zero for suitably chosen α.

Show also that one has Ω = 1
(2π)n

∫
f(α)dnα. The circle of radius |a1| is called deferent

while the circles with radii aj , j > 1 are called epicycles. (Hint: Since f(α) is Riemann
integrable one can apply proposition (2.2.1).)

[2.2.35]:Q2.2.35 (Epicyclic mean angular motion without deferent circle)

In the context of problem [2.2.33] consider cases in which z(α) can be zero for suitably
chosen α: e.g. the case n = 3 with a, b, c positive and equal to the sides of a triangle
(we refer to such a case as a singular epicyclic motion). Show that the average rotation
speed Ω exists for all but a set of zero measure of α’s. Check that in the latter cases the

average is Ω = 1
(2π)n

∫
f(α)dnα and that Ω is a linear combination of the components

of ω with coefficients pj which add up to 1: Ω =
∑n

j=1
ωjpj . (Hint: Since f(α) is

always Lebesgue measurable we can apply Birkhoff’s theorem and use the ergodicity of
the irrational rotations of the torus.)
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[2.2.36]:Q2.2.36 (No exceptions in the epicylic motion)

In the context of problem [2.2.35] consider a singular epicyclic motion, e.g. the case in
which n = 3 and a1, a2, a3 are the sides of a triangle (see the previous problem). Show

that the average angular motion actually does exist for all α ∈ T
3 such that z(α + ωt)

never vanishes for any t’s and is the same (i.e. Ω) for all: this is a problem posed by
Lagrange and solved by Bohl. (Hint: Note that, by problem [2.2.35], as close as wished
to every point α such that z(α + ωt) 6= 0 for all t there must be a point whose average
rotation speed is Ω. The set of α for which z(α) vanishes, “triangle configurations”, is

a line in T
3: the set of points closer than ε to this line forms a tube of volume < cε for

some c > 0. If αε is a point with average speed of rotation Ω close to α within ε/2 then
αε + ωt and αε + ωt will stay within order of ε forever. But the fraction of time that
αε+ωt spends inside the tube around the singularity will be, by ergodicity, of order ε and
therefore the fraction of time the argument of z(αε + ωt) may differ substantially from
that of z(αε + ωt) also has size of order ε; during such amounts of time the difference
in the arguments can be at most 2π. Hence the average rotation of z(αε + ωt) is close
within order ε to Ω and ε is arbitrary.)

Remark. Note that if α is such that z(α+ωt) vanishes one cannot define arg(z(α+ωt)).
Unless z(α + ωt) vanishes for infinitely many t’s the argument of z(α + ωt) can be
eventually meaningfully defined and by the argument in the latter problem [2.2.36] it
equals Ω. However if there are two t’s for which z(α + ωt) = 0 then the ω cannot be
rationally independent. Hence the result of the previous problem is that the average
epicyclic motion exists aside from the cases in which it cannot be defined.

[2.2.37]:Q2.2.37 (Epicylic motion in Lagrange’s problem, [AA68], p. 142)

In the context of problem [2.2.33] consider the function ∂αjϑ(α) and show that the time

average pj of ∂αjϑ(α+ωt) is > 0 and equal to the fraction of the volume of Tn occupied

by the α’s such that |
∑

k 6=j ake
iαk | < |aj |. (Hint: Without loss of generality consider

j = 1. Note that by ergodicity of the transformation α→ α+ωt and of the transformation
of the single angle α1 → α1 + t the above average is

p1 =

∫

Tn

∂α1ϑ(α)
dα

(2π)n
= lim
t→∞

1

t

∫ t

0

dτ

∫

Tn−1

∂α1ϑ(α1 + τ, α2, . . . , αn)
dα2 . . . dαn

(2π)n−1
.

However
∫ 2π

0
dτ∂α1ϑ(α1 + τ, α2, . . . , αn) = 0 if |a1| > |

∑n

j=2
aje

iαj |, as a simple draw-

ing shows if the point z(α) is represented as ξ + a1eiα1 with ξ =
∑n

j=2
aje

iαj , and∫ 2π

0
dτ ∂α1ϑ(α1 + τ, α2, . . . , αn) = 2π otherwise.)

[2.2.38]:Q2.2.38 (Bohl’s formula for Lagrange’s epicycles)

In the context of problem [2.2.33] consider the case n = 3 with a1, a2, a3 being sides of a
triangle whose angles are A1, A2, A3, with Aj opposite to aj . Then the average motion
is Ω given by

Ω =
1

π
(A1ω1 + A2ω2 + A3ω3)

(Hint: This is a special case of the formula for pj derived in problem [2.2.37].)

[2.2.39]:Q2.2.39 (Existence of the rotation number, [Le11])

Let ϑ′ = S(ϑ) be a monotonically increasing smooth function of the real variable ϑ.
Suppose that S(ϑ + 2π) = S(ϑ) + 2π. Show the existence of Ω such that Sn(ϑ) = ϑ +
Ωn+ ε(n), with ε(n) bounded uniformly in ϑ, n. (Hint: By the periodicity of S it suffices
to consider ϑ ∈ [0, 2π). Assume that one has Snϑ 6= ϑ+2πp for all integers p and for all
ϑ ∈ [0, 2π): otherwise the discussion is easier. Let Snϑ = ϑ + 2πMn(ϑ) + rn(ϑ), with
Mn(ϑ) ∈ Z+ and 0 < rn(ϑ) < 2π. But Mn(ϑ) can be discontinuous only if rn(ϑ) = 0,
so that, by assumption, this can not happen. Hence Mn(ϑ) must be independent of ϑ:
Mn(ϑ) = Mn for all ϑ ∈ [0, 2π]. Thus Sn(Smϑ) = Sn+mϑ = ϑ+ 2πMn+m + rn+m(ϑ)
and

Sn(Smϑ) = Sn(ϑ+ 2πMm + rm(ϑ)) =

= Sn(ϑ+ rm(ϑ)) + 2πMm = ϑ+ 2π(Mn +Mm) + rn(ϑ+ rm(ϑ)).
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We deduce Mn +Mm − 1 ≤Mn+m ≤Mn +Mm +1. By subadditivity this implies that

limn→∞ Mn
n

= Ω exists; the inequality also implies the existence of a constant C such

that |Mnp+m
np+m

− Mp
p
| < C

p
for all p ≥ 1, 0 ≤ m < p,n ≥ 0: hence Mn

n
= Ω + γn

n
, with

|γn| ≤ C.)

[2.2.40]:Q2.2.40 (Existence of the mean motion, from [Le11])

Let ϑ̇ = F (ϑ, t) where (ϑ, t) ∈ R2 are two angles and F > 0 is smooth on R
2 and

periodic with period 2π in both arguments. Show that for all initial data ϑ0 the solution
of the equation has the form ϑ(t) = ϑ0 + Ωt + ε(t) with ε(t) uniformly bounded for all
t. (Hint: Define the circle map corresponding to the solutions of the differential equation
considered at times 2πn, n = 0, 1, 2, . . . , n.)

[2.2.41]:Q2.2.41 Given a dynamical system (Ω, S, µ) let E = {E1, . . .} be a denumerable family

of µ–measurable sets that generate 4 the σ–algebra Bµ on which the complete S–invariantN2.2.4
measure µ is defined. Then (Ω, S, µ) is ergodic if and only if

lim
N→∞

N−1

N−1∑

j=0

µ(Ek ∩ S−jEh) = µ(Ek)µ(Eh) for all h, k ≥ 1,

and it is mixing if and only if

lim
j→∞

µ(Ek ∩ S−jEh) = µ(Ek)µ(Eh) for all h, k ≥ 1.

[2.2.42]:Q2.2.42 (Bernoulli shift is mixing)

The dynamical system (Ω, S, µ), with Ω = {0, 1}Z, S = the shift by one unit, µ =
Bernoulli measure B(1/2, 1/2) on Ω = the measure that attributes to the cylinders

C
i1...ip
σ1...σp (cf. remark following definition (1.4.2) for the notion of cylinder) the measure

2−p, is mixing.

[2.2.43]:Q2.2.43 (The baker map)

The baker map B is defined on the unit square Q = [0, 1]2 of R2 by

x→ 2x mod 1 , y → y/2 + [2x]/2,

(where [·] denotes the integer part function). Check that this map leaves invariant the
Lebesgue measure λ on [0, 1]2. Show that the system (Ω, S, µ) of problem [2.2.42] is
isomorphic mod 0 to (Q, B, λ). Find the measure zero set N ⊂ [0, 1]2 and N ′ ⊂ {0, 1}Z
that have to be removed to define the isomorphism, cf. definition (1.2.3). Is B invertible?
Is it invertible mod 0? (Hint: Write x and y in binary expansion and express B in terms
of their binary expansions).

[2.2.44]:Q2.2.44 Let (Ω, S) be an invertible topological dynamical system and let Ω be compact

metric; show that µ ∈ M(Ω, S) is ergodic or mixing if and only if for all f, g ∈ C(Ω) one
has, respectively,

lim
N→∞

N−1

N−1∑

j=0

f(Sjx) =

∫

Ω

f(x′)µ(dx′)

or

lim
j→∞

µ(fSjg) ≡
∫

Ω

f(Sjx′) g(x′)µ(dx′) = µ(f)µ(g),

where µ(f) =
∫
Ω
f(x′)µ(dx′). Show also that in the above statements one can replace

C(Ω) with any denumerable family {fn}n∈Z of functions of C(Ω) which is fundamental

4 This means that Bµ is the smallest µ–complete σ-algebra containing the sets in E.
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in C(Ω) (i.e. such that the linear space that it spans is dense in C(Ω) in the uniform
norm).5N2.2.5

[2.2.45]:Q2.2.45 (S−1 is ergodic or mixing if S is such)

If (Ω, S, µ) is an invertible ergodic (or mixing) dynamical system also the “inverse” dy-
namical system (Ω, S−1, µ) is such.

[2.2.46]:Q2.2.46 (Equality of averages in the past and in the future)

If (Ω, S, µ) is an invertible metric dynamical system, fixed f ∈ L1(µ) the limits

f
+
(x) = lim

N→∞
N−1

N−1∑

j=0

f(Sjx) and f
−
(x) = lim

N→∞
N−1

N−1∑

j=0

f(S−jx)

exist µ–almost everywhere and are µ–almost everywhere equal. (Hint: Use proposition

(2.2.2). Define E = {x| f+(x) > f
−
(x)} and, if µ(E) > 0, show that the average values

in the future and in the past of χEf are respectively χE f
+

and χE f
−

and, hence,

( f
+ − f

−
)χE ≥ 0 and

∫
χE f

+
dµ =

∫
χE f

−
dµ =

∫
χEfdµ imply ( f

+ − f
−
)χE = 0

µ–almost everywhere, etc.)

[2.2.47]:Q2.2.47 (Frequency of digits, see [AA68])
Let α = logb c with b > c > 1, b and c integers. Consider the map Sx = x + α mod 1.

Show that [bS
n(0)] ≡ [bnα], with [·] denoting the integer part, is the first digit of the

development in base b of the number cn. Making use of proposition (2.1.2), compute the
frequency with which the digits 7 and 3 appear respectively as first digits of the decimal
development of 3n and show that 7 appears more often than 3 assuming known that
log3 10 is irrational, (is it? check).

[2.2.48]:Q2.2.48 (Arnold’s cat map is mixing)

Show that the map of T2 : Sϕ =

(
1 1
1 2

)(
ϕ1

ϕ2

)
mod 2π is such that the dynamical

system (T2, S, λ) with λ = Lebesgue measure = (dϕ)/(2ψ)2 is ergodic and mixing. (Hint:

Apply the result of problem [2.2.44] and select the sequence fν = eiν·ϕ as the basis for

the Fourier series on T
2.)

[2.2.49]:Q2.2.49 (The product of mixing systems is mixing)
Consider the metric dynamical system constructed starting from two metric invertible
dynamical systems (Ω, S, µ) and (Ω′, S′, µ′) and forming the new metric dynamical sys-
tem, called the tensor product of the two dynamical systems, (Ω × Ω′, S × S′, µ × µ′).
Show that the tensor product is mixing if both (Ω, S, µ) and (Ω′, S′, µ′) are mixing. (Hint:
Make use of the result of problem [2.2.44] and of the density in C(Ω×Ω′) of the functions

having the form
∑p

i=1
fi(x)gi(y) with f1, . . . , fp ∈ C(Ω), g1, . . . , gp ∈ C(Ω′).)

[2.2.50]:Q2.2.50 (Ergodicity and mixing of tensor products)

The tensor product of two irrational rotations of the circle T1 with equal rotation numbers
is not an ergodic system. Find esplicitly invariant sets of positive measure. However the
tensor product of two mixing systems is mixing (cf. problem [2.2.49]).

[2.2.51]:Q2.2.51 Let (Ω, S, µ) be a metric invertible dynamical system; consider the unitary

operator on L2(µ) : (Uf)(x) = f(Sx). Show that (Ω, S, µ) is ergodic if and only if the
equation Uf = f in L2(µ) admits only the solution f = const.

[2.2.52]:Q2.2.52 If (Ω, S, µ) is as in problem [2.2.51] and if f ∈ L2(Ω, µ) such that Uf = λf

with λ 6= 1 exist then (Ω, S, µ) is not mixing.

[2.2.53]:Q2.2.53 (A non-Lebesgue-measurable set)

Let ω/2π be irrational and consider the rotation of the unit circle T
1 with rotation

5 Given a set H of continuous functions H ⊂ C(Ω), the subspace spanned by H consists
in the finite linear combinations of elements in H.
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number ω. Select a point out of every trajectory. If E0 is the set of points thus obtained
check that E0 + jω is disjoint from E0 + iω for i 6= j. Conclude that E0 is not Lebesgue
measurable. (Hint: Since the ∪∞j=−∞E0+jω = [0, 2π] and since the pairwise disjoint sets

E0 + jω, if measurable, would have all the same Lebesgue measure it follows that they
could not have zero measure because the measure is completely additive and therefore
the whole space would have zero measure. They cannot have positive measure because
then the whole space would have infinite measure. An absurd situation.)

[2.2.54]:Q2.2.54 (A non-Lebesgue-measurable function)

Given E0 as in problem [2.2.53] for every x ∈ [0, 2π] the trajectory T (x) = {x′|x′ =
x+ kω mod 2π, with k ∈ Z}, intersects E0 only in one point ξ(x). Setting f(x) = ξ(x)
one defines a function such that f(x) = f(x+ω). Show that such function takes different
values on different trajectories but it is not a first integral! hence it is not Lebesgue
measurable. (Hint: Ergodic systems cannot have first integrals: hence the only way out
is that the set E0 cannot be measurable and the function f(x) is also not measurable:
but measurability is required in the definition of first integral).

Note that E0 is the prototype of the sets which are not Lebesgue measurable. Making
use of the axiom of the choice it becomes possible construct apparent nontrivial constants
of motion for ergodic measures. However one obtains in this way examples of functions
or sets which are not measurable with respect to the ergodic measures in question. The
above set (described by Lebesgue) appears, therefore, as a non-measurable set associated

with the ergodic action of a rotation of T
1. Non measurability is the mathematically

precise definition of a function that cannot be tabulated with any prefixed appximation.
The axiom of choice is used here when the choice set E0 is obtained, i.e. in Zermelo’s
formulation.

Bibliographical note to §2.2
The proof of Birkhoff’s ergodic theorem goes back to 1931, [Bi31]. The
one presented above is taken from [Ja62]. Use of continued fractions in
Science seems to be documented to go back at least to Aristarchos (about
280 b.c.) (who gives as tropical year length 365 + (1/4 + 1/(20 + 2/60))
mean solar days while the solar year was given as 365 + (1/4 − 1/(10 −
1/4)) mean solar days) and it is likely to signal that he realized existence
of equinox precession before Hypparchos did 150 years later. [Ra99] The
continued fractions theory presentation is here inspired by [Ki64]; the case
of Diophantine vectors of dimension higher than 2 cannot be reduced to the
theory of continued fractions, nevertheless the above approach to continued
fractions admits some extensions and in the problems for Section §(8.1) we
provide a few examples inspired by [Ch99], see also [CM01]. The rotation
number theory for circle maps is taken from [Le11]: it is due to Poincaré,
[Po85]. The theory of epicyclic motions is essentially due to Lagrange in the
cases in which a deferent is present. The case in absence of deferents has
been solved by Bohl in the n = 3 case and extended by Weyl to the general
case, [AA68].

§2.3 Ergodic points

The considerations and definitions of the previous sections lead to a nat-
ural classification of the motions associated with a continuous map S of
a compact metric space Ω, observed on a partition P . This classification
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divides motions in three classes: the ergodic motions, the motions with de-
fined frequencies but which are not ergodic and the exceptional motions,
i.e. motions with not defined frequencies.
Let Ω̂ be the closure of the set of (P , S)–histories of points in Ω: this is, in
general, larger than the set of histories of points in Ω and has been called
in definition (1.4.2) the set of symbolic motions seen from P . We begin by
defining the exceptional points.

(2.3.1) Definition:D2.3.1 (Exceptional points)
Let (Ω, S) be an invertible dynamical system and let P = {P0, . . . , Pn} be a
partition of Ω. If x ∈ Ω let σ(x) be its (P , S)–history.
The set of the sequences σ ∈ Ω̂ with not defined frequencies will be called
the set of (P , S)–exceptional symbolic motions and we shall denote it by Ê ′.
The set of the points x ∈ Ω such that σ(x) ∈ Ê ′ will be denoted E ′(P , S) and
it will be the set of the (P , S)–exceptional points.
We need to investigate the classification of the remaining points of Ω and
of Ω̂ in order to show that all statistical properties of motions are carried by
the ergodic points. This will be achieved in the next section. It is convenient
to introduce, for this purpose, a few more definitions.

(2.3.2) Definition:D2.3.2 (Stationary distribution)
A sequence p of non negative numbers,

p =
(
p
(
j1 . . . jq
σ1 . . . σq

))
, q ≥ 1, {j1, . . . , jq} ⊂ Z, σ1, . . . , σq ∈ {0, . . . , n},

will be called a stationary distribution on {0, . . . , n}Z if the following prop-
erties hold for every choice of the labels:
(i) positivity:

p

(
J
σ

)
= p

(
j1 . . . jq
σ1 . . . σq

)
≥ 0, (2.3.1)

e2.3.1

(ii) normalization:
n∑

σ1,...,σq=0

p

(
j1 . . . jq
σ1 . . . σq

)
= 1, (2.3.2)e2.3.2

(iii) compatibility:

n∑

σ=0

p
( j1 . . . jq−1 jq jq+1 . . . js

σ1 . . . σq−1 σ σq+1 . . . σs

)
= p
( j1 . . . jq−1 jq+1 . . . js

σ1 . . . σq−1 σq+1 . . . σs

)
,

(iv) stationarity: if J + k = {j1 + k, . . . , jq + k} when J = {j1, . . . , jq} and
for all q–ples σ = (σ1, . . . , σq) and all k ∈ Z

p
(J + k

σ

)
= p
(J
σ

)
for all k ∈ Z. (2.3.3)e2.3.3
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Often a stationary distribution in the above sense is also called a stochastic
process with space of states {0, 1, . . . , n}. Related notions are expressed by
the following definition.

(2.3.3) Definition:D2.3.3 (Nonstationary, ergodic and mixing distributions)
If properties (i),(ii),(iii) of definition (2.3.2) hold then we shall simply say
that p is a distribution on {0, . . . , n}Z: if property (iv) does not hold we say
that p is a nonstationary distribution.
(i) The collection of all distributions, stationary and nonstationary, will be
denoted M0({0, . . . , n}Z). It is a compact set in the topology inherited as a
subset of

K =

∞∏

q=1

∏

{j1,...,jq}⊂Z

∏

σ1,...,σq∈{0,...,n}
[0, 1], (2.3.4)e2.3.4

endowed with the product topology.
(ii) The collection of the stationary distributions in M0({0, . . . , n}Z) will
be denoted by M({0, . . . , n}Z).
(iii) The stationary distributions which are ergodic, i.e. such that

lim
N→∞

N−1
N−1∑

k=0

p

(
J J ′ + k
σJ σ′

J′

)
= p

(
J
σ

)
p

(
J ′

σ′
J′

)
(2.3.5)e2.3.5

for all finite J, J ′ and for all strings σJ = (σj)j∈J , σJ′ = (σ′
j′ )j′∈J′ , will be

denoted by Me({0, . . . , n}Z).
(iv) The stationary distributions which are mixing, i.e. such that

lim
k→∞

p

(
J J ′ + k
σJ σ′

J′

)
= p

(
J
σJ

)
p

(
J ′

σ′
J′

)
, (2.3.6)e2.3.6

will be denoted by Mm({0, . . . , n}Z).
Remarks: (1) One sees that M0 and M are closed subsets in K, while Me

andMm are Borel sets inK, being defined via limits of continuous functions.
(2) One also sees that if σ̂ is a given sequence with defined frequencies then
the set of the frequencies of σ̂:

p
(
j1 . . . jp
σ1 . . . σq

∣∣ σ̂
)
, (2.3.7)e2.3.7

q ≥ 1, {j1, . . . , jq} ⊂ Z, σ1, . . . , σq ∈ {0, . . . , n}, is an element of

M({0, . . . , n}Z): it will be called the distribution of σ̂.
(3) The notion of distribution on {0, . . . , n}Z can be identified with that of
“probability measure” on the Borel sets of {0, . . . , n}Z. If we denoteM0(K)
the set of the probability measures on the Borel sets of a topological space
K, the identification is described by the following proposition.
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(2.3.1) Proposition:P2.3.1 (Distributions and probability measures)

(i) Let p ∈ M0({0, . . . , n}Z) and, for every cylinder CJσ = C
j1...jq
σ1...σq ⊂

{0, . . . , n}Z, define
mp(C

J
σ ) = p

(
J

σ

)
. (2.3.8)e2.3.8

Then there is a unique probability measure mp ∈ M0({0, . . . , n}Z) on

{0, . . . , n}Z which attributes to the cylinder CJσ the measure mp(C
J
σ ) given

by (2.3.8).
(ii) Vice versa for each m ∈M0({0, . . . , n}Z) the sequence p = (m(CJσ )) is

in M0({0, . . . , n}Z).
(iii) The correspondence p ←→ mp is one-to-one between M0({0, . . . , n}Z)
and M0({0, . . . , n}Z) and it is continuous if the latter space is considered
as a (compact) topological space with the weak topology induced by the con-
tinuous functions on {0, . . . , n}Z.1N2.3.1

(iv) Furthermore the correspondence transforms τ–invariant measures
(where τ is the translation (τσ)i = σi+1, i ∈ Z) into stationary distribu-
tions M({0, . . . , n}Z); τ–ergodic measures Me({0, . . . , n}Z, τ) are mapped
into Me({0, . . . , n}Z), and τ–mixing measures Mm({0, . . . , n}Z, τ) into
Mm({0, . . . , n}Z).
Remark: Because of the above proposition we shall, in the following, identify
the notions of distribution on {0, . . . , n}Z with that of Borel probability
measure on {0, . . . , n}Z. This means that we identify

M0({0, . . . , n}Z) withM0({0, . . . , n}Z),
M({0, . . . , n}Z) withM({0, . . . , n}Z, τ),
Me({0, . . . , n}Z) withMe({0, . . . , n}Z, τ),
Mm({0, . . . , n}Z) withMm({0, . . . , n}Z, τ).

Proof: Let B̃ be the algebra of subsets of {0, . . . , n}Z generated by the
subsets E of {0, . . . , n}Z that can be represented as

E = ∪
σ−p...σp∈∆

C−p ... p
σ−p ... σp , (2.3.9)e2.3.9

for some finite p and ∆ ⊂ {0, . . . , n}2p+1.

If mp exists then it is uniquely determined on B̃ by (2.3.8); in fact by
additivity one must have

mp(E) =
∑

σ−p...σp∈∆

p

(
−p . . . p
σ−p . . . σp

)
, (2.3.10)e2.3.10

1 Given a compact topological space Ω one says that µn ∈ M0(Ω) converges weakly

to µ ∈ M0(Ω) if limn→∞
∫
Ω
f(x)µn(dx) =

∫
Ω
f(x)µ(dx) for every f ∈ C(Ω). The

topology corresponding to this notion of convergence is called the weak topology on
M0(Ω).
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and, since B̃ generates the σ–algebra of Borel sets (the cylinders being a
base for the topology of {0, . . . , n}Z), mp is fixed by (2.3.10), if it exists.

To show existence of mp we first show that the (2.3.10) can be really used

to define mp(E), for all E ∈ B̃: the problem lies obviously in the fact that

E can be represented in infinitely many ways in the form (2.3.9) and it is
necessary to verify that the value of the sum (2.3.10) does not depend on
the particular representation of E.
Suppose that E can also be represented as

E = ∪
σ′
−p′

...σ′
p′
∈∆′

C−p′ ... p′
σ′
−p′

...σ′
p′
, (2.3.11)e2.3.11

and suppose that p′ ≥ p. Then the latter equality can be true if and only if

∆′ = {{σ′
−p′ . . . σ

′
p′}|{σ′

−p, . . . , σ
′
p} ∈ ∆}; (2.3.12)e2.3.12

in fact cylinders that have a different specification (cf. remark following
definition (1.4.2)) are necessarily disjoint.
Then the measure of E computed with the representation (2.3.11) will be

∑

σ′
−p′

...σ′
−p−1

σ′
p+1

...σ′
p′

∑

{σ′
−p...σ

′
p}∈∆

p
( − p′ . . .− p− 1 − p . . . p p+ 1 . . . p′

σ′
−p . . . σ

′
−p−1 σ

′
−p . . . σ

′
p σp+1 . . . σ

′
p′

)
,

(2.3.13)e2.3.13
that coincides with (2.3.10) by virtue of (iii) of definition (2.3.2).

Hence mp(E) is well defined on B̃ and the function E → mp(E) is an

additive non-negative function of the sets in B̃. Since the sets of B̃ are both
open and closed the measure µ0 is also a regular measure, i.e. every set of
B̃ contains a closed set (itself) and is contained in an open set (itself) whose
measures differ by less than an arbitrarily fixed amount, cf. [DS58], p.137.
To show that mp can be extended to a completely additive measure on the

smallest σ–algebra that contains B̃ (i.e. to the Borel sets) it will suffice2 toN2.3.2

show that mp is completely additive on B̃. But this is so because all sets of

B̃ are at the same time open and closed, hence compact (cf. (2.3.11)).

Then if E ∈ B̃ is a union ∪∞i=1Ei, Ei ∈ B̃, and Ei ∩ Ej = ∅, for all i 6= j,
one must have Ei = ∅ except for a finite number of labels (since E, being
compact, is covered by the open disjoint sets Ei). Hence E = ∪Ni=1Ei and

therefore complete additivity on B̃ coincides with the finite additivity.
This shows that mp can be uniquely extended to a probability measure

on the Borel sets of {0, . . . , n}Z. The remaining statements are left to the
reader.

It is now possible to complete the classification of the points of Ω and Ω̂.

2 This is a very general result of measure theory, Alexandrov theorem, see [DS58], p. 138.
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(2.3.4) Definition:D2.3.4 (Ergodic motions, ergodic points)
With the notations of definitions (2.3.1), (2.3.2) and (2.3.3) one has the
following.
(i) Given p ∈M({0, . . . , n}Z) let Êp be the set of sequences σ̂ ∈ Ω̂ in which

(cf. definition (1.4.3)) the string homologue to

(
j1 . . . jq
σ1 . . . σq

)
appears with

defined frequency

p
(
j1 . . . jq
σ1 . . . σq

∣∣∣∣σ̂
)
def
= p

(
j1 . . . jq
σ1 . . . σq

)
for all q, j1, . . . , σ1 . . . (2.3.14)e2.3.14

(ii) Let M̂ be the set of distributions p ∈ M({0, . . . , n}Z) that are the dis-

tributions of some σ ∈ Ω̂,

(iii) Let M̂e
def
= M̂ ∩Me({0, . . . , n}Z).

(iv) If Ê ′ denotes the set of exceptional sequences in {0, . . . , n}Z, i.e. of the
sequences in Ω̂ which have not defined frequencies, see definition (2.3.1), we
shall set

Ê = ∪
p∈M̂e

Êp ⊂ Ω̂, Ê ′′ = Ω̂/(Ê ∪ Ê ′) (2.3.15)e2.3.15

and the points of Ê will be called the ergodic symbolic motions of Ω̂. Evi-
dently Ω̂ = Ê ∪ Ê ′ ∪ Ê ′′.
(v) Likewise we shall denote E(P , S), E ′(P , S), E ′′(P , S) the points of Ω

whose (P , S)–histories are in Ê, Ê ′, Ê” respectively.

Remarks: (1) The sets Ê ′, Ê ′′, Ê , Êp are Borel sets in Ω̂. Note, in fact, that

Ω̂ is closed in {0, . . . , n}Z and the above sets can be defined in terms of

properties of the following continuous functions on Ω̂

σ̂ → pN

(
J
σ

∣∣ σ̂
)
= N−1{number of strings homologue to

(
J
σ

)

appearing in σ̂ between 0 and N},
(2.3.16)e2.3.16

and of their limits as N →∞.
(2) It should be clear that usually Êp = ∅ because M̂ will be much smaller

than M({0, . . . , n}Z).
(3) We shall call, by definition, statistical properties of the motions of a
dynamical system (Ω, S) observed on P all properties that one can observe

by randomly selecting a σ ∈ Ω̂ with a probability distribution m ∈M(Ω̂, τ),
i.e. with any probability distribution which is τ–invariant and concentrated
on Ω̂.

After all the above definitions, the following propositions allow us to fix
ideas in a somewhat more orderly fashion.

(2.3.2) Proposition:P2.3.2 (Characterization of distributions describing the
statistical properties of motions)
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Let (Ω, S) be a dynamical system and let P = {P0, . . . , Pn} be a partition of
Ω.
(i) A necessary and sufficient condition in order that a distribution p in

Me({0, . . . , n}Z) be the distribution of an ergodic point of Ω̂ (i.e. p ∈ M̂e)

is that p
(
J
σ

)
= 0 if P Jσ is empty. In such case mp(Êp) = 1.

(ii) A necessary and sufficient condition in order that p ∈ M({0, . . . , n}Z)
be such that mp(Ω̂) = 1 is that p

(
J
σ

)
= 0 if P Jσ = ∅.

Remarks: (1) Hence all ergodic distributions of Ω̂ can be built by computing

the distribution of the frequencies of the ergodic sequences σ ∈ Ω̂: it is
clear that the systems (Ω̂, τ,m) which are ergodic are therefore constructed

starting from the ergodic points of Ω̂.
(2) If mp(Ω̂) = 1 and mp is an invariant measure it is not necessarily true

that there exists σ ∈ Ω̂ whose distribution is precisely p (unless p ∈ Me).
This “anomaly” will be “explained” by the ergodic decomposition theorem
of the next section where it will be shown that, nevertheless, every such
measure can be constructed from the ergodic measures.

Proof: Item (ii) will be discussed first. By definition (1.4.2) and (1.4.6), the

set Ω̂ is

Ω̂ = ∩
J⊂Z,|J|<∞

{σ |σ ∈ {0, . . . , n}Z, P JσJ 6= ∅}
def
= ∩

J⊂Z,|J|<∞
ΓJ , (2.3.17)e2.3.17

where σJ = (σi)j∈J , P JσJ = ∩j∈JS−jPσj and ΓJ is implicitly defined.
The set ΓJ is a union of cylinders with base J and its complement is

{0, . . . , n}Z\ΓJ = ∪
σ∈{0,...,n}Z, PJσJ=∅

CJσ
J
, (2.3.18)e2.3.18

which, if p(CJσ ) = 0 when P Jσ = ∅, has zero mp–measure. Hence in such

case mp(ΓJ ) = 1 and, therefore, mp(Ω̂) = 1. The viceversa can be checked
by running the argument backwards.
To show (i) let p ∈ Me({0, . . . , n}Z and p

(
J
σ

)
= 0 for every

(
J
σ

)
such that

P Jσ = ∅. Then mp(Ω̂) = 1 by (ii) and mp is ergodic. Thus mp–almost
everywhere one has

lim
N→∞

N−1
N−1∑

j=0

χ
C
i1...ip
σ1...σp

(τ jσ) = mp(C
i1...ip
σ1...σp) = p

(
i1 . . . ip
σ1 . . . σp

)
, (2.3.19)e2.3.19

for every choice of the labels. Hence there exist (many) points σ whose
distribution is p: indeed mp–almost all points share this property so that

mp(Êp) = 1. The viceversa is also not difficult.

It is useful to remark explicitly the following corollary.
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(2.3.1) Corollary:C2.3.1 (Measurability of the ergodic distributions)

M̂e is a Borel set in M({0, . . . , n}Z).
Proof: M̂e = Me({0, . . . , n}Z) ∩ {p ∈ M({0, . . . , n}Z) | p

(
J
σ

)
= 0 for every

J , σ such that P Jσ = ∅}; hence Me is a Borel set in M (cf. remark (1) to
definition (2.3.4)) and the second set that appears in this intersection is

obviously closed and M̂e is the intersection of two Borel sets.

It is good, before proceeding to the announced discussion of the ergodic
decomposition, to summarize and clarify further the relation between Ω̂ and
Ω in the case in which Ω is a compact metric space and S is expansive on
P . This is a case in which it is easy to establish a precise relation between
the “real motions” in Ω and the “symbolic motions” in Ω̂.

(2.3.3) Proposition:P2.3.3 (Coding real motions into symbolic motions and
measurability properties of the codes)
Let (Ω, S) be an invertible topological dynamical system; let Ω be compact
metric space, and let P = {P0, . . . , Pn} be a topological partition of Ω on
which S is expansive.
Let Σ : Ω→ Ω̂ be the code that to every x ∈ Ω associates the (P , S)–history
σ(x) and X : Ω̂→ Ω the map defined by (1.4.11). Then
(i) X is continuous;
(ii) Σ−1X−1(x) = x for every x of Ω;
(iii) X and Σ are the inverse of each other if considered as maps between
Ω and ΣΩ and, respectively, between ΣΩ and Ω;
(iv) ΣΩ is a Borel set in Ω̂;
(v) the map A :M0({0, . . . , n}Z)→M0(Ω):

(Am)(E) = m(X−1(E)) for E ∈ B(Ω) (2.3.20)e2.3.20

is continuous;
(vi) the map B :M0(Ω)→M0({0, . . . , n}Z):

(B µ)(F ) = µ(Σ−1(F )) for F ∈ B({0, . . . , n}Z) (2.3.21)
e2.3.21

has image M0(ΣΩ) = {m|m ∈ M0({0, . . . , n}Z), m(ΣΩ) = 1} and it is
measurable (with respect to the Borel sets in M0 and M0);
(vii) A and B are inverse of each other as maps between M0(ΣΩ) and
M0(Ω) and, respectively, betweenM0(Ω) and M0(ΣΩ).

Proof: Points (i)-(iii) were proved in proposition (1.4.1).
The correspondence Σ is measurable because Σ−1CJσ = P Jσ for all J, σ;
then (iv) follows from the one to one property of the correspondence Σ and
from Kuratowsky’s theorem (which implies that the image of a Borel set
via a one-to-one Borel map between two complete separable metric spaces
is still a Borel set).3N2.3.3

3 A Borel map, cf. Appendix 1.2, is a map such that the inverse image of any Borel set is
a Borel set; see [Pa67] Ch. I, Sec. 3, Theorem 3.9.
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The remaining two items follow easily from the above remarks (and from
Kuratowski’s theorem, which is needed to solve the other measurability
problems that arise). For instance measurability of B is reduced immedi-
ately to checking that the functions µ→ µ(P Jσ ) are Borel functions as func-

tions onM0(Ω); this follows from fact that P is a topological partition and
from the Borel measurability of the functions µ→ µ(E) on M({0, . . . , n}Z)
for each closed E (due to the approximability of the characteristic functions
χE by functions of C(Ω)).

Problems for §2.3

[2.3.1]:Q2.3.1 Let p ∈ M ≡ M({0, . . . , n}Z) be such that p

(
j1 . . . jq
σ1 . . . σq

)
6= 0 if and only

if σ1 = . . . = σq = 0. Which are the possible values of the measure of a generic set
E ∈ B(M)?

[2.3.2]:Q2.3.2 (Bernoulli shift)

Let π = (πσ)σ=0,...,n be an (n+1)–ple of positive numbers such that
∑

σ
πσ = 1. If we

set, for every choice of the labels,

p

(
j1 . . . jq
σ1 . . . σq

)
=

q∏

i=1

πσi ,

check that p is a distribution in M({0, . . . , n}Z): it is a distribution often called the

Bernoulli shift (or Bernoulli scheme) B(π0, . . . , πq). (Hint: See definition (2.3.2) and
proposition (2.3.1).)

[2.3.3]:Q2.3.3 If for every i ∈ Z we assign (n + 1) numbers π(i) = (π
(i)
σ )σ=0,...,n, with∑

σ
π
(i)
σ = 1, and if we set p

(
j1...jq
σ1...σq

)
=
∏q

k=1
π
(jk)
σk , then: p ∈M0({0, . . . , n}Z).

[2.3.4]:Q2.3.4 The distributions p defined in problems [2.3.1], [2.3.2] are in Me ∩Mm.

[2.3.5]:Q2.3.5 Show that every p ∈ M0({0, . . . , n}Z) is uniquely determined by the sequence

p =
(
p
( a . . . b
σa . . . σb

))
obtained prescribing the values of p

(
J
σ

)
only for the intervals J =

{a, a+ 1, . . . , b− 1, b}, for any a, b ∈ Z with a < b.

[2.3.6]:Q2.3.6 Suppose given non-negative numbers p

(
a a+ 1 . . . b
σa σa+1 . . . σb

)
for a, b ∈ Z, for

every a < b, and (σa, σa+1, . . . , σb) ∈ {0, . . . , n}(b−a+1) so that

∑

σa...σb

p

(
a . . . b
σa . . . σb

)
= 1,

∑

σa

p

(
a a+ 1 . . . b
σa σa+1 . . . σb

)
= p

(
a+ 1 . . . b
σa+1 . . . σb

)
,

∑

σb

p

(
a . . . b− 1b
σa . . . σb−1σb

)
= p

(
a . . . b− 1
σa . . . σb−1

)
,

then there exists a unique measure m on {0, . . . , n}Z such that

m(Ca...bσa...σb
) = p

(
a . . . b
σa . . . σb

)
.
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(Hint: Note that in the proof of proposition (2.3.1) there appear only J having the form
(a, a+ 1, . . . , b− 1, b)).

[2.3.7]:Q2.3.7 (Perron–Frobenius theorem)

Let Tσσ′ be a (n + 1) × (n + 1) matrix with strictly positive entries. Show that T and
its transpose T ∗ admits an eigenvalue λ > 0 with eigenvector π or π∗ with positive
components. Show that the construction suggested for this proof leads to two (n + 1)–
ples π, π∗ such that Tπ = λπ, and T ∗π∗ = λπ∗, Σσπσπ∗

σ = 1. (Hint: Apply the fixed
point theorem, see [DS58], p. 453, to the map

(π0, . . . , πn)→
(∑

σ′

Tσσ′πσ′/
∑

σ′,σ′′

Tσ′σ′′πσ′′

)
σ=0,1,...,n

defined on the (n+1)–ples π of non-negative numbers such that
∑n

σ=0
πσ = 1: the fixed

point π∗ defines λ and the corresponding eigenvector π∗ of T ∗. Then apply it again to
the map defined by

(µ0, . . . , µn)→
(
λ−1

∑

σ′

Tσ′σ µσ′

)
σ=0,...,n

on the (n+ 1)–ples µ of non-negative numbers such that
∑n

σ=0
πσµσ = 1 obtaining the

eigenvector π.)

[2.3.8]:Q2.3.8 In the context of problem [2.3.7] let

p

(
a a+ 1 . . . b− 1 b
σa σa+1 . . . σb−1 σb

)
= π∗

σa
λ−1Tσaσa+1 . . . λ

−1Tσb−1σb πσb ,

and using the results of problem [2.3.6] show the existence of m ∈ M({0, . . . , n}Z) such

that m(Ca...bσb ...σb
) = p

(
a . . . b
σa . . . σb

)
.

[2.3.9]:Q2.3.9 Let p ∈ M({0, . . . , n}Z) and let p
1
, p

2
∈ M({0, . . . , n}Z) be two ergodic distri-

butions; assume that p = ap
1
+ (1− a)p

2
, i.e. that p

(
J
σ

)
= ap1

(
J
σ

)
+ (1− a)p2

(
J
σ

)
, with

0 < a < 1. Let σ1 and σ2 be two sequences whose frequency distributions are precisely
p
1
and p

2
respectively. Let Nk = k, and form the sequence obtained by writing the first

[aN1] elements of σ1 followed by the first [(1 − a)N1] elements of σ2 followed by the
successive [aN2] of σ1, followed by the successive [(1 − a)N2] elements of σ2 etc. Show
that the sequence σ so obtained has distribution p.

[2.3.10]:Q2.3.10 (Perron–Frobenius spectral gap)

Consider problems [2.3.7] and [2.3.8]. Show that if Tσσ′ > 0, then π and π∗ are the
only eigenvectors with components ≥ 0 and they have all components positive. The
corresponding eigenvalues are maximal in the sense that every other eigenvalue is nec-
essarily smaller in absolute value, and it is smaller at least by a factor (1 − e−2c),

with e−c
def
= minσ,σ′,σ′′

Tσσ′′
Tσ′σ′′

, that we call “gap”. (Hint: Let π∗, π be as in prob-

lem [2.3.7]. Check that e−c ≤ ((λ−1Tk)f)σ
((λ−1Tk)f)σ′

≤ ec for all k ≥ 1 and for all f 6= 0

with fσ ≥ 0. Hence if 1 is the vector with components all equal to 1 it will be
e−c ≤ ((λ−1T )k1)σ ≤ ec as it follows from ((λ−1T )1)σ ≤ ec((λ−1T )1)σ′ by multi-
plying both sides by π∗

σ′ or by π∗
σ and summing over σ′ or over σ. Furthermore if gσ ≥ 0

it follow that ((λ−1T )g)σ ≥ e−c(π∗ · g) ≥ e−2c(π∗ · g)πσ componentwise. Hence if

g±
def
= (|g| ± g)/2 componentwise and if (π∗ · g) = 0 (hence (π∗ · g+) = (π∗ · g−) it is

(λ−1T )g = (λ−1T )(g+−e−2c(π∗ ·g+)π)−(λ−1T )(g−−e−2c(π∗ ·g−)π), componentwise,
hence

|(λ−1T )g| ≤ (λ−1T )(g+ − e−2c(π∗ · g+) π) + (λ−1T )(g− − e−2c(π∗ · g−)π),
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60 §2.4: The ergodic decomposition

so that, multiplying the components by those of π∗ and summing, (π∗ · |(λ−1T )g|) ≤
(1− e−2c) (π∗ · |g|) which implies by recursion that (π∗ · |(λ−1T )kg|) ≤ (1− e−2c)k(π∗ ·
|g|) ≤ (1− e−2c)k maxσ |gσ|. Therefore given any f it is f = (π∗ · f)h+ (f − (π∗ · f) π)
and |(λ−1T )kf − (π∗ · f)π| ≤ 2(1− e−2c)kmaxσ |fσ|ec which implies uniqueness of π, π∗

as well as the statement about the spectral gap).

[2.3.11]:Q2.3.11 Show that under the hypotheses of problem [2.3.10] the measure m defined

in problem [2.3.8] is mixing and find a quantitative estimate of the mixing rate in terms
of the Perron–Frobenius gap in problem [2.3.10]. (Hint: Show that it is such on the

cylinders of the form C = Ca a+1... b−1 b
σaσa+1...σb−1σb , i.e. limk→∞ m(C ∩SkC′) = m(C)m(C′) if

S is the translation on {0, . . . , n}Z and then use the hint to problem [2.3.6].)

[2.3.12]:Q2.3.12 (Perron–Frobenius theorem for mixing matrices)

The conclusions of [2.3.10] and [2.3.11] hold even if one only assumes that there exists
N ≥ 1 such that (TN )σσ′ > 0, in such case one says that the matrix T is mixing. (Hint:
It suffices to note that every eigenvector of T is such also for TN and then apply the
result of [2.3.10] to TN , etc.)

[2.3.13]:Q2.3.13 (Markov processes)

Show that the formula in problem [2.3.8] can also be written

p(σa)

b−1∏

i=a

pσiσi+1 ,

with p(σ) = π∗
σπσ and pσσ′ = π−1

σ λ−1Tσσ′πσ′ . And check that
∑

σ
p(σ) = 1,∑

σ′ pσσ′ = 1. Because of the possibility of writing p
(
a...b
σa...σb

)
as above the class of

the measures thus obtained is the class of the mixing Markov processes with {0, . . . , n}
as space of states.

[2.3.14]:Q2.3.14 Deduce, via a limiting procedure, that the statements of problem [2.3.7] also

hold if T has non-negative matrix elements rather than strictly positive. Show (via
examples) that, however, uniqueness of the eigenvalue with largest modulus does not
hold.

Bibliographical note to §2.3
The fundamental notions of measure theory in the form used here can be
derived from Ch. I, II, V of the book by Parthasarathy, [Pa67]. The quoted
chapters also clarify various other notions that we shall introduce and use
in the following.

§2.4 The ergodic decomposition

The following proposition shows that every invariant measure could be
thought of as “ resultant of a convex combination” of ergodic measures: the
result is particularly clear when Ω is compact, S is a homeomorphism and
the measure is a Borel measure.
We continue to use the symbols introduced in the previous sections. In
particular, given a partition P we denote by Ω̂ the closure of the set of
sequences that are histories of points on the partition P : we have called
this set the set of the “(P , S)–symbolic motions”, cf. definition (1.4.2); and

we denote by τ the translation acting on the sequences of Ω̂. If J ⊂ Z is a
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finite subset of times and σ = (σj)j∈J is a string of labels in {0, . . . , n}, we
denote by CJσ the set of infinite sequences which at the times j ∈ J agree
with σj .

(2.4.1) Proposition:P2.4.1 (Ergodic decompositions)
(i) Let (Ω, S) be an invertible topological dynamical system and let P =
{P0, . . . , Pn} be a partition of Ω. Let m be a translation invariant probability

measure on the (P , S)–symbolic motions Ω̂.
Then there exists a unique probability measure ϑm defined on the Borel sets
of M̂e ⊂ M({0, . . . , n}Z)1, i.e. “concentrated on the τ–ergodic measures”N2.4.1

such that m is the “center of mass” of a mass distributed over the ergodic
measures ω or, analytically,

m(CJσ ) =

∫

M̂e

ϑm(dω)ω(CJσ ) (2.4.1)e2.4.1

for all J ⊂ Z, for all σ ∈ {0, . . . , n}J .
(ii) If Ω is a compact metric space thenMe(Ω, S) ⊂M(Ω) is a Borel set 2

N2.4.2

in the weak topology induced by C(Ω) on M(Ω), (which is compact).
Furthermore if µ ∈ M(Ω, S) there is a Borel probability measure πµ on
Me(Ω, S), i.e. “concentrated on the S–ergodic measures ω on Ω”, such that

µ(f) =

∫

Me(Ω,S)

πµ(dω)ω(f) for all f ∈ C(Ω), (2.4.2)
e2.4.2

and πµ is unique.

Remarks: (1) This is a theorem due to Ruelle, related to Choquet’s theory
of simplexes, see [Ru69].
(2) Proposition (2.4.1) implies that (2.4.1) holds also by replacing CJσ by

any Borel set E ⊂ Ω̂, see corollary (2.4.1). Hence (2.4.1) implies that if

m is an arbitrary translation invariant probability distribution on Ω̂ then
m(Ê) = 1 because by (i) of proposition (2.3.2) one has ω(Ê) = 1 for all

ω ∈ M̂e. This shows that the problem of studying the statistical properties
of motions as defined in remark (3) to definition (2.3.4) is “reduced” to

studying the motions of the ergodic points of Ê .
(3) From proposition (2.4.1) we see that the motions of the points in Ê ′′
are not really different from those of Ê . On the other hand the motions of
Ê ′ are exceptional motions. Although they are often of remarkable interest,
when existing, such motions do not have direct “statistical relevance” in the
sense that if we choose randomly points of Ω̂ with respect to an arbitrary
invariant measure m we have m–probability zero to find a point of Ê ′ ∪ Ê ′′:
this is a corollary of proposition (2.4.1), see corollary (2.4.1).

1 See definition (2.3.4).
2 See definition (2.3.3).
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62 §2.4: The ergodic decomposition

(4) One says that the ergodic points of Ê contain all the possible statistical
informations about the symbolic motions of the dynamical system.
(5) It is useful to remark explicitly that the extremal points ofM are points
inMe: this can be checked by contradiction.3 And viceversa the points inN2.4.3

Me are extremal inM.4N2.4.4

Proof: The set Ω̂ is closed in {0, . . . , n}Z and it is τ–invariant: hence the

dynamical system (Ω̂, τ) verifies the hypothesis of (ii); furthermore the char-

acteristic functions of the cylinders are continuous on Ω̂ so that (ii) implies
(i). One sees that, in turn, (ii) is a consequence of (i) if S is expansive on
P , by using proposition (2.3.3).
We shall choose to prove (ii).
The set of the ergodic distributionsMe(Ω, S) is a Borel set. In fact note
that the S–invariant distributionm is inMe(Ω, S) if it belongs to the closed
set M(Ω, S) and if, furthermore, for a denumerable dense set {fi}i∈Z+

of

continuous functions 5 one hasN2.4.5

N−1
N−1∑

j=0

[m(fhS
−jfk)−m(fh)m(fk)]−−−−→N→∞ 0 for all h, k ∈ Z+. (2.4.3)e2.4.3

The functions in square bracket, as functions of m ∈ M(Ω, S), are contin-
uous. This implies that the setMe(Ω, S) is a Borel set.
Therefore we only need to show the validity of (2.4.2). To define πµ it will
suffice to give the values of the integrals

∫
πµ(dω)ω(f1) . . . ω(fq) (2.4.4)e2.4.4

for each choice of q ≥ 1 functions in C(Ω). Indeed the functions
ω → ω(f1) . . . ω(fq) (as we vary f1, . . . , fq) are a fundamental set in6N2.4.6

C(M(Ω, S)).7N2.4.7

Then consider the quantities

lim
N2,...,Nq→∞

(N2N3 . . . Nq)
−1

N2−1∑

k2=0

. . .

Nq−1∑

kq=0

µ(f1 ·S−k2f2 ·S−k3f3 · . . . ·S−kqfq).

(2.4.5)e2.4.5

3 If µ was extremal inM but not ergodic, one could find a τ–invariant Borel set E such
that 0 < µ(E) < 1 and one could define the two probability distributions µ1(R) = µ(R∩
E)/ µ(E) and µ2(R) = µ(R∩Ec)/(1− µ(E)) and, hence, µ = µ(E)µ1 +(1− µ(E))µ2
with µ1 6= µ2, against the extremality of µ.

4 Assume that µ is ergodic and there are two invariant measures µ1 and µ2 in M such
that µ = aµ1 +(1−a)µ2. Then both µ1 and µ2 are absolutely continuous with respect
to µ and therefore they must coincide with it by its ergodicity.

5 cf. problem [2.2.44]. Here the function S−jf is the function x→ f(Sjx).
6 This means that they span a dense linear space.
7 We use here Riesz’ representation theorem for the dual of C(A) asM0(A), when A is

a compact Hausdorff space. See [DS58], p. 265.
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By Birkhoff’s theorem the limits (2.4.5) always exist. If one admits that
(2.4.2) holds then the expressions (2.4.4) can easily be computed as the
limits (2.4.5). This follows immediately by inserting the expression under
the limit sign in (2.4.2) and passing to the limits under the integral sign (by
applying the criterion of dominated convergence and the ergodicity of the
measures ω in the support of πµ).

Therefore we proceed to show that (2.4.5) can be really used to define
(2.4.4) and, hence, πµ. For this purpose it is necessary to show that given
an arbitrary “polynomial”

ω → Q(ω) =

R∑

i=1

ci

qi∏

k=1

ω(fi,k), (2.4.6)e2.4.6

with fi,k ∈ C(Ω) and with complex coefficients, its “integral” I(Q), com-
puted by means of the formula in (2.4.4) with the integral defined by (2.4.5),
is well defined. This means that it has to be independent of the particu-
lar representation of Q in terms of the monomials, and furthermore that it
satisfies

|I(Q)| ≤ sup
ω∈M(Ω,S)

|Q(ω)|. (2.4.7)
e2.4.7

Establishing (2.4.7) will show, first of all, the independence of the I(Q)
from the particular representation (2.4.6) of Q. In fact if Q1 and Q2 are
two different representations of the same polynomial then, if Q̃ = Q1 −
Q2, |I(Q̃)| ≤ supω∈M(Ω,S) |Q̃(ω)| = 0. By applying Riesz’ representation
theorem of to C(M(Ω, S)), see [DS58], p. 265, the existence of πµ and the
validity of (2.4.2) will follow withM(Ω, S) instead ofMe(Ω, S). This will
be a first step towards the proof of (2.4.2).

To check (2.4.7) it will be enough to consider the case qi = q for all i =
1, . . . , R. Note that

I(Q) = lim
N2→∞

. . . lim
Nq→∞

(N2 . . . Nq)
−1

∑

k2,...,kq

∑

i≥1

ci·

· µ(fi,1S−k2fi,2 . . . S
−kqfi,q) = lim

N2→∞
. . . lim

Nq→∞
(N2 . . . Nq)

−1·

·
∑

k2,...,kq

µ
(∑

i≥1

cifi,1S
−k2fi,2 . . . S

−kqfi,q
)
= (2.4.8)e2.4.8

= µ
(∑

i≥1

cifi,1 f i,2 . . . f i,q
)
,

where Birkhoff’s theorem is applied to the system (Ω, S, µ) denoting

f i,h(x) = lim
N→∞

N−1
N−1∑

k=0

fi,h(S
kx). (2.4.9)e2.4.9
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Since µ and all functions appearing in every addend in the last member
of (2.4.8) are S–invariant except the first, we can replace it too with its
average, deducing by (2.4.8)

I(Q) = µ
(∑

i≥1

ci f i,1 f i,2 . . . f i,q
)
. (2.4.10)e2.4.10

Let us now remark that there exists a set V , which is S–invariant and of
µ–measure zero, outside which the limits

f(x) = lim
N→∞

N−1
N−1∑

k=0

f(Skx) for all f ∈ C(Ω), x /∈ V, (2.4.11)e2.4.11

exist. Indeed if f1, f2, . . . is a denumerable dense set in C(Ω) (that exists
because Ω is metric compact) there must exist an S–invariant set outside
of which the limits (2.4.11) exist for all functions f1, f2, . . . simultaneously
and µ(V ) = 0. The density in norm of the set f1, f2, . . . in C(Ω) implies
then that, outside V , the limits (2.4.11) exist for every f ∈ C(Ω).
For each x ∈ Ω \ V the limit (2.4.11) defines a functional on C(Ω) that is
obviously positive, normalized to 1 and S–invariant: (S−1 f)(x) = f(x), for
all f ∈ C(Ω). Then such functional is generated (by Riesz’ representation
theorem) by an S–invariant probability measure on Ω, i.e. by a element ω
ofM(Ω, S).
Hence (2.4.10) immediately implies (2.4.7) since µ is a probability measure.
From (2.4.7) one deduces, then, existence of a probability measure πµ on
the Borel sets ofM(Ω, S) such that

I(Q) =

∫

M(Ω,S)

Q(ω)πµ(dω). (2.4.12)e2.4.12

Hence selecting Q(ω) = ω(f), with f ∈ C(Ω), from (2.4.10) we deduce then

µ(f) =

∫

M(Ω,S)

ω(f)πµ(dω). (2.4.13)e2.4.13

Selecting, instead, Q(ω) = ω(f1S
−k2f2)ω(f3) . . . ω(fq), with f1, f2, . . . , fq ∈

C(Ω), one deduces from (2.4.8), (2.4.10)

N−1
2

N2−1∑

k2=0

∫
ω(f1S

−k2f2)ω(f3) . . . ω(fq)πµ(dω) =

= lim
N3→∞

. . . lim
Nq→∞

N−1
2

N2−1∑

k2=0

·

· (N3 . . . Nq)
−1

∑

k3,...,kq

µ(f1S
−k2f2S

−k3f3 . . . S
−kqfq),

(2.4.14)e2.4.14
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and, in the limit as N2 →∞, the first member of (2.4.14) converges to
∫
ω(f1 f2)ω(f3) . . . ω(fq)πµ(dω), (2.4.15)e2.4.15

because, by Birkhoff’s theorem applied to (Ω, S, ω), we can apply the dom-
inated convergence criterion.
The second member of (2.4.14) converges, by (2.4.8) and (2.4.10), when
N2 →∞ to ∫

ω(f1)ω(f2) . . . ω(fq)πµ(dω), (2.4.16)e2.4.16

hence for all f3, . . . , fq, f1, f2 ∈ C(Ω)
∫

M(Ω,S)

[ω(f1 f2)− ω(f1)ω(f2)]ω(f3) . . . ω(fq)πµ(dω) = 0. (2.4.17)
e2.4.17

By the density of the polynomials in ω in the space C(M(Ω, S)) the relation
(2.4.17) implies that ω(f1 f2) = ω(f1)ω(f2), for all f1, f2 and πµ–almost
everywhere. Again, since there exists a denumerable set of continuous func-
tions dense in C(Ω), the relation ω( f1f2) = ω(f1)ω(f2) can be assumed
valid for ω /∈ W , with the set W independent of f1 and f2 and of zero πµ
measure: πµ(W ) = 0.
It is however clear that if ω( f1f2) = ω(f1)ω(f2), for all f1, f2 ∈ C(Ω), the
measure ω is ergodic and hence πµ(Me(Ω, S)) = 1.
The uniqueness of πµ follows from the above analysis and from the unique-
ness of the measures built by means of the above metioned Riesz’ represen-
tation theorem.

Noting that (2.4.1) implies its validity also for all Borel sets of Ω̂ one can
ask if, in the hypotheses of (ii) of proposition (2.4.1), the relation

µ(E) =

∫

Me(Ω,S)

πµ(dω)ω(E) (2.4.18)e2.4.18

holds at least for suitably chosen E ⊂ Ω. The following proposition gives
an answer to this question.

(2.4.2) Proposition:P2.4.2 If (Ω, S) is an invertible topological dynamical sys-
tem and if P = {P0, . . . , Pn} is a topological partition of Ω on which S is
expansive then (2.4.18) holds for every E ∈ B0 = {algebra of sets generated
by all closed sets}.
Proof: Starting with a given measure µ ∈M(Ω, S) and by applying propo-

sition (2.3.3) we can construct the measure B µ ∈ M(Ω̂) that has support
on ΣΩ (we use here the notations and proposition (2.3.3) as well as corollary

(2.3.1), to insure measurability of the set M̂e).
By applying (i) of proposition (2.4.1) to B µ one gets

(B µ)(F ) =

∫

M̂e

ϑµ(dω
′)ω′(F ), (2.4.19)e2.4.19
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if ϑµ is suitably chosen and if F is a cylinder CJσ or if it is an element of the

algebra B̂0 generated by the cylinders (i.e. if F is a finite union of disjoint
cylinders).

We first show that ϑµ(M̂e ∩M(ΣΩ)) = 1.

If, indeed, the support of ϑµ was not M̂e∩M(ΣΩ), there should exist η > 0

and a subset Eη ⊂ M̂e\M(ΣΩ) consisting of measures ω′ such that:

ω′(Ω̂/ΣΩ) = 1, (2.4.20)
e2.4.20

and ϑµ(Eη) > η > 0 (note that ω(Ω̂/ΣΩ) = 0, 1 if ω ∈ M̂e, because ω is

ergodic and Ω̂\ΣΩ is a τ–invariant Borel set).
Let now Γ ⊂ ΣΩ be a closed subset of ΣΩ such that (Bµ)(Γ) > 1−δ > 1−η
and let Gn, n = 1, 2, . . . be a sequence of open sets such that Gn+1 ⊂ Gn,

for all n and ∩nGn = Γ (the sequence exists because πµ is regular and Ω̂
is a metric space). We can also suppose that Gn is in B0: indeed Gn is a
union of cylinders that covers the compact set Γ and the cylinders are open.
In this case we have, by (2.4.19), (2.4.20),

(B µ)(Γ) = lim
n→∞

(B µ)(Gn) = lim
n→∞

∫

M̂e

ϑµ(dω
′)ω′(Gn) =

=

∫

M̂e

ϑµ(dω
′)ω′(Γ) =

∫

M̂e\Eη
ϑµ(dω

′)ω′(Γ),
(2.4.21)e2.4.21

which implies
1− δ < (Bµ)(Γ) ≤ 1− η, (2.4.22)e2.4.22

that contradicts the choice of Γ.
Then the (2.4.19) can be replaced by 8

N2.4.8

B µ(F ) =

∫

BMe(Ω,S)

ϑµ(dω
′)ω′(F ), (2.4.23)e2.4.23

because, cf. (vii) in proposition (2.3.3), BMe(Ω, S) = M̂e ∩M(ΣΩ).
Noting that the first two equalities in (2.4.21) were obtained under the only
hypothesis that Γ was closed, (the relation Bµ(Γ) > 1 − δ has been used
only in (2.4.22)), we see that instead of (2.4.23) we can write

B µ(Γ) =

∫

BMe(Ω,S)

ϑµ(dω
′)ω′(Γ), (2.4.24)e2.4.24

for all Γ closed and hence for all Γ ∈ B0, if B0 is the algebra of the sets
generated by the closed sets.

8 Note that by proposition (2.3.3), by items (vi) and (vii) following it, and by Kura-
towsky’s theorem BMe(Ω, S) is a Borel set and such is BE, if E ⊂ Me(Ω, S) is a Borel
set.
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Let us set now, for ε ⊂Me(Ω, S) and Borel set, see footnote 8,

πµ(ε) = ϑµ(Bε) (2.4.25)e2.4.25

and recall that AB = identity (cf. proposition (2.3.3), (vii)) and Σ−1X−1 =
identity (cf. proposition (2.3.3), (ii)). We find that, if ∆ is closed,

µ(∆) = µ(Σ−1X−1∆) = (Bµ)(X−1∆) =

∫

BMe(Ω,S)

ϑµ(dω
′)ω′(X−1∆) =

=

∫

BMe(Ω,S)

ϑµ(dω
′)(Aω′)(∆) =

∫

Me(Ω,S)

πµ(dω)ω(∆), (2.4.26)e2.4.26

having used the continuity statement (i) of proposition (2.3.3) to infer that
X−1(∆) is closed and hence to apply (2.4.24).
One then deduces from (2.4.26) the identity between the first and the last
member in the case in which ∆ is open; hence

µ(E) =

∫

Me(Ω,S)

πµ(dω)ω(E) (2.4.27)
e2.4.27

for all E ∈ B0.
From (2.4.27) and from the observation that every continuous function on
Ω can be obtained as a uniform limit of a sequence of functions which are
constant on a finite number of closed or open sets it follows that:

µ(f) =

∫

Me(Ω,S)

πµ(dω)ω(f) for all f ∈ C(Ω), (2.4.28)e2.4.28

that shows the coincidence of the measure πµ with the measure that real-
izes the ergodic decomposition of µ according to (ii) of proposition (2.4.1)
(which, precisely, is unique).

The above leads us to an important conclusion.

(2.4.1) Corollary:C2.4.1 (Typical motions are ergodic)
Let (Ω, S) be an invertible topological system satisfying the hypotheses of
proposition (2.4.2). For all stationary distributions µ ∈M(Ω, S) one has

µ(E) =

∫

Me(Ω,S)

πµ(dω)ω(E) (2.4.29)e2.4.29

for all Borel sets E. In particular µ(E) = 1.

Specializing the property to the case (Ω̂, τ) where Ω̂ are the symbolic mo-

tions of (Ω, S) observed om a partition P it follows that m(Ê) = 1 for all

stationary distributions m ∈M(Ω̂).

Remarks: (1) Hence by picking up randomly with a stationary distribution
a point x ∈ Ω one gets (with probability 1) an ergodic point and by picking
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up a symbolic motion in Ω̂ with any stationary probability distribution on
Ω̂ one gets (with probability 1) an ergodic sequence.
(2) Therefore the probability of finding, by a random choice with a station-
ary distribution, an exceptional point in E ′ or a nonergodic point in E ′′ is
zero.

Proof: One notices that (2.4.29) has been established in proposition (2.4.2)
for all sets in the algebra containing the closed sets. However both sides
of (2.4.29) define countably additive measures on the Borel sets and the
extension of a countably additive measure on an algebra of sets to the
smallest σ–algebra containing it is unique.

Problems for §2.4

[2.4.1]:Q2.4.1 If π is a permutation of {1, . . . , n} consider the dynamical system ({1, . . . , n},
Sπ, µ) where Sπ({i}) = π({i}), µ({i}) = 1/n and find the ergodic decomposition of µ.

[2.4.2]:Q2.4.2 (Simple ergodic decompositions)

Find the ergodic decomposition of the (normalized) Lebesgue measure in the following
dynamical systems:
(a) Ω = T 1, Sϕ = ϕ+ 2π

n
, n integer

(b) Ω = T 2, Sϕ = ϕ+ ω, ω1
ω2

= m
n

e ω1
2π

irrational.

(c) Ω = T 2, Sϕ = ϕ+ ω, ω1 = 2π
n
, ω1
ω2

irrational and ω2
2π

= irrational.

[2.4.3]:Q2.4.3 (Unique ergodicity of irrational rotations)

Let (ω1, . . . , ωn, 2π) be rationally independent. Show that M(Tn, S), with Sϕ = ϕ +

ω mod 2π is a set consisting in the single element given by the Lebesgue measure (one
say that “the irrational rotations are uniquely ergodic”).

[2.4.4]:Q2.4.4 (Ergodic decomposition of a decomposable Markov process)

Consider problem [2.3.7]. Suppose that Tσσ′ = 0 if σ ∈ {0, . . . , nL} and σ′ ∈ {nL +
1, . . . , n} or viceversa (i.e. T is a “block matrix”). Consider, in the dynamical system
({0, . . . , n}Z, τ), the ergodic decomposition of the measure µ built by varying the choice
of the arbitrary vector π among the eigenvectors of T and of π∗ among those of T ∗. Show
that if Tσσ′ > 0 for the remaining values of the labels σ, σ′, then µ can be expressed in
terms of just two ergodic measures.

[2.4.5]:Q2.4.5 Consider problem [2.3.7] for a generic matrix T : show that as π and π∗ vary
the measures µπ,π∗ can be decomposed into a finite number of ergodic measures. How
many?

[2.4.6]:Q2.4.6 (Consistency between ergodicity of points and of distributions)

Under the hypotheses of corollary (2.4.1) let ∆ ⊂Me(Ω̂) be a Borel set and πm(∆) = 1.

Let E(∆) = {set of the ergodic points of Ω̂ whose distribution generates a measure in
∆}. Then E(∆) is a Borel set and, furthermore, it is m(E(∆)) = 1.

Bibliographical note to §2.4
The theory of the ergodic decomposition exposed here is substantially taken
from Ruelle, [Ru66]; see also the book of Ruelle, [Ru69].
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CHAPTER III

Entropy and complexity

§3.1 Complexity of motions and entropy

Continuing the analysis of general structural properties of motions of an
invertible discrete dynamical system (Ω, S) we shall now discuss the foun-
dations of the notion of complexity of motions on Ω and of its theory.
Let P be a partition of Ω: the complexity of a motion on Ω as observed on
P will be defined in terms of the complexity of its (P , S)–history. Therefore
we begin by discussing the notion of complexity of a sequence σ.
If σ̂ is a sequence σ̂ ∈ {0, . . . , n}Z of symbols with defined frequencies1 andN3.1.1

if N > 0 we consider, as (σ0 . . . σN−1) ∈ {0, . . . , n}N varies, the strings of

history homologue to

(
0 . . .N − 1
σ0 . . . σN−1

)
that “appear” in σ̂, i.e. which have

strictly positive frequency of appearance. We shall set

ηabs(σ̂ |N) = {number of distinct N–length

strings that appear in σ̂}. (3.1.1)e3.1.1

It would at first seem natural to identify the size of the complexity of σ̂ with
the number

sabs(σ̂) = lim sup
N→+∞

N−1 log ηabs(σ̂|N) =

= lim
N→∞

N−1 log ηabs(σ̂|N),
(3.1.2)e3.1.2

1 Cfr. definition (1.4.3).
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where the logarithm and the factor N−1 are suggested by the expectation
that ηabs(σ̂|N) grows exponentially with N . The fact that

ηabs(σ̂|N +M) ≤ ηabs(σ̂|N) ηabs(σ̂|M) (3.1.3)e3.1.3

and ηabs(σ̂|N) ≤ (n+1)N imply the existence of the limit in (3.1.2). Indeed
one has

fk ≡ 2−k log ηabs(σ̂|2k), fk ≤ log(n+ 1), fk+1 ≤ fk, for all k > 0,

so that limk→∞ fk exists. Moreover, given k and taking N large one can
write N = m 2k + r and obtain that

1

N
log ηabs(σ̂|N) ≤ fk +

1

N
log ηabs(σ̂|r),

so that eventually N−1 log ηabs(σ̂|N) ≤ fk + ε for every ε. With a similar
reasoning, writing 2k = mN + r with k large, one shows that also the
inequality

1

N
log ηabs(σ̂|N) ≥ fk −

1

2k
log ηabs(σ̂|r)

holds. This proves that the limit exists.
However, obviously, this is not the only possible definition of complex-
ity of σ̂: for example here we put on the same level strings of his-

tory

(
0 . . .N − 1
σ0 . . . σN−1

)
with very different frequency of appearance in σ̂,

p
(
0 . . .N − 1
σ0 . . . σN−1

∣∣ σ̂
)
.

The following definition takes into some account the possible existence of
very many history strings with low frequency of appearance in σ̂.
Given ε > 0 we shall consider all possible partitions of the strings of length
N in two classes C1 and C2 such that

∑

σ0...σN−1∈C2

p
(
0 . . .N − 1
σ0 . . . σN−1

∣∣∣∣σ̂
)
≤ ε (3.1.4)e3.1.4

setting
ηε(σ̂|N) = inf

C1,C2

{number of elements of C1}, (3.1.5)e3.1.5

and noting that ηε(σ̂|N) does not decrease as ε decreases, at N fixed, we
shall define

s(σ̂) = lim
ε→0

lim sup
N→∞

N−1 log ηε(σ̂|N). (3.1.6)e3.1.6

Note the relation between (3.1.2) and (3.1.6) by writing sabs(σ̂) as

sabs(σ̂) = lim sup
N→∞

lim
ε→0

N−1 log ηε(σ̂|N). (3.1.7)e3.1.7
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when σ has defined frequencies.
Having seen the above two possible notions of complexity several others
come to mind, depending on whether one wishes to judge of “minor impor-
tance” certain strings of history relative to the “importance” of others.

Here is a rather general definition. Let V = {VN}∞N=1 be a sequence of func-
tions (σ0 . . . σN−1)→ VN (σ0 . . . σN−1) defined respectively on {0, . . . , n}N ,
N = 1, 2, . . .. Given an infinite sequence σ̂ ∈ {0, . . . , n}Z with defined fre-
quencies, consider the subdivisions C1, C2 of {0, . . . , n}N in two classes such
that ∑

σ0...σN−1∈C2

p
(
0 . . .N − 1
σ0 . . . σN−1

∣∣∣∣σ̂
)
≤ ε (3.1.8)e3.1.8

and set
ηε(σ̂ |N ;V ) = inf

C1,C2

∑

σ0...σN−1∈C1

e−VN (σ0...σN−1). (3.1.9)e3.1.9

Clearly ηε(σ̂ |N ; 0) = ηε(σ̂ |N). We shall set

s(σ̂ |V ) = lim
ε→0

lim sup
N→∞

N−1 log ηε(σ̂ |N ;V ) (3.1.10)e3.1.10

and call this quantity the complexity with weight e−V .2N3.1.2

We summarize the above discussion in the following definition, where we
shall make use of the symbols introduced so far without discussing them
again.

(3.1.1) Definition:D3.1.1 (Complexity and entropy of a sequence)

If σ̂ is a sequence in {0, . . . , n}Z with defined frequencies and with distri-
bution p 3 and if V = {VN}N≥1 is a sequence of functions on {0, . . . , n}N ,

N3.1.3
N = 1 . . ., respectively, one defines the complexity of σ̂ with weight V the
quantity (3.1.10). If VN = 0 such a quantity takes the name of entropy and
it is given by (3.1.6).

As a first application we evaluate the complexity of the motions of ana-
lytically integrable systems, i.e. of motions associated with the rotations of
a torus Tr observed on an analytically regular partition P = {P0, . . . , Pn},
see definition (1.4.1).

(3.1.1) Proposition:P3.1.1 If S : ϕ→ ϕ+ ω mod 2π, ω ∈ R
r
, is a rotation of

T
r and if P is an analytically regular partition of Tr one has

s(σ(ϕ)) = 0 ∀ϕ ∈ T
r. (3.1.11)e3.1.11

One says, in a colorful language, that “the entropy of quasi-periodic motions
is zero”.

2 There is nothing “mysterious” in the exponential: it is just a way to define the weight
so that it is automatically non negative.

3 cf. remark (2) to definition (2.3.2)
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Remarks: (1) As in the case of proposition (2.1.1) if (ω, 2π) are rationally
independent one can take the atoms of P as Riemann measurable sets. The
higher regularity is necessary to cover the general situation, see (2.1.2). See
also problems [3.1.10] and [3.1.11] below to understand the essential role of
the regularity hypothesis on the partition P .
Proof: For simplicity we shall consider only the case in which
(ω1, . . . , ωr, 2π) are r + 1 rationally independent numbers.
In this case the distribution p of the history σ(ϕ) of ϕ ∈ T

r is given by

p

(
0 . . .N − 1
σ0 . . . σN−1

)
=

∫

P 0...N−1
σ0...σN−1

dϕ

(2π)r
; (3.1.12)e3.1.12

cf. proposition (2.1.2) and equation (2.1.9).
We start with some geometric considerations. By the regularity hypothesis
on P the surface area | ∂Pσ | of the elements Pσ ∈ P is finite and we can
set

2L
def
=

n∑

σ=0

| ∂Pσ | < +∞. (3.1.13)e3.1.13

The sum of the areas of the boundaries of the sets P 0...N−1
σ0...σN−1

is, obviously,
such that

∑

σ0...σN−1

| ∂P 0...N−1
σ0...σN−1

| ≤
N−1∑

k=0

n∑

σ=0

|S−k∂Pσ |

=

N−1∑

k=0

n∑

σ=0

| ∂Pσ | = 2LN,

(3.1.14)e3.1.14

because the rotation S is rigid: therefore it does not alter lengths, areas or
volumes.
The volume of P 0...N−1

σ0...σN−1
defined by (3.1.12) can be bounded, if the diam-

eter of P 0...N−1
σ0...σN−1

is small enough with respect to 2π (e.g. < π), by 4

N3.1.4

p

(
0 . . .N − 1
σ0 . . . σN−1

)
≤ Γr | ∂P 0...N−1

σ0...σN−1
| r/(r−1), (3.1.15)e3.1.15

where Γr is a suitable constant easily expressible in terms of the volume of
the unit r–dimensional sphere.
In general it is not possible to construct an analytically regular partition
(see definition (1.4.1)) of the torus T

r
composed by sets with small diameter.

To make use of (3.1.15) we shall suppose that all the sets of P but one are,
since the beginning, so small that diam(Pσ) < π. We will call the set with

4 This is the isoperimetric inequality: in R
r it is valid for every set, independently on the

size of its diameter; on T
r it is necessary that the set “does not wrap around the torus”.

For sets with small enough diameter, it follows from the isoperimetric inequality in R
r.
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large diameter P0. The general case can be treated analogously. In this
situation we have that diam (P 0...N−1

σ0...σN−1
) ≥ π only if σ0 = . . . = σN = 0. In

the following argument we can include the set P 0...N−1
0...0 in the set C1(N) for

every N , without affecting the validity of the argument.
Let us define, given η > 0,

C1(N) =
{
σ0, . . . , σN−1

∣∣ p
(

0 . . .N − 1
σ0 . . . σN−1

)
> e−Nη

}
,

C2(N) =
{
σ0, . . . , σN−1

∣∣ p
(

0 . . .N − 1
σ0 . . . σN−1

)
≤ e−Nη

}
.

(3.1.16)
e3.1.16

We get, for all γ > 0 and taking advantage of the well known idea behind
Chebishev’s inequality and of (3.1.15),

∑

σ0...σN−1∈C2(N)

p

(
0 . . .N − 1
σ0 . . . σN−1

)
≤

≤
∑

σ0...σN−1∈C2(N)

p

(
0 . . .N − 1
σ0 . . . σN−1

)



e−Nη

p

(
0 . . . N − 1
σ0 . . . σN−1

)




γ

≤

≤ e−Nηγ Γ1−γ
r

∑

σ0...σN−1

| ∂P 0...N−1
σ0...σN−1

| (1−γ)r/(r−1),

(3.1.17)e3.1.17

and selecting γ = r−1, so that (1− γ)r/(r − 1) ≡ 1, equations (3.1.17) and
(3.1.14) imply

∑

σ0...σN−1∈C2(N)

p

(
0 . . .N − 1
σ0 . . . σN−1

)
≤ 2LN Γ1−γ

r e−Nηγ . (3.1.18)e3.1.18

On the other hand {number of elements in C1(N)} ≤ e+Nη + 1:5 henceN3.1.5

s(σ(ϕ)) ≤ η for all η > 0 (note that the s(σ(ϕ)), as it is defined in (3.1.6),

is less than the quantity computed by setting ε = e−Nη, as we are doing).
This means that s(σ(ϕ)) = 0.

The preceding proof does not provide us with an optimal result, nor it is
the simplest conceivable: under the same hypothesis we could easily deduce
that even sabs(σ(ϕ)) = 0. However the proof just given is more interesting
because it can be easily extended to much more general situations: for
instance to those contemplated in the following definition and proposition.

(3.1.2) Definition:D3.1.2 Let (Ω, S) be an invertible dynamical system. Let µ0

be a probability measure (not necessarily S–invariant) on Ω and let P be a
µ0–measurable partition of Ω.

5 The +1 is here to take into account the set P 0...N−1
0...N−1 which is included in C1.
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(i) Denote by Ê(S,P , µ0) the symbolic motions σ̂ ∈ Ω̂, observed on P with
well defined frequencies and with distribution that can be expressed by inte-
grals with respect to µ0 as

p
(
j1 . . . jq
σ1 . . . σq

∣∣ σ̂
)
=

∫

P
j1...jq
σ1...σq

ρ(x)µ0(dx), (3.1.19)e3.1.19

where ρ and also ρ−1 ∈ L1(µ0).

We shall call the points of Ê(S,P , µ0) symbolic motions which are abso-
lutely continuous with respect to µ0.
(ii) The points of Ω whose (P , S)–histories are in Ê(S,P , µ0) will be denoted
E(S,P , µ0) and we shall call them the points which are (P , S)–absolutely
continuous with respect to µ0.
(iii) If Ω is a compact Riemannian manifold we call the largest coefficient
of expansion of a line element of Ω under the action of S the quantity

λ(S) = sup
x

‖dSv‖VSx
‖v‖Vx

,

where Vx is the tangent space to Ω at x and v ∈ Vx.
Then the following proposition holds.

(3.1.2) Proposition:P3.1.2 (Kouchnirenko’s theorem)
Let (Ω, S) be a dynamical system with Ω a C∞ r–dimensional compact Rie-
mannian manifold and with S a C∞ diffeomorphism of Ω. Let µ0 be the
volume measure on Ω and let P be a C∞–regular partition of Ω (see defini-

tion (1.4.1)). Let σ̂ ∈ Ê(S,P , µ0).
Then

s(σ̂) ≤ r logλ, (3.1.20)e3.1.20

where λ = max(λ(S), λ(S−1)), see definition (3.1.2).

Remarks: (1) The theorem is remarkable because it shows in a general
enough context what at first sight might be surprising: namely the entropy
of a motion whose initial datum is randomly selected with a probability
distribution which is ergodic and equivalent to the volume measure on Ω
cannot exceed r logλ, no matter how fine the partition P of Ω is taken, pro-
vided P is a regular partition (of course).
(2) Proposition (3.1.2) and certain modifications of it have remarkable ap-
plications to the theory of Hamiltonian systems: in studying the latter in
connection with Statistical Mechanics one is often interested in motions
whose initial data x are randomly chosen, on the energy surface in phase
space, with respect to the volume measure.
Consider for instance a Hamiltonian system and select the initial data
with the Liouville distribution on an energy surface, or with a distribution
equivalent to it. If the system is ergodic (3.1.19) holds (with ρ = 1) and
therefore the complexity of motions observed, say, at unit time intervals
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and on regular partitions is, with probability 1, bounded by a geometric
constant which is independent on the particular motion considered.

Proof: Proceeding as in the proof of proposition (3.1.1) and assuming for
the time being, for simplicity, that the sets P0, . . . , Pn have diameter small
with respect to the diameter of Ω (if not see footnote 6) and of a size such
that for all sets of smaller diameter a generalization of the isoperimetric
inequality holds, i.e.

µ0(P ) ≤ Γ | ∂P | r/(r−1), (3.1.21)e3.1.21

we see that (3.1.14) becomes

∑

σ0...σN−1

| ∂P 0...N−1
σ0...σN−1

| ≤
N−1∑

k=0

n∑

σ=0

|S−k∂Pσ |

≤ 2L

N−1∑

k=0

λk = 2L
λN − 1

λ− 1
.

(3.1.22)e3.1.22

Note that in (3.1.22) one has λk rather than λk (r−1), as perhaps one might
expect, because the conservation of the measure ρ µ0 and the boundedness
of ρ and of ρ−1 imply that a surface element can at most expand its area
by a factor λ.
Hence, by proceeding as in (3.1.17) and (3.1.18), with (3.1.22) instead of
(3.1.14), one obtains

∑

σ0...σN−1∈C2(N)

p
(
0 . . .N − 1
σ0 . . . σN−1

∣∣ σ
)
≤ (3.1.23)e3.1.23

≤ e−Nη/rλ−NΓ1−1/r
r ‖ρ‖1−1/r

∞ 2L(λN − 1)/(λ− 1) ≤ Ge−ηN/r,

having set

C1(N) =
{
σ0 . . . σN−1

∣∣ p
(
0 . . .N − 1
σ0 . . . σN−1

∣∣ σ
)
> e−ηNλ−Nr

}
,

C2(N) =
{
σ0 . . . σN−1

∣∣ p
(
0 . . .N − 1
σ0 . . . σN−1

∣∣ σ
)
≤ e−ηNλ−Nr

}
,

and having chosen G to be a suitable constant.
Since it is clear that the number of elements of C1(N) is smaller than
eNηλrN we deduce s(σ̂) ≤ r logλ.6N3.1.6

6 If the sets have large diameter we can always divide them into smaller sets reducing to

the case in which there is at most one set P 0,...,N−1
0,...,0 with a large diameter: and we shall

add the latter set to C1 which will have a number of elements bounded by eNηλrN + 1
and reaching the same conclusions. One makes use of the remark that finer partitions
canoot have lower entropy: if P ′ is fined than P then s(P, S) ≤ s(P ′, S).
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After introducing the notion of complexity of motions we shall try of ana-
lyze the problem of the actual computation of s(σ(x)).

A first remarkable result is the theorem of Shannon–McMillan that is fun-
damental for the major conceptual clarification that it introduces about
the meaning of the entropy notion and for its applications to the theory of
codes: we shall touch this subject also at the end of Chapter 10 and in some
problems in the coming sections.

Problems for §3.1

[3.1.1]:Q3.1.1 Construct a sequence in {0, 1}Z such that all strings of length ≤ N0 have
frequencies well defined and positive.

[3.1.2]:Q3.1.2 Construct a sequence in {0, 1}Z with well defined frequencies.

[3.1.3]:Q3.1.3 Construct a sequence in {0, 1}Z in which all possible strings of finite length
appear at least once but have frequency zero except those with specification σ0 = σ1 =
. . . = 0.

[3.1.4]:Q3.1.4 (Finite algorithms are simple) Let k > 0 and f : {0, . . . , n}k → {0, . . . , n} and
define arbitrarily σ−1, σ−2, . . .; set, inductively for i ≥ 0, σi = f(σi−1, . . . , σi−k). Show
that s(σ) = 0: i.e. “is not possible construct complex sequences with finite algorithms”.

[3.1.5]:Q3.1.5 If P is an analytically regular partition of Tr , ω ∈ R
r and Sϕ = ϕ+ ω mod 2π

show that sabs(ϕ) = 0 (Hint: Consider first the case of the irrational rotations).

[3.1.6]:Q3.1.6 (Typical entropy in a Bernoulli shift)

A randomly selected sequence in {0, 1}Z with an equal weights Bernoulli distribution
B(1/2, 1/2) has well defined frequencies and entropy log 2: show this by applying (3.1.6)
and a combinatorial argument.

[3.1.7]:Q3.1.7 Study the problem analogous to problem [3.1.6] for the Bernoulli scheme

B(1/3, 2/3). The result is s(σ) = −(1/3) log(1/3) − (2/3) log(2/3)). (Hint: Let

m(σ) = N−1
∑N

i−0
σi. For any ε one can set C2 = {σ| |m(σ) − 2/3| > δ} chosing δ

in a suitable way.)

[3.1.8]:Q3.1.8 Generalize problem [3.1.8] to the case of the Bernouilli scheme B(π0, . . . , πn)

on Ω = {0, . . . , n}Z.

[3.1.9]:Q3.1.9 Consider the sequence obtained by writing n0 zeroes followed by n0 ones followed

by n1 zeroes followed by n1 ones, etcwhere (n0 + n1 + . . .+ nk)
−1nk+1−−−−→k→∞ 0. Show

that the sequence has well defined frequencies and compute the associated distribution p

and the entropy.

[3.1.10]:Q3.1.10 (A complex sequence generated by a circle rotation)

Let σ be a sequence in {0, 1}Z with well defined frequencies distributed as the Bernoulli

scheme B(1/2, 1/2) (see problem [3.1.6]). Let S an irrational rotation of T
1 : Sϕ =

ϕ+ω mod 2π. Consider the trajectory of the origin (Sk0)k∈Z. Associate with the point
Sk0 the symbol σk and construct two Borel sets P0 = {x |x = Sk0 for k with σk = 0}
and P1 = T

1\P0. Show that the entropy of the motion of 0 observed on the partition P
is log 2 and that this does not contradict proposition (3.1.1). (Hint: The partition is not
analytically regular).

[3.1.11]:Q3.1.11 (Arbitrarily complex sequence generated by a quasi periodic motion)

If S is an irrational rotation of the circle T
1, given ϕ ∈ T

1 and M > 0, there exists a
Borel partition P of T1 on which the motion of ϕ appears with an entropy larger than M .
Why this is not in contradiction with proposition (3.1.2)? (Hint: At the light of problem
[3.1.10] consider a Bernoulli scheme with expM symbols.)
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Bibliographical note to §3.1
The notion of complexity goes back to Shannon, [Sh49]. Proposition (3.1.2)
is inspired from Kouchnirenko’s theorem in the version that one finds in
[AA68], p. 46.

§3.2 The Shannon–McMillan theorem

It is the following proposition.

(3.2.1) Proposition:P3.2.1 (Shannon–McMillan theorem)

Let σ̂ ∈ {0, . . . , n}Z be a sequence with defined frequencies and with distri-

bution p =
(
p

(
0 . . .N − 1
σ0 . . . σN−1

))
.

(i) The limit

s = lim
N→∞

−N−1
∑

σ0...σN−1

p

(
0 . . .N − 1
σ0 . . . σN−1

)
log p

(
0 . . .N − 1
σ0 . . . σN−1

)
(3.2.1)e3.2.1

exists and will be called average entropy of σ̂,
(ii) If σ̂ is ergodic then

s(σ̂) = s (3.2.2)e3.2.2

and (3.2.1) often yields a rather convenient way of computing s(σ̂).
(iii) If σ̂ is ergodic, given ε > 0, there exists Nε such that for all N ≥ Nε the
elements of {0, . . . , n}N can be split into two classes C1,ε(N) and C2,ε(N)
with the properties

∑

σ0...σN−1∈C2,ε(N)

p

(
0 . . .N − 1
σ0 . . . σN−1

)
< ε, (3.2.3)e3.2.3

exp((s− ε)N) ≤ |C1,ε(N)| ≤ exp((s+ ε)N), (3.2.4)e3.2.4

exp(−(s+ ε)N) ≤ p
(

0 . . .N − 1
σ0 . . . σN−1

)
≤ exp(−(s− ε)N), (3.2.5)e3.2.5

for every choice of the string σ0 . . . σN−1 ∈ C1,ε(N). Here |C1,ε(N)| denotes
the number of elements in C1,ε(N).

Remarks: (1) Hence if σ̂ is ergodic the strings of symbols of large length can
be divided into two groups, one with small total probability and another
consisting of “few” elements of approximately equal frequency of appearance
in σ̂ (in the rather weak sense of (3.2.5)).
(2) For a better understanding of the meaning of the entropy notion one can
remark that, if σ̂ is ergodic, a quantity s enjoying the properties described
in (iii) is necessarily equal to the entropy of σ̂.
Indeed if s(σ̂) = s′ it is clear that (3.2.3) and (3.2.4) imply that s′ ≤ s.
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Then suppose that one has s′ < s. Then there is an ε with 0 < ε <
min(1/4, (s− s′)/4) and one can find ε′ and a set C1,ε′(N) in {0, . . . , n}N
such that

| C1,ε′(N) | < exp((s′ + ε)N) and

∑

σ0...σN−1 /∈C1,ε′ (N)

p

(
0 . . .N − 1
σ0 . . . σN−1

)
< ε′, (3.2.6)e3.2.6

for infinitely many values of N > Nε′ , by the definition of entropy (cf.
definition (3.1.1) and equation (3.2.5)), at least if ε is small enough.
The set C1,ε′(N) will contain ν elements of C1,ε(N), ν ≥ 0, together with
some others of C2,ε(N). Hence C1,ε′(N) will be obtained from C1,ε(N)
subtracting from it (| C1,ε(N) | − ν) elements and adding to it a suitable
number of other elements of C2,ε(N).
But if N is such that (3.2.5) holds for it and if we note the inclusion
C1,ε(N)\(C1,ε(N) ∩ C1,ε′(N)) ⊂ C2,ε′(N), we get

ε ≥
∑

(σ0...σN−1)∈C1,ε(N)\(C1,ε(N)∩C1,ε′ (N))

p

(
0 . . .N − 1
σ0 . . . σN−1

)
=

=
∑

σ0...σN−1∈C1,ε(N)

p

(
0 . . .N − 1
σ0 . . . σN−1

)
−

−
∑

σ0...σN−1∈C1,ε(N)∩C1,ε′ (N)

p

(
0 . . .N − 1
σ0 . . . σN−1

)
(3.2.7)

e3.2.7

and by (3.2.3), (3.2.5) the last difference can be bounded below by

ε ≥ 1− ε− ν max
σ0...σN−1∈C1,ε(N)

p

(
0 . . .N − 1
σ0 . . . σN−1

)
≥

≥ 1− ε− νe−(s−ε)N ≥ 1− ε− e(N(s′+ε)−N(s−ε)) ≥
≥ 1− ε− e(s′−s+2ε)N ≥ 1− ε− e−2Nε,

(3.2.8)e3.2.8

being ν ≤ | C1,ε(N) | ≤ e(s′+ε)N and 2ε < (s− s′)/2, ε < 1/4, at least if N
is large enough. Hence the contradiction in (3.2.8) implies that the number
s with the property (3.2.3), (3.2.4) and (3.2.5), if it exists, is necessarily the
entropy of σ̂.
(3) It is convenient to break the proof into a few lemmas.

(3.2.1) Lemma:L3.2.1 Let p be the distribution of σ̂ and let mp be the probability

distribution associated with it. If the function of σ ∈ {0, . . . , n}Z

σ → fN(σ) = −N−1 log p

(
0 . . .N − 1
σ0 . . . σN−1

)
(3.2.9)e3.2.9
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is such that the limit

s̃(σ)
def
= lim

N→∞
fN (σ) in L1(mp) (3.2.10)e3.2.10

exists, then proposition (3.2.1) follows.

Proof of lemma (3.2.1): By integrating1 both sides of (3.2.10) we obtainN3.2.1

(3.2.1) so that existence of the limit implies (i) of proposition (3.2.1).
The function s̃(σ), if the limit defining it exists almost everywhere, is trans-
lation invariant, i.e. s̃(σ) = s̃(τσ) holds mp–almost everywhere. In fact the
monotonicity of the logarithm and the compatibility property fulfilled by
the p’s imply that s̃(σ) ≤ s̃(τσ) since

s̃(σ) = lim
N→∞

− 1

N
log p

(
0 . . .N − 1
σ0 . . . σN−1

)
≤

≤ lim
N→∞

− 1

N
log p

(
1 . . .N − 1
σ1 . . . σN−1

)
= s̃(τσ),

(3.2.11)e3.2.11

hence, integrating this inequality and using the invariance of mp (which

implies the opposite inequality s̃(τσ) ≤ s̃(σ)), one deduces that mp–almost

everywhere one has s̃(σ) = s̃(τσ).
Then if σ̂ is ergodic alsomp is such, and therefore s̃(σ) = constant = s,mp–

almost everywhere. In this case the convergence in (3.2.10), which implies
convergence in mp-measure, implies also that for all ε > 0, there exist Nε

and, for all N ≥ Nε, a set Eε,N ⊂ {0, . . . , n}Z such that

mp(Eε,N ) < ε,

|fN (σ)− s| < ε for all σ /∈ Eε,N ,
(3.2.12)

e3.2.12

and it is clear that, since fN is measurable on the algebra of the cylinders
with base [0, N − 1], (i.e. it only depends on σ0, . . . , σN−1), then also Eε,N
can be chosen measurable on this algebra and, therefore, it is a union of
cylinders with base [0, N − 1]. We shall then set

C2,ε(N) = {σ0 . . . σN−1|C0...N−1
σ0...σN−1

⊂ Eε,N},
C1,ε(N) = {σ0 . . . σN−1|C0...N−1

σ0...σN−1
∩ Eε,N = ∅} =

= {0, . . . , n}N\C2,ε(N),

(3.2.13)e3.2.13

and, therefore, (3.2.12) implies (3.2.3) and (3.2.5). Then (3.2.4) follows from

(3.2.5) and from
∑

σ0...σN−1
p

(
0 . . .N − 1
σ0 . . . σN−1

)
= 1, and (3.2.2) follows from

1 i.e. my multiplying both sides times p

(
0 . . . N − 1
σ0 . . . σN−1

)
and summing over σ0 . . . σN−1.
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(3.2.10) by integrating both sides (indeed the limit (3.2.10) takes place in
L1(mp) as well), and using the remark (2), above.

Hence proposition (3.2.1) follows from the L1(mp)–convergence of the limit

(3.2.10). To prove convergence we consider, for σ ∈ {0, . . . , n}Z and j ≥ 1,
the functions

ϕj(σ) = − log

p

(
−j . . .− 1 0
σ−j . . . σ−1 σ0

)

p

(
−j . . .− 1
σ−j . . . σ−1

) , (3.2.14)e3.2.14

which are non-negative (possibly +∞) and mp–measurable.

(3.2.2) Lemma:L3.2.2 If the limit

ϕ(σ) = lim
j→∞

ϕj(σ) in L1(mp) (3.2.15)e3.2.15

exists, then proposition (3.2.1) follows.

Remark: In fact we shall also show that such a limit is also reached mp–
almost everywhere.

Proof of lemma (3.2.2): Consider the following identity, for N ≥ 2,

−N−1 log p

(
0 . . .N − 1
σ0 . . . σN−1

)
=

= −N−1
N−2∑

j=0

log

p

(
0 . . . j + 1
σ0 . . . σj+1

)

p

(
0 . . . j
σ0 . . . σj

) −N−1 log p

(
0
σ0

)
,

(3.2.16)e3.2.16

and note that −N−1 log p

(
0
σ0

)
−−−−→
N→∞ 0 both in L1(mp) and mp–almost

everywhere2.N3.2.2

Furthermore the sum in (3.2.16) can be written, when N →∞,

N−1
N−1∑

j=1

ϕj(τ
jσ), (3.2.17)e3.2.17

because, by the translation invariance of p,

ϕj(τ
jσ) = − log

p

(
−j . . .− 1 0
σ0 . . . σj−1 σj

)

p

(
−j . . .− 1
σ0 . . . σj−1

) = − log

p

(
0 . . . j
σ0 . . . σj

)

p

(
0 . . . j − 1
σ0 . . . σj−1

) . (3.2.18)e3.2.18

2 Remark that if p

(
0
σ̄0

)
= 0 for some σ̄0 the statement is still valid because the σ with

σ0 = σ̄0 have 0 measure.
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Existence of the limit (3.2.15) implies, by the τ–invariance of mp,

N−1
N−1∑

j=1

(ϕj(τ
jσ)− ϕ(τ jσ))−−−−→

N→∞ 0 in L1(mp). (3.2.19)e3.2.19

Hence, by Birkhoff’s theorem, the limit as N →∞ exists in L1(mp):

ϕ(σ) = lim
N→∞

N−1
N−1∑

j=1

ϕ(τ jσ) (3.2.20)e3.2.20

and, therefore, it also follows fN (σ)−−−−→
N→∞ ϕ(σ) in L1(mp), and the function

s̃(σ) will be just ϕ(σ).

We can proceed to conclude the proof of the proposition.

Proof of proposition (3.2.1): The functions ϕj are a set equibounded in
L1(mp) and equisummable3 with respect to mp. Indeed let Ej,k be the set

N3.2.3

of the sequences σ ∈ {0, . . . , n}Z such that

k ≤ ϕj(σ) < k + 1. (3.2.21)
e3.2.21

For the sequences σ contained in such a set one has

p

(
−j . . . 0
σ−j . . . σ0

)
≤ e−k p

(
−j . . .− 1
σ−j . . . σ−1

)
. (3.2.22)e3.2.22

Adding up these relations, summing over the choices of σ−j , . . . , σ0 ∈
{0, . . . , n}j+1 such that C−j...0

σ−j ...σ0
⊂ Ej,k, one finds

mp(Ej,k) ≤ (n+ 1)e−k, (3.2.23)e3.2.23

hence, if E is a mp–measurable set,

∫

E

ϕj(σ)mp(dσ) =

∞∑

k=0

∫
ϕj(σ)χE(σ)χEj,k(σ)mp(dσ) ≤

≤
∞∑

k=0

(1 + k)

∫
χE(σ)χEj,k(σ)mp(dσ) ≤

√
mp(E)

∞∑

k=0

(1 + k)
√
mp(Ej,k) ≤

≤
√
mp(E)

[√
(n+ 1)

∞∑

k=0

(1 + k)e−k/2
]
, (3.2.24)e3.2.24

3 A set of functions F ⊂ L1(µ) is called equisummable if for every ε there is a δ such that

if µ(E) ≤ δ then
∫
E
f(x)dµ(x) ≤ ε for every f ∈ F .
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that shows simultaneously (and “miracolously”) the equiboundedness in
L1(mp) and the equisummability of ϕj , j = 1, . . ..
Simple considerations of measure theory based on Vitali’s convergence the-
orem and on Fatou’s lemma4 show that, to verify the convergence, in L1(mp)N3.2.4
and almost everywhere, of the sequence {ϕj}, as j → ∞, it suffices to ver-
ify convergence in mp–measure and, respectively, almost everywhere of the
sequence of functions

exp(−ϕj(σ)) =
p(C−j...0

−j...σ0
)

p(C−j...−1
−j...σ−1

)
for j →∞, (3.2.25)e3.2.25

as one can check.5N3.2.5

The problem of convergence in mp–measure and mp–almost everywhere,

of exp(−ϕj) is very similar to the problem of proving the Vitali–Lebesgue
theorem which states the existence of the limit as I → y of |I|−1

∫
I F (x)dx

if I are intervals containing y. In the present context the result is called
Doob’s theorem.
This result is a particular case of a general theorem of measure theory, and
it is worth to make a small notational effort to reduce it to this general
theorem.
All the functions exp(−ϕj), j = 1, 2, . . . are measurable with respect to the
σ–algebra B–generated by the cylinders with negative base; it will be useful
to identify, in the obvious way, such cylinders with those of 6 {0, . . . , n}Z−

N3.2.6

so that

m(CJσ ) = mp(C
J
σ ) = p

(
J
σ

)
∀ J ⊂ Z−, ∀σ ∈ {0, . . . , n}|J|; (3.2.26)e3.2.26

in other wordsm coincides with mp restricted to the cylinders witn negative

base. By the Radon–Nykodim theorem,7 given σ0 ∈ {0, . . . , n}, there existsN3.2.7

a function in L1(m), that we shall denote gσ0 , such that

p

(
−j . . .− 10
σ−j . . . σ−1σ0

)
=

∫

C−j...−1
σ−j...σ−1

gσ0(σ
′)m(dσ′). (3.2.27)e3.2.27

4 See [DS58], p.150 and 152.
5 If exp(−ϕj) converges in mp–measure and almost everywhere to a limit that we denote

exp(−ϕ) one has 0 ≤ ϕj −−−−→j→∞ ϕ almost everywhere. By Fatou’s lemma ϕ is summable

and hence < +∞ almost everywhere; then convergence in mp–measure of exp(−ϕj) to

exp(−ϕ) implies convergence in measure of ϕj to ϕ and therefore, given the equisumma-
bility of the functions ϕj , Vitali’s criterion of convergence implies the convergence in

L1(mp) of ϕj to ϕ.

6 Z+ denotes the integers ≥ 0 and Z− denotes the integers < 0. Hence {0, . . . , n}Z− are
unilateral sequences with negative labels.

7 See [DS58], p.176.
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Hence

p

(
−j . . .− 1 0
σ−j . . . σ−1 σ0

)

p

(
−j . . .− 1
σ−j . . . σ−1

) =

∫
C−1...−1
σ−j...σ−1

gσ0(σ
′)m(dσ′)

∫
C−j...−1
σ−j...σ−1

m(dσ′)
, (3.2.28)e3.2.28

and we realize that our purpose is to show the convergence, in m–measure
and m–almost everywhere, of this quantity regarded as a function of σ ∈
{0, . . . , n}Z− , for every fixed σ0. And the limit should be precisely gσ0 .
It is now possible to reduce the analysis to some simple and classical con-
structions.
For simplicity we shall suppose that the measuresmp andm are not atomic.

Let us consider the map of {0, . . . , n}Z− in [0, n/n+1] defined by σ → X(σ):

X(σ) =

∞∑

j=1

σ−j
(2 + n)j

, (3.2.29)e3.2.29

which is a homeomorphism between the sequences in {0, . . . , n}Z− and the
subset X({0, . . . , n}Z−) of [0, 1], which is the Cantor set consisting of the
numbers of [0, 1] whose development in base (n+2) never contains the digit
n+ 1.
Then via the map X we can transform the measure m into a measure m
on [0, n/(n+ 1)] and the function gσ0 into g̃ ∈ L1(m) by setting

m(E) = m(X−1E), E ⊂ B([0, n/n+ 1]),

g̃(x) = gσ0(X
−1(x)).

(3.2.30)e3.2.30

Define then the map Y : [0, n/n+ 1]→ [0, 1] as

y = Y (x) = m([0, x]). (3.2.31)e3.2.31

The function x → Y (x) is non-decreasing, more precisely it is strictly
increasing except, possibly, in the union of a denumerable family of closed
disjoint intervals. Hence Y is continuous and is invertible as a map between
[0, n/n + 1] deprived of a denumerable infinity of closed disjoint sets and
its image in [0, 1] (which consists in the same [0, 1] deprived, at most, of a
denumerable infinity of points).
Therefore Y establishes an isomorphism mod 0 between ([0, n/n+ 1]), m)
and ([0, 1], µ) where µ is the Lebesgue measure (because of the relation
(3.2.31)). Via this isomorphism g̃ becomes a function g ∈ L1(µ).
Another remarkable fact is that the set

D(σ−j . . . σ−1) = Y X(C−j...−1
σ−j ...σ−1

) (3.2.32)e3.2.32

either is a connected interval or is empty; the latter possibility arises if and
only if m(C−j...−1

σ−j ...σ−1
) = 0. Indeed it suffices to remark that the set of the
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numbers that have the first j digits of the their development in base (n+1)
equal is an interval.
The nonempty intervals having the form (3.2.32) form a covering Dj of
[0, 1] with intervals which, pairwise, have no internal points in common.
Furthermore the covering Dj+1 refines Dj because every interval of Dj+1 is
a union of intervals of Dj .
If x ∈ D(σ−j , . . . , σ−1) and if we define the function

x→ hj(x) =

∫
D(σ−j ...σ−1)

g(x′)dx′

|D(σ−j . . . σ−1)|
(3.2.33)e3.2.33

(which is a relation that has µ–almost everywhere meaning) we obtain the
image of ϕj via Y X .
The Vitali–Lebesgue theorem concerns exactly sequences of functions hav-
ing the form

x→ qj(x) =

∫
D g(x

′)dx′

|D| with g ∈ L1(µ), (3.2.34)e3.2.34

where D is the interval that contains x extracted out of a pavement Dj of
[0, 1] with intervals with no common internal points and refined by Dj+1.
The theorem says that qj −−−→j→∞ g almost everywhere with respect to the

Lebesgue measure µ in [0, 1] and in L1(µ).
8

N3.2.8

Applying the latter statement to (3.2.33) and translating it back to the
original variables via the isomorphism Y X we see that it means

lim
j→∞

ϕj(σ) = gσ0(σ) (3.2.35)e3.2.35

mp–almost everywhere and in L1(mp). This yields the proof of Doob’s
theorem in the present special case and completes the proof of proposition
(3.2.1).

Problems for §3.2

[3.2.1]:Q3.2.1 (Approximability in entropy and distribution)

Under the hypothesis of proposition (3.2.1) assume σ̂ ergodic and set S = s(σ̂). Show that
given an integer u > 0 and ε > 0, an integer N(ε, u) exists such that for all N > N(ε, u)
it is possible to divide {0, . . . , n}N into two classes C1,ε,u(N) and C2,ε,u(N) such that

∑

σ0...σN−1∈C2,ε,u(N)

p

(
0 . . . N − 1
σ0 . . . σN−1

)
≤ ε,

exp((S − ε)N) ≤ |C1,ε,u(N) | ≤ exp[(S + ε)N ],

exp[−(S + ε)N ] ≤ p
(

0 . . . N − 1
σ′0 . . . σ

′
N−1

)
≤ exp[−(S − ε)N ],

8 See, for instance, [DS58] Vol. I, Ch. III, p. 214. One should note the “analogy” between
the proof discussed here and that of Birkhoff’s theorem in Appendix 2.2.
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for all (σ′0 . . . σ
′
N−1) ∈ C1,ε,u(N) and

∑

σ0...σu−1∈{0,...,n}u

∣∣p
(

0 . . . u− 1
σ0 . . . σu−1

)
− (frequency of appearance of

(
0 . . . u− 1
σ0 . . . σu−1

)
in (σ′0, . . . , σ

′
N−1)

∣∣ < ε

for all (σ′0 . . . σ
′
N−1) ∈ C1,ε,u(N). (Hint: Proceed as in the above derivation of (3.2.3),

(3.2.4), (3.2.5) from (3.2.12) observing that, by Birkhoff’s theorem,

gN (σ) =
∑

σ′
0
...σ′

u−1
∈{0,...,n}u

p

(
0 . . . u− 1
σ′0 . . . σ

′
u−1

)
− (frequency of appearance of

(
0 . . . u− 1
σ′0 . . . σ

′
u−1

)
between 0 and N − 1 in σ)

converges, for N → ∞, to zero in L1(mp) and mp–almost everywhere. Then choose

Eε,u,N in analogy with the choice (3.2.12) but such that |gN(σ)| < ε, etc.)

[3.2.2]:Q3.2.2 (Entropy of a distribution on symbolic sequences)

If p ∈M({0, . . . , n}Z) we can define the entropy of p naturally as

s(p) = lim
ε→0

lim sup
N→∞

N−1 logNε(p|N),

where Nε(p |N) is the minimum number of elements of {0, . . . , n}N that re-

main if we take out from {0, . . . , n}N a family C2(N) of elements such that∑
σ0...σN−1∈C2(N)

p

(
0 . . . N − 1
σ0 . . . σN−1

)
≤ ε.

Then proposition (3.2.1) formulated in terms of p has a meaning (in an obvious way,

even if there is no σ̂ ∈ {0, . . . , n}Z that generates p) and is true (note that this statement

does not strengthen proposition (3.2.1) except for what concerns its statement (i), cf.
proposition (3.2.1), and the relative remarks).

[3.2.3]:Q3.2.3 (Lebesgue measure on [0, 1]2 and the ( 1
2
, 1
2
) Bernoulli shift)

Show that the Bernoulli distribution B(1/2, 1/2) on {0, 1}Z is isomorphic mod 0 to the
Lebesgue measure on the square [0, 1]× [0,1]. The isomorphism is established by (x, y) ∈
[0, 1]2 → σ ∈ {0, 1}Z if x =

∑∞
j=0

σj
2j+1 , y =

∑∞
j=1

σ−j
2j

.

[3.2.4]:Q3.2.4 (The baker map and the ( 1
2
, 1
2
) Bernoulli shift)

The isomorphism of problem [3.2.3] establishes an isomorphism mod 0 between the dy-
namical systems ({0, 1}Z, τ, B) and ([0, 1]2, S, λ) where λ(dx) = dxdy and S(x, y) =
(2x, y/2) if x < 1/2, and S(x, y) = (2x − 1, (y + 1)/2) if x ≥ 1/2. The latter dynamical
system is called the baker map (see also problem [2.2.43]).

[3.2.5]:Q3.2.5 (Generalization of the binary and decimal expansions)

Consider n positive numbers p1, . . . , pn such that
∑n

i=1
pi = 1. Consider n intervals I1,

I2, . . . , In that decompose [0, 1). Define Sx = (x − ai)/pi, if x ∈ Ii = [ai, ai+1), having
set a0 = 0 and ai+1 = p1 + . . . + pi, i = 1, . . . , n. Draw the map S as a map of [0, 1]
into itself and show that S conserves the Lebesgue measure on [0, 1). The code that

associates with x ∈ [0, 1] its history on (I1, . . . , In) : x → (σ0, σ1, . . . , ) ∈ {1, . . . , n}Z+

transforms the Lebesgue measure into the unilateral Bernoulli measure B(p1, . . . , pn) on

{0, . . . , n}Z+ . This code generalizes the binary representation (which corresponds to the
case n = 2 and p1 = p2 = 1/2).
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[3.2.6]:Q3.2.6 (A generalization of the baker map isomorphism with a Bernoulli shift)

Generalize the result of problem [3.2.5] to show that the Bernoulli scheme with n symbols
and probabilities (p1, . . . , pn) is isomorphic mod 0 to the Lebesgue measure on [0, 1]2 on
which acts a suitable map S.

[3.2.7]:Q3.2.7 Consider the Bernoulli scheme B(p1, . . . , pn) on {1, . . . , n}Z. Given k positive
numbers a1, . . . , ak such that a1 + . . .+ak = 1, show the existence of a Borel partition of
{1, . . . , n}Z into k sets of measures, respectively, a1, a2, . . . , ak. (Hint: Use the result in
problem [3.2.5] and the fact that such partitions trivially exist on [0, 1]2 considered with
the Lebesgue measure).

[3.2.8]:Q3.2.8 Given a Borel partition Q = {Q1, . . . , Qk} of {1, . . . , n}Z, and given the

Bernoulli measure µ on {1, . . . , n}Z with probabilities B(p1, . . . , pn) show, by making
use of the results of problems [3.2.6] and [3.2.7], that there exists a family of parti-
tions t → Q(t) parameterized bt t ∈ [0, 1], such that Q(0) = {∅, ∅, . . . , ∅, {0, . . . , n}Z},
Q(1) = {Q1, . . . , Qk} with a fixed number, k, of atoms and which is continuous in the
sense that

lim
t→t0

|Q(t),Q(t0)| ≡ lim
t→t0

k∑

i=1

µ(Qi(t)∆Qi(t0)) = 0, ∀ t0 ∈ [0, 1] ,

where A∆B = (A \ B) ∪ (B \ A) is the symmetric difference between A and B. (Hint:
Consider the isomorphism discussed in problem [3.2.6] and use that such a property is
easy to show in the case of Borel partitions of [0, 1]2).

[3.2.9]:Q3.2.9 (Non-atomic Borel measures on {0, 1}Z are isomorphic mod 0 to the Lebesgue

measure on [0, 1])
Let µ be a non-atomic Borel measure on {0, 1}Z (i.e. a measure such that no positive
measure set E exists which has no subsets of smaller but positive measure). Show that
it is isomorphic mod 0 to the Lebesgue measure on [0, 1]. (Hint: Use the idea and the
map Y X that appear at the end of the proof of proposition (3.2.1).)

[3.2.10]:Q3.2.10 Show that if µ is an S–invariant measure on a σ–algebra B of Ω and it is
S–mixing then µ is non-atomic if B is not trivial.

[3.2.11]:Q3.2.11 If µ is a non-atomic Borel measure on a complete and separable metric space

then µ is isomorphic mod 0 to a Borel measure on {0, 1}Z. (Hint: Use Alexandrov and
Urhyson theorems9 stating that each separable and complete metric space is homeo-N3.2.9
morphic to a Borel subset of [0, 1]Z which, in turn, is in a one-to-one and bimeasurable
correspondence with a set Borel of {0, 1}Z. Hence by using the conclusions of problem
[3.2.9] show that µ is isomorphic mod 0 to the Lebesgue measure on [0, 1].)

[3.2.12]:Q3.2.12 Show that every dynamical system (Ω, S, µ) with Ω complete metric separable
and with µ non-atomic is isomorphic mod 0 to a dynamical system having the form

([0, 1], S̃, µ0) where µ0 is the Lebesgue measure and S̃ is a suitable map.

[3.2.13]:Q3.2.13 Interpret proposition (2.3.3) as a proof that every invertible topological dy-

namical system (Ω, S, µ) on a complete metric space admitting a topological separating
partition is isomorphic mod 0 to a system of the type ({0, . . . , n}Z, τ,m), where τ is the
translation of the sequences of symbols.

[3.2.14]:Q3.2.14 If (Ω, S, µ) is an invertible dynamical system on Ω that is assumed be a

complete metric separable space and if µ is a complete Borel measure (cf. Appendix 1.4),

then (Ω, S, µ) is isomorphic mod 0 to a dynamical system of the type (V Z, τ, µ̃) where V is

a compact metric space, τ is the translation on V Z, and µ̃ is a τ–invariant complete Borel
measure. (Hint: Let x1, x2, . . . be a denumerable dense set and consider the function

ϕ : Ω → [0, 1]Z+ defined by ϕ(x) = (d(x, xi)/1 + d(x, xi))i∈Z, if d(. . .) is the metric on

Ω. Then ϕ is an isomorphism between Ω and its image ϕ(Ω) ⊂ [0, 1]Z+ that turns out

9 See [DS58] pp. 24,138, and problem [3.2.14].
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to be a Borel set, and in fact a Gδ–set (i.e. a countable intersection of open dense sets),
in the product topology (theorem, of Alexandrov and Urhyson10). Associate then withN3.2.10

x the sequence in V Z = ([0, 1]Z+ )Z defined by Φ(x) = (ϕ(Six))i∈Z; it is clear that Φ
is a continuous and one-to-one map between Ω and ϕ(Ω); hence it is bimeasurable (by
Kuratowsky’s theorem11 This implies that if we set µ(E) = µ(Φ−1(E)) for E Borel inN3.2.11

V Z, then (V Z, τ, µ̃) is isomorphic mod0 to (Ω, S, µ).)

One says, therefore, that “every metric invertible dynamical system constructed on a
complete separable metric space by means of a map and of a Borel measure is isomorphic
mod (0) to a topological dynamical system on a compact metric space”.

Bibliographical note to §3.2
The proof of proposition (3.2.1) (“Shannon–McMillan theorem”) is taken
from [Ki57], p. 44–89.
The relation between Doob’s theorem and Vitali–Lebesgue’s is well known.
The proof of Doob’s theorem can be found in [Ki57]. A proof of the Vitali–
Lebesgue theorem can be found, for instance, in [DS58], p.214.
We remark that for a proof of proposition (3.2.1) the L1–convergence of
(3.2.15) would be sufficient. Instead, we have also obtained (implicitly)
the almost everywhere convergence: this provides a strenghtening of the
Shannon–McMillan theorem (due to Breiman, cf. [Br57]).
A generalization of the notion of entropy to measures on {0, . . . , n}Z that
are not invariant under translation can be found in [Ja59], where an exten-
sion of the theorem of Shannon–McMillan to “S-quasi–periodic” distribu-
tions (rather than S-invariant) is discussed.

§3.3 Elementary properties of the average entropy

In this section some consequences of the proof of proposition (3.2.1) are
collected together with some elementary properties of entropy and with
various interesting definitions.

(3.3.1) Corollary:C3.3.1 (Average entropy of a sequence)

If p ∈ M({0, . . . , n}Z) is a stationary distribution on {0, . . . , n}Z the func-
tion defined by the limit

s̃(σ) = lim
N→∞

−N−1 log p

(
O . . .N − 1
σ0 . . . σN−1

)
(3.3.1)e3.3.1

exists in L1(mp) and (therefore) the limit

s̃(p) = lim
N→∞

−N−1
∑

σ0...σN−1

p

(
0 . . .N − 1
σ0 . . . σN−1

)
log p

(
0 . . .N − 1
σ0 . . . σN−1

)
(3.3.2)e3.3.2

10 It is a useful exercise to look for a proof of this theorem without having recourse to the
literature.

11 See footnote 3, Section §2.3.
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exists.

Proof: In the proof of statement (i) of proposition (3.2.1) (i.e. in lemma
(3.2.1) needed to prove it) the sequence σ̂ generating the distribution of
frequencies p enters only through mp. And we only made use of the trans-
lation invariance of mp: the latter property is also true for the distribution

p that appears in (3.3.1) even if p is not the distribution of a sequence.

(3.3.1) Definition:D3.3.1 If p ∈ M({0, . . . , n}Z) the quantity s̃(p) in (3.3.2)
will be called average entropy of p. The notion is a priori different from
that of entropy of p, that we shall denote by s(p), which can be defined by
generalizing definition (3.1.1) to the case in which p is not generated by a

sequence σ.1N3.3.1

Remarks: (1) If p is ergodicmp is also ergodic and, therefore, s̃(σ) is almost

everywhere constant (with respect to mp, because we have seen in the proof

of lemma (3.2.1) that it is translation invariant) and one can repeat the first
part of the proof of proposition (3.2.1) to conclude that for all ε > 0, there
is Nε such that for N ≥ Nε the elements of {0, . . . , 1}N can be divided in
two sets C1,ε(N) and C2,ε(N) satisfying (3.2.3), (3.2.4) and (3.2.5).
We can then repeat the arguments of remark (1) to proposition (3.2.1) and
deduce that s̃(σ) = s = s(p). Hence if p is ergodic we have

s̃(p) = s(p). (3.3.3)e3.3.3

(2) The relation (3.3.3) does not hold in general if p is not ergodic.

The following proposition clarifies the remark (2) above.

(3.3.1) Proposition:
P3.3.1

(Entropy and average entropy)

If p
1
, p

2
∈M({0, . . . , n}Z) and are ergodic and, if p = ap

1
+ (1− a)p

2
with

0 < a < 1, in the sense that

p

(
j1 . . . jp
σ1 . . . σp

)
= ap1

(
j1 . . . jp
σ1 . . . σp

)
+ (1 − a)p2

(
j1 . . . jp
σ1 . . . σp

)
, (3.3.4)e3.3.4

one has
s̃(p) = as(p

1
) + (1− a)s(p

2
),

s(p) = max {s(p
1
), s(p

2
)}.

(3.3.5)
e3.3.5

The first property is called affinity of the entropy.

1 In other words we can define the complexity with weight e−V of a shift invariant dis-
tribution p the quantity s(p, V ) as in (3.1.8), (3.1.9) and (3.1.10), where C1 and C2 are

now defined by replacing the frequencies p
( 0 . . . N − 1
σ0 . . . σN−1

| σ̂
)
by p

( 0 . . . N − 1
σ0 . . . σN−1

)
and by

replacing ηε(σ̂|N ;V ) with ηε(p|N ;V ), where one defines ηε(p|N ;V ) through the second

member of (3.1.9). Then s(p) is naturally defined as s(p | 0), using the notations of

definition (3.1.1) with VN ≡ 0.
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Proof: The first of (3.3.5) is based on the identity (3.3.3) for ergodic distri-
butions and on the following simple inequalities.
The function ξ → −ξ log ξ is convex for ξ ∈ [0, 1] and, therefore,

−(ax+ (1 − a)y) log(ax+ (1− a)y) ≥ −ax log x− (1− a)y log y (3.3.6)e3.3.6

for every a, x, y ∈ [0, 1]. Furthermore if 0 ≤ x1, . . . , xp ≤ 1, 0 ≤ y1, . . . , yp ≤
1 and

∑
i xi =

∑
i yi = 1 the monotonicity of ξ → − log ξ gives

∑

i

− (axi + (1− a)yi) log(axi + (1− a)yi) ≡

≡
∑

i

−axi log(axi + (1− a)yi)+

+
∑

i

−(1− a)yi log(axi + (1− a)yi) ≤

≤
∑

i

−axi log axi +
∑

i

−(1− a)yi log(1 − a)yi =

=− a log a− (1− a) log(1− a)+
+ a

∑

i

−xi log xi + (1− a)
∑

i

−yi log yi.

(3.3.7)e3.3.7

Hence (3.3.6) and (3.3.7) imply

a
∑

i

−xi log xi + (1− a)
∑

i

yi log yi ≤

≤
∑

i

−(axi + (1− a)yi) log(axi + (1− a)yi) ≤ (3.3.8)e3.3.8

≤ −a log a− (1 − a) log(1− a) + a
∑

i

−xi log xi + (1 − a)
∑

i

−yi log yi,

so that, by selecting i = (σ0, . . . , σN−1), xi = p1

(
0 . . .N − 1
σ0 . . . σN−1

)
, yi =

p2

(
0 . . .N − 1
σ0 . . . σN−1

)
, then (3.3.8) and (3.3.2) imply the first of the (3.3.5).

The second of (3.3.5) is based on proposition (3.2.1): if s(p
1
) = s1 ≤

s(p
2
) = s2 and if C11,ε(N) and C21,ε(N) denote the sets of specifications of

large probability with respect to mp
1
and mp

2
we see that

| C11,ε(N)∪C21,ε(N) | ≤ eN(s1+ε) + eN(s2+ε) ≤
≤ eN(s2+ε)(1 + e−N(s2−s1)),

(3.3.9)e3.3.9

that shows, since

∑

σ0...σN−1 /∈C1
1,ε(N)∪C2

1,ε(N)

p

(
0 . . .N − 1
σ0 . . . σN−1

)
≤ 2ε, (3.3.10)e3.3.10
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that s = s(p) ≤ s2.
But one cannot have s < s2: if indeed Cε(N) was a set of large probability
(> 1− ε) and | Cε(N) | < eN(s+ε), for all N ≥ Nε, we should have

∑

σ0...σN−1 /∈Cε(N)

p2

(
0 . . .N − 1
σ0 . . . σN−1

)
=

= (1− a)−1(1− a)
∑

σ0...σN−1 /∈Cε(N)

p2

(
0 . . .N − 1
σ0 . . . σN−1

)
≤

≤ (1− a)−1
∑

σ0...σN−1 /∈Cε(N)

p

(
0 . . .N − 1
σ0 . . . σN−1

)
≤ ε(1− a)−1,

(3.3.11)e3.3.11

but this would contradict the fact that s2 is the entropy of p
2
.

Another simple but important property of s(p) is the following one.

(3.3.2) Proposition:P3.3.2 (Average entropy as an infimum, semicontinuity)

Let p ∈M({0, . . . , n}Z) be an invariant distribution; one has

s̃(p) ≤ log(1 + n), (3.3.12)e3.3.12

s̃(p) = inf
N=2k

−N−1
∑

σ0...σN−1

p

(
0 . . .N − 1
σ0 . . . σN−1

)
log p

(
0 . . .N − 1
σ0 . . . σN−1

)
,

where the infimum is taken over the integers k, by setting N = 2k. Hence
the average entropy is upper-semicontinuous, i.e. if p

n
is a sequence of dis-

tributions which converges to a limit p∞ in the topology of M({0, . . . , n}Z),

i.e. in the sense that pn

(
0 . . .N − 1
σ0 . . . σN−1

)
−−−−→n→∞ p∞

(
0 . . .N − 1
σ0 . . . σN−1

)
for all

N, σ0, σ1, . . . , σN , then

s̃(p∞) ≥ lim sup
n→∞

s̃(p) (3.3.13)e3.3.13

and s(µ) has a maximum on any compact set in M({0, . . . , n}Z).
Proof: The function (x1, . . . , xp) → −∑i xi log xi, 0 ≤ x1, . . . , xp ≤ 1,∑
i xi = 1, has its maximum in xi = 1/p where its value is log p. The sum

(3.3.2) has precisely this form: this shows the first relation of (3.3.12).
To show the second relation in (3.3.12) let I and J be two sets of labels and
let (pi)i∈I , (p′j)j∈J , (pij)ij∈I×J be three families of not negative numbers

such that 2
N3.3.2 ∑

i

pi =
∑

j

p′j =
∑

ij

pij = 1,

pi =
∑

j

pij , p′j =
∑

i

pij .
(3.3.14)e3.3.14

2 We think here to i = (σ0 . . . σN−1), j = (σ′0 . . . σ
′
N−1), pi = p

(
0 . . . N − 1
σ0 . . . σN−1

)
, p′j =

p

(
0 . . .M − 1
σ′0 . . . σ

′
M−1

)
, pij = p

(
0 . . . N − 1 N . . .N +M − 1
σ0 . . . σN−1 σ′0 . . . σ

′
M−1

)
.

20/novembre/2011; 22:18



§3.3: Elementary properties of the average entropy 91

Then

∑

ij

−pij log pij ≤
∑

i

−pi log pi +
∑

j

−p′j log p′j,
∑

ij

−pij log pij ≥
∑

i

−pi log pi,
(3.3.15)e3.3.15

because

∑

ij

− pij log pij =
∑

i

pi
∑

j

−(pij/pi) log pij =

=
∑

i

pi
∑

j

−(pij/pi)(log pij/pi + log pi) =

=
∑

i

pi
∑

j

−(pij/pi) log(pij/pi) +
∑

i

−pi log pi =

=
∑

j

{∑

i

pi(−pij/pi) log pij/pi)
}
+
∑

i

−pi log pi

(3.3.16)e3.3.16

and the term in curly bracket is ≥ 0 because (pij/pi) ≤ 1; moreover by the
convexity of ξ → − log ξ, it is bounded above by

−
∑

j

(∑

i

pi(pij/pi)
)
log
(∑

i

pi(pij/pi)
)
= −

∑

j

p′j log p
′
j . (3.3.17)e3.3.17

Choosing pi, pij as in footnote 2, and setting

HN (p) =
∑

σ0...σN−1

−p
(

0 . . .N − 1
σ0 . . . σN−1

)
log p

(
0 . . .N − 1
σ0 . . . σN−1

)
, (3.3.18)e3.3.18

we see that the first of the (3.3.15) means

HN+M (p) ≤ HN (p) +HM (p), (3.3.19)e3.3.19

which implies that N−1HN (p) is monotonic non-increasing on the sequence

N = 2k, k = 0, 1, . . . and, hence, the second of (3.3.12) follows.

The second of the (3.3.15) will be useful in the following and sometimes we
shall refer directly to it without formulating it as a separate proposition.
The following definition is remarkable and natural.

(3.3.2) Definition:D3.3.2 (Average entropy of a dynamical system)
Let (Ω, S, µ) be an invertible dynamical system and let P = {P0, . . . , Pn} be
a partition of Ω into µ–measurable sets. We define the average entropy of
S with respect to P and µ the following quantity:

s̃(P , S, µ) = s̃(p
µ
), (3.3.20)e3.3.20
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where p
µ
∈M({0, . . . , n}Z) is defined by

pµ

(
0 . . . N − 1
σ0 . . . σN−1

)
= µ

(N−1∩
k=0

S−kPσk
)
. (3.3.21)e3.3.21

We define the average entropy of S with respect to µ the quantity

s̃(S, µ) = sup
P

s̃(P , S, µ), (3.3.22)e3.3.22

where the supremum is considered over all the finite partitions of Ω into
µ–measurable sets.

Remarks: (1) Noting that pµ

(
0 . . .N − 1
σ0 . . . σN−1

)
= pµ

(
−N + 1 . . . 0
σ0 . . . σN−1

)
we

deduce from (3.3.2) that

s̃(P , S, µ) = s̃(P , S−1, µ). (3.3.23)e3.3.23

(2) Furthermore it is clear that s̃(S, µ) = s̃(S′, µ′) if (Ω, S, µ) is isomorphic
mod 0 to (Ω′, S′, µ′): the average entropy of a metric dynamical system is an
invariant under isomorphisms mod 0. For this reason the average entropy
is also called the Kolmogorov–Sinai invariant.

Problems for §3.3

[3.3.1]:Q3.3.1 Making use of proposition (3.3.2) and of problem [3.2.8] show that, given ε > 0,

one can find a partition Pε of {0, 1}Z that has average entropy < ε with respect to
the action of the translation on the Bernoulli measure B(1/2, 1/2). (Hint: Construct a
partition that interpolates between the partition P0 = {∅, {0, 1}Z} and P1 = {C0

0 , C
0
1}

and estimate s̃(Pε, S, µ) by means of (3.3.12) with N = 1).

[3.3.2]:Q3.3.2 Consider the Bernoulli scheme B(1/2, 1/2) and compute the entropy of the

partition {C01
00 , C

01
01 , C

01
10 , C

01
11}.

[3.3.3]:Q3.3.3 By using the results of problem [2.4.6] show that if ∆ = {ω |ω ∈
Me({0, . . . , n}Z, τ), s(ω) ∈ [α, β]}, and if π is a Borel measure onMe such that π(∆) = 1,

then the measure m =
∫
∆
ωπ(dω) has entropy s̃(m) ∈ [α, β]. The same happens if [α, β]

is replaced, in the definition of ∆, by [α, β), (α, β], (α, β). (Hint: Note that ε(∆) is a
Borel set and make use of problem [2.4.6].)

[3.3.4]:Q3.3.4 (Affinity of average entropy for finite mixtures)

By using problem [3.3.3] show that the average entropy s is affine with respect to the
ergodic decompositions of measures p ∈ M({0, . . . , n}Z), i.e. show that the affinity in

proposition (3.3.1), for finite mixtures, implies via problem [3.3.3] and the Shannon–
McMillan theorem, that if p ∈M({0, . . . , n}Z) and π is its ergodic decomposition, then

s̃(p) =

∫

Me

π(dω) s̃(ω).

[3.3.5]:Q3.3.5 (Affinity of the average entropy for arbitrary mixtures)

If (Ω, S) is an invertible topological dynamical system with Ω metric and compact and if
µ ∈M(Ω, S) and πµ is the ergodic decomposition onMe(Ω, S) of µ then

s̃(S, µ) =

∫

Me(Ω,S)

πµ(dω) s̃(ω),
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i.e. the average entropy is affine also for ergodic decompositions which are not finite.

[3.3.6]:Q3.3.6 Let ρ be a probability distribution on {0, . . . n}N . Construct the measure

µ0 on {0, . . . , n}Z by assigning independent probabilities q to the blocks of variables
(σi)i∈[kN,(k+1)N), k ∈ Z. Show that µ0 is invariant with respect to the action of trans-

lations which are multiples of the N steps translation τN . Show that, for N > 1,

µ(E) = N−1

N−1∑

j=0

µ0(τ
jE) for all E ∈ B({0, . . . , n}Z)

defines a τ–ergodic and τN–mixing measure which is not τ–mixing.

[3.3.7]:Q3.3.7 (Average entropy of periodic distributions)

Compute the average entropy of the measure µ defined in problem [3.3.6] regarded as an
invariant measure for the dynamical system ({0, . . . , n}Z, τN ).

[3.3.8]:Q3.3.8 (Approximability of measures by ergodic measures)

If m is a shift invariant distribution on {0, . . . , n}Z and if ε > 0 and M are given, there
exists a probability distribution µ ergodic on {0, . . . , n}Z and such that

∑

σ1...σM

|m(C1...M
σ1...σM

)− µ(C1...M
σ1...σM

) | < ε

(Hint: Consider N ≫M and the distribution q on the sequences {0, . . . , n}N defined by:

q(σ1, σ2, . . . , σN ) = m(C1,...,N
σ1 ,...,σN ); construct µ, starting from q, m as in problem [3.3.6]).

[3.3.9]:Q3.3.9 (Approximability in distribution and entropy)
Show that, as consequence of Shannon-McMillan theorem, every ergodic m ∈
Me({0, . . . , n}Z) can be approximated in distribution and entropy by a measure µ which
is ergodic and “of finite type”, i.e. built as in problem [3.3.6]. By approximation in dis-
tribution and entropy one means that given ε > 0 and M > 0 there exists a µ of finite
type for which

∑

σ1...σM

|m(C1...M
σ1 ...σM

)− µ(C1...M
σ1...σM

) | < ε, | s(µ) − s(m) | < ε.

(Hint: Make use of problems [3.3.6], [3.3.7] and [3.3.8], and of (i) in proposition (3.2.1)).

Bibliographical note to §3.3
The properties discussed in this section are well known, see for instance
p. 178 in [Ru69]. There are various other properties of entropy and mainly
its extensions to “non-commutative cases” that are less simple and at times
quite deep; see [We79], for a review.

§3.4 Further properties of the average entropy. Generator theo-
rem

In this section we mainly discuss definition (3.3.2) and certain simplifica-
tions in the evaluation of the extremum in (3.3.22).
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(3.4.1) Definition:D3.4.1 (Generating partition)
Let B be a σ–algebra in a space Ω and P = ({P0, . . . , Pn}, Q =
{Q0, . . . , Qm} be two B-measurable partitions of Ω. Define the partition
P ∨Q, generated by P and Q, to be the partition whose atoms are

Rσσ′ = Pσ ∩Qσ′ σ ∈ {0, . . . , n}, σ′ ∈ {0, . . . ,m}. (3.4.1)e3.4.1

If µ is a probability measure on B define

H(P , µ) =
n∑

σ=0

−µ(Pσ) log µ(Pσ). (3.4.2)e3.4.2

If (Ω, S, µ) is an invertible metric system with µ defined on B we say that
P is µ-S–generating if the smallest σ–algebra that contains the sets of the
partitions SkP, for all k ∈ Z, coincides µ-mod 0 with B. When confusion
does not arise we shall simply say that P is S–generating.

Remarks: (1) By using the definition given in (3.3.2), the quantity
s̃(P , S, µ) can also be rewritten as (cf. also (3.3.18))

s̃(P , S, µ) = lim
N→∞

N−1H(P ∨ S−1P ∨ . . . ∨ S−(N−1)P , µ). (3.4.3)e3.4.3

(2) The identity (3.4.3) implies that for all h, k integer (positive, zero or
negative), with h ≤ k, one has

s̃(ShP ∨ . . . ∨ SkP , S, µ) = s̃(P , S, µ). (3.4.4)e3.4.4

(3) From general measure theory it follows that if µ is isomorphic mod 0
to the Lebesgue measure on [0, 1] then a necessary and sufficient condition
in order that P be S–generating is that P is S–separating mod 0, i.e. that
there exists N ∈ B, µ(N) = 0, such that if x, y /∈ N and the (P , S)–histories
of x and y coincide then x and y coincide too.
Hence in dynamical systems (Ω, S, µ) in which (Ω, S) is a topological dy-
namical system and µ a Borel measure every S–separating partition is gen-
erating.1N3.4.1

(4) From general measure theory it follows that in order that P be S–
generating it must happen that, given ε > 0 and E ∈ B, there exists Nε
such that the partition ∨Nε−NεS

−kP is “fine enough” so that it is possible, by
taking suitable unions of its atoms, to construct a set Eε whose symmetric
difference from E, (E∆Eε = (E\Eε)∪(Eε\E), is small

µ(E∆Eε) < ε. (3.4.5)e3.4.5

(5) From remark (4) it follows that if P is S–generating and if Q =
{Q0, . . . , Qm} is an arbitrary µ–measurable partition, given ε > 0 there

1 Every Borel measure on a complete and separable metric space is isomorphic mod 0
to the sum of the Lebesgue measure on an interval and a denumerable sum of Dirac
measures, cf. problem [3.2.9] and [Pa67].
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exists Nε such that by suitably collecting the atoms of ∨Nε−NεS
−kP into

(m+ 1) groups one can form a partition Qε = {Qε0, . . . , Qεm} such that

d(Q,Qε) =
n∑

i=0

µ(Qi∆Q
ε
i ) < ε, (3.4.6)e3.4.6

where, given in general two partitions Q = {Q0, . . . , Qm} and Q′ =
{Q′

0, . . . , Q
′
m} with an equal number of atoms, we define

d(Q,Q′) =
n∑

j=0

µ(Qi∆Q
′
i). (3.4.7)e3.4.7

The interest of the above observations and their relevance for the problem
of the actual computation of the extreme in (3.3.22) lies in the corollary to
the following proposition.

(3.4.1) Proposition:P3.4.1 (Continuity of the average entropy of a partition)
Let (Ω, S, µ) be an invertible metric dynamical system.
(i) If P = {P0, . . . , Pn}, Q = {Q0, . . . , Qm} are two µ–measurable partitions
of Ω, then

s̃(P , S, µ) ≤ s̃(P ∨Q, S, µ) ≤ s̃(P , S, µ) + s̃(Q, S, µ). (3.4.8)e3.4.8

(ii) If P = {P0, . . . , Pn} and Q = {Q0, . . . , Qn} are two µ–measurable par-
titions and if d(P ,Q) =∑n

i=0(Pi∆Qi) = ε < (n+ 1)/(n+ 2), one has

|s̃(P , S, µ)− s̃(Q, S, µ)| ≤ ε log(n+ 1)− ε log ε− (1− ε) log(1− ε). (3.4.9)e3.4.9

Remark: The statement (ii), Sinai’s theorem, gives continuity in P at fixed
number, n, of atoms.

Proof: Let i = (σ0 . . . σN−1), j = (λ0 . . . λN−1), σk ∈ {0, . . . , n}, λk ∈
{0, . . . ,m} and

pi = µ
(
N−1∩
k=0

S−kPσk
)
, pij = µ

(
N−1∩
k=0

S−k(Pσk ∩Qλk)
)
,

p′j = µ
(
N−1∩
k=0

S−kQλk
)
;

(3.4.10)e3.4.10

one has
∑

i pi =
∑
ij pij = 1,

∑
j pij = pi,

∑
i pij = p′j . Then (3.4.8)

is derived from the relation between the approximants
∑

i(−pi log pi),∑
ij(−pij log pij),

∑
i(−pi log pi +

∑
j −p′j log p′j) obtained in (3.3.15) from

(3.3.14).
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To show (ii) let R = {R0, . . . , Rn, Rn+1} be the partition of Ω into n + 2
sets defined by

R0 = P0∆Q0,

Ri = (Pi∆Qi)/
i−1∪
j=0

(Pj∆Qj), i = 1, . . . , n,

Rn+1 = Ω/
n∪
i=0

Ri.

(3.4.11)e3.4.11

We have X
def
= µ(Rn+1) ≥ 1− ε and∑n

i=0 µ(Ri) = 1−X ≤ ε. Furthermore
(3.4.8) implies

s̃(P ∨R, S, µ) ≤ s̃(P , S, µ) + s̃(R, S, µ), (3.4.12)
e3.4.12

and the similar relation with Q instead of P . The relation (P ∨ R) =
(Q ∨ R) (that follows immediately from the definitions) implies together
with (3.4.12)

|s̃(P , S, µ)− s̃(Q, S, µ)| ≤ s̃(R, S, µ). (3.4.13)e3.4.13

But from the second of (3.3.12) with k = 0 it follows

s̃(R, S, µ) ≤
n+1∑

σ=0

−µ(Rσ) logµ(Rσ), (3.4.14)e3.4.14

which implies

s̃(R, S, µ) ≤ −X logX +

n∑

σ=0

−µ(Rσ) logµ(Rσ) ≡ (3.4.15)e3.4.15

≡ −X logX − (1 −X) log(1−X) + (1−X)
n∑

σ=0

− µ(Rσ)

(1−X)
log

µ(Rσ)

(1−X)
;

therefore the sum can be bounded above by log(n+1) because of the identity∑n
σ=0

µ(Rσ)
1−X = 1. Hence

s̃(R, S, µ) ≤ −X logX − (1−X) log(1−X) + (1−X) log(n+ 1), (3.4.16)e3.4.16

from which (3.4.9) follows because the function in the r.h.s. of (3.4.16) is
monotonic decreasing between (1 − (n + 1)/(n + 2)) and 1, and one has
X ≥ 1− ε.
(3.4.1) Corollary:C3.4.1 (Generator theorem)
Let (Ω, S, µ) be an invertible metric dynamical system. If P = {P0, . . . , Pn},
Q = {Q0, . . . , Qm} are two µ–measurable partitions and P is S–generating,
then

s̃(Q, S, µ) ≤ s̃(P , S, µ) = s̃(S, µ) (3.4.17)e3.4.17
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Remark: The above theorem is due to Sinai.

Proof: Let ε > 0 and let Qε be a partition obtained by forming unions of
atoms of ∨Nε−NεS

−kP and such that d(Q,Qε) < ε, cf. remark (5) to definition
(3.4.1). Then, by proposition (3.4.1)

|s̃(Q, S, µ)− s̃(Qε, S, µ)| −−−→ε→0 0. (3.4.18)e3.4.18

But it is clear that Qε is less fine than ∨Nε−NεS
−kP (and therefore there is

a partition R of Ω such that Qε ∨ R = ∨Nε−NεS
−kP); hence by (3.4.8) and

(3.4.4)

s̃(Qε, S, µ) ≤ s̃
(
∨Nε−Nε S

−kP , S, µ
)
= s̃(P , S, µ), (3.4.19)e3.4.19

so that the first of (3.4.17) is proved. The second follows by the arbitrariness
of Q and the definition in (3.3.22).

(3.4.2) Corollary:C3.4.2 Let (Ω, S, µ) be an invertible metric system mod 0 with
µ defined on a σ–algebra B. Let P1, P2, . . . be a sequence of µ–measurable
partitions such that Pn+1 refines Pn (i.e. such that the atoms of Pn are
unions of atoms of Pn+1) and such that the smallest σ–algebra that contains
Pn and all its images under S, for all n = 1, 2 . . ., is B (a generating
sequence of partitions). One has

s̃(S, µ) = lim
n→∞

s̃(Pn, S, µ). (3.4.20)e3.4.20

The proof will be left to the reader. Finally an application.

(3.4.2) Proposition:P3.4.2 (Entropy bound for smooth measures)
Let Ω be a compact Riemannian manifold of class C∞ and dimension r,
S be a C∞ diffeomorphism of Ω, and µ be an S–invariant Borel measure
equivalent to the volume measure µ0 on Ω (i.e. let µ = ρµ0 with ρ±1 ∈
L1(µ0)). The average entropy of S with respcet to µ can be bounded as

s̃(S, µ) < r logλ, (3.4.21)e3.4.21

in terms of the largest expansion coefficient λ of the line elements of Ω under
the action of S±1.

Remark: This is, essentially, again Kouchnirenko’s theorem, cf. proposi-
tion (3.1.2): this time it is formulated on the average entropy and without
the hypothesis of ergodicity of µ (so that the average entropy cannot be
identified with the entropy).

Proof: Since Ω is locally diffeomorphic to R
r it is clear that there exists a

sequence of partitions with sets with a piecewise C∞ boundary and which
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verify the hypothesis of corollary (3.4.2). We can in fact suppose that the
atoms of such partitions have always diameter less than a prefixed δ > 0. We
shall fix δ so that the isoperimetric inequality holds for every C∞–regular
set P with diameter diam (P ) < δ

|µ(P )| ≤ Γ|∂P |r/(r−1), (3.4.22)e3.4.22

where |∂P | = (area of the surface ∂P ), and Γ is a suitable P–independent
constant.
By corollary (3.4.2) it will suffice to show that for an arbitrary partition
P , C∞–regular, with atoms of diameter ≤ δ one has s(P , S, µ) ≤ r log λ.
Fixed P and η > 0 and proceeding as in proposition (3.1.2) we split the
specifications σ0, . . . , σN−1 of length N , σi ∈ {0, . . . , n} into two classes:

C1(N) =
{
σ0, . . . , σN−1

∣∣µ
(N−1∩
k=0

S−kPσk
)
> e−Nηλ−rN

}
,

C2(N) =
{
0, . . . , n

}N\C1(N),

(3.4.23)e3.4.23

and, as in the case of the mentioned proposition, we deduce that if

p

(
0 . . .N − 1
σ0 . . . σN−1

)
= µ

(
N−1∩
k=0

S−kPσk
)

(3.4.24)e3.4.24

one has, for a suitable C > 0,

X
def
=

∑

σ0...σN−1∈C2(N)

p

(
0 . . .N − 1
σ0 . . . σN−1

)
≤ Ce−Nη. (3.4.25)

e3.4.25

Hence. having set j = (σ0, . . . , σN−1), pj = p

(
0 . . .N − 1
σ0 . . . σN−1

)
,

∑

j

−pj log pj =
∑

j∈C1(N)

−pj log pj +
∑

j∈C2(N)

−pj log pj ≤

≤ (r logλ+ η)N +X
∑

j∈C2(N)

−(pj/X) log pj =

= (r logλ+ η)N −X logX +X
∑

j∈C2(N)

(−pj/X) log(pj/X) =

= (r logλ+ η)N −X logX +XN log(n+ 1),

(3.4.26)e3.4.26

because {number of elements in C2(N)} ≤ (n + 1)N . Dividing the (3.4.26)
by N and passing to the limit as N → ∞ the terms containing X tend to
zero and one finds s(P , S, µ) ≤ η + r logλ, for every η > 0.

Problems for §3.4 (Complements to Shannon–McMillan’s theorem)

[3.4.1]:Q3.4.1 (Average entropy of a Bernoulli scheme)

Consider the Bernoulli scheme on Ω = {0, . . . , n}Z that associates with the symbols
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the probabilities π0, . . . , πn,
∑

i
πi = 1. Denoting by m the corresponding probability

measure on Ω consider the system (Ω, τ,m) and show that its entropy s = s(τ,m) and its

average entropy s̃ = s̃(τ,m) satisfy s = s̃ = −
∑

i
πi log πi. (Hint: Recall the definition

in (3.3.22), and use problem [3.1.8] and the Shannon–McMillan theorem.)

[3.4.2]:Q3.4.2 Show the existence of Bernoulli schemes (with infinitely many different symbols)

with infinite average entropy. (Hint: Choose a sequence {an}∞n=0 such that
∑∞

n=1
an <

∞ and
∑∞

n=1
an log an <∞, and normalize to 1 the first series; take for instance an =

1/n log2 n for n ≥ 2.)

[3.4.3]:Q3.4.3 (Average entropy of a Markov chain)

Compute the average entropy of the dynamical system ({0, 1}Z, τ,m) where m is the

distribution built in [2.3.8]. Show that s̃(τ,m) = −
∑

σ,σ′ π
∗
σπσ′

Tσσ′
λ

log
Tσσ′
λ

.

[3.4.4]:Q3.4.4 Estimate the average entropy of the system of the example (1.2.5).

[3.4.5]:Q3.4.5 Show that two Bernoulli schemes with different entropy cannot be isomorphic
mod 0.

[3.4.6]:Q3.4.6 (A non–generating partition with maximal entropy)

Consider the Markov process (cf. problem [2.3.8]) with transition matrix Tσσ′ =( 1/2 1/2
1/2 1/2

)
and show that it admits a non-generating partition Q with largest entropy.

(Hint: Q0 = {σ|σ0 = σ1}, Q1 = {σ|σ0 6= σ1}, s(Q, τ) = log 2.)

[3.4.7]:Q3.4.7 Let µn be a sequence of invariant distributions for a topological dynamical

system (Ω, S) and suppose that there is a partition P which is S–generating for all
(Ω, S, µn). Then if µn converges weakly to µ, i.e. µn(f)−−−−→n→∞ µ(f) for all continuous

functions f , the average entropies of µn verify lim supn→∞ s̃(S, µn) ≤ s̃(S, µ). (Hint: See
(3.3.13).)

[3.4.8]:Q3.4.8 (Factors of arbitrary entropy)

Show that given a dynamical system (Ω, S, µ) with a given partition P, such that the
measure µ on Ω is isomorphic mod 0 to the Lebesgue measure on [0, 1], there exists a
partition P ′ of Ω such that s(P ′, S) = a s(P, S) with a arbitrarily fixed in [0, 1]. The
dynamical system (Ω, S, µ′) where µ′ is the restriction of µ to the σ–algebra generated
by P ′ is called a factor of the original dynamical system. (Hint: Use Sinai’s theorem and
the existence of a “continuous” family interpolating between the trivial partition and
P; proceed as in problem [3.2.8]). To appreciate the generality of this property note its
relation with problems [3.2.1], [3.2.11] and [3.2.12].

[3.4.9]:Q3.4.9 (Stacks for mixing systems)

Consider a system ({0, . . . , n}Z, τ, µ) with µ mixing and non-atomic (hence such that
supµ(C0...k

σ0...σk
)−−−−→
k→∞ 0) and, for simplicity, assume µ(C0...k

σ0 ...σk
) > 0 for all σ0, . . . , σk.

Show that, given ε > 0 and N > 0 integer, there exists a Borel set F such that the

sets F , τF, . . . , τN−1F are pairwise disjoint and µ
(
∪N−1
i=0 τ iF

)
≥ 1 − ε. (Hint: : Let

M ≫ M ′ ≫ N and choose M ′ such that sup µ(C0...M′

σ0...σM′
) < ε/4N . Consider the

string with M ′ elements 00000 . . . 001 and call F̃ the union of the cylinders with base
(kN, . . . , kN + M ′) and specification 00000 . . . 001 for k = 0, 1, 2, . . . , [M/N ] and F =

F̃ /∪N−1
i=1 τ iF̃ (i.e. F is the set of sequences for k = 0, 1, 2, . . . , [M/N ] (ie F is the set

of sequences containing the string 00000 . . . 001 with the first zero in position 0 or N or
2N , etc., for the first time between 0 and M − 1). It is then clear that τ iF ∩ τ jF = ∅
∀0 ≤ i 6= j ≤ N − 1, and {0, . . . , n}Z/∪ τ iF contain two types of points: those sequences
σ ∈ {0, . . . , n}Z that never contain between 0 and M − 1 the string 00000 . . . 001 and
those that do contain it between 0 and N − 1 The set of the points of the second type
has measure lower than (ε/4N)N = ε/4 and the set of the first type has infinitesimal
measure as M →∞.)

[3.4.10]:Q3.4.10 (Rohlin’s stack)

Under the hypothesis of problem [3.4.9] let Q = (Q0, . . . , Qk) be a Borel partition of
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{0, . . . , n}Z. It is possible, given N and ε > 0, to find F so that µ(Qi ∩F )/µ(F ) = µ(Qp)
for all i = 0, . . . , k, and τ iF ∩ τ jF = ∅ ∀0 ≤ i 6= j ≤ N . (Hint: Let F0 be the set whose
existence, in correspondence of the given N and ε, is assured by the result in problem
[3.4.9] and verifying the properties described therein. Set Ft = τ tF0, t ∈ Z, and use the
mixing property (assumed to hold for µ) to infer that

lim
t→∞

k∑

i=1

∣∣∣µ(Qi ∩Ft)
µ(Ft)

− µ(Qi)
∣∣∣ = lim

t→∞
ηt = 0

If one chooses ηt ≪ µ(Ft) = µ(F0) (by the τ -invarience of µ) it is clear that, being
({0, . . . , n}Z, µ) isomorphic mod 0 to the Lebesgue measure on [0, 1] (cf. problem [3.2.12])
and regarding in this way Q0, . . . , Qk, Ft as sets of [0, 1] it is possible to take out of Ft
a set ∆ ⊂ Ft of points having small measure with respect to ηt ≪ µ(F0) to obtain that
µ(Qi ∩(Ft \ ∆)) = µ(Qi)µ(Ft \ ∆) without deteriorating the bound on the measure of

∪N−1
i=0 τ i(Ft \∆)), i.e. keeping it larger than 1− ε).

Remark: This statement (Rohlin’s stack theorem) does not require the hypothesis of
mixing: ergodicity of µ suffices (the same can be said also for the result of the preceding
problem [3.4.9]); however the proof is, in the latter cases, somewhat more elaborate.

The following problems provide a guided proof of the statement that two mixing shifts
of equal entropy contain copies of each other (Sinai).

[3.4.11]:Q3.4.11 Let ({0, . . . , n}Z, τ, µ) and ({0, . . . , n′}Z, τ, µ′) be two mixing shifts with

s(µ′, τ) > s(µ, τ). Consider the partitions P and P ′ of {0, . . . , n}Z and of {0, . . . , n′}Z
into the cylinders with base 0 (i.e. P = {C0

0 , C
0
1 , . . . , C

0
n} and P ′ = {C′0

0 , . . . , C
′0
n′} re-

spectively).

Given ε > 0 and u integer > 0 consider the partitions PN = ∨N−1
0 τ iP and P ′

N =

∨N−1
0 τ iP ′ and choose N > N(u, ε), where N(u, ε) is such that for N > N(u, ε) the

properties stated in problem [3.2.1] hold. Let F ⊂ {0, . . . , n}Z and F ′ ⊂ {0, . . . , n′}Z be
two sets for which (cf. problem [3.4.10])

µ(Q∩F )

µ(F )
= µ(Q), for all Q ∈ PN ;

µ′(Q′ ∩F ′)
µ′(F ′)

= µ′(Q′) for all Q′ ∈ P ′
N

and simultaneously τ iF ∩ τ jF = ∅ = τ iF ′ ∩ τ jF ′, for all i 6= j, i, j = 0, . . . , N − 1.
Represent F and F ′ as two intervals (see Fig. (3.4.1)), and represent as intervals also
the sets

τF, . . . , τN−1F, τF ′, . . . , τN−1F ′

E = {0, . . . , n}Z/N−1
∪
i=0

τ iF, E′ = {0, . . . , n′}Z/N−1
∪
i=0

τ iF ′.

E E′

τN−1F τN−1F ′

τF τF ′

F F ′

Fε F ′
ε

Fig.(3.4.1)F3.4.1 Illustration of the result of problems [3.4.11] and [3.4.12]. The sets Fε and
F ′
ε are defined in problem [3.4.12]. The interval F , base of the stack, is divided into
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smaller intervals representing the sets F ∩ C0...N−1
σ0...σN−1

with σ0 . . . , σN−1 chosen in the

large frequency collection C1,ε,u(N), except the rigthmost interval, denoted Fε, which

represents the intersection of F with ∪C0...N−1
σ0...σN−1

where the union is over the cylinders

with σ0, . . . , σN−1 in the collection C2,ε,u of rare strings.

Check that the action of τ is naturally represented as an upward translation except for
its action on E and E′ and on τN−1F and τN−1F ′ (where it acts differently and in a
way which, in general, is not simply representable graphically): in this representation
the measures µ and µ′ are represented by the Lebesgue measure on the several intervals
whose lengths, in every stack, add up to 1.

[3.4.12]:Q3.4.12 In the situation of problem [3.4.11] draw as segments the several elements of

the partition induced by Q ≡ PN on F (cf. Fig. (3.4.1)): (Q∩F )Q∈Q; and represent

as an interval also the set Fε = ∪F ∩C0...N−1
σ0...σN−1

where the union is over the choices

of (σ0, . . . , σN−1) in the collection C2,ε,u(N) introduced in [3.2.1]. Perform the same
construction over the stack relative to F ′. Check that µ(Fε) ≤ εµ(F ), µ′(F ′

ε) ≤ εµ′(F ′).

[3.4.13]:Q3.4.13 In the situation of problems [3.4.11] and [3.4.12] set F = F/Fε and

F
′
= F ′/F ′

ε: such sets are split into disjoint parts by the partitions F ∩C0...N−1
σ0...σN−1

and F
′ ∩C0...N−1

σ0...σN−1
with σ0, . . . , σN−1 ∈ C1,ε,u(N) and σ′0, . . . , σ

′
N−1 ∈ C′1,ε,u(N) (cf.

problems [3.4.12] and [3.2.1]). Fix also N ≫ u. We shall call “level” of the stack every

image τ j(F ∩C0...N−1
σ0...σN−1

), with 0 ≤ j ≤ N − 1 and σ0, . . . , σN−1 ∈ C1,ε,u(N). Likewise

we define the levels for the stack with base F
′
. See Fig. (3.4.2).

τN−1 F τN−1 F
′

levels levels

C
0...N−1

σ′
0
...σ′

N−1

Fig.(3.4.2)F3.4.2 Illustration of the stack levels of the construction of problem [3.4.13].

Remark that by the Shannon–McMillan theorem, if 2ε < s(µ′) − s(µ) (where ε is the
same as in proposition (3.2.1)) and N is large enough, the “columns of levels” with base
F ′ are much more numerous of those with base F (the number of columns is essentially
given by (3.2.4)).

Put arbitrarily into correspondence every column with base on F with a different column
with base on F ′ by assigning to the j–th level of a column with base on F the symbol σ′j
of the column with base on F ′ associated with it.

Collecting then the levels that, in this construction, come to have labels equal to

0, 1, . . . , n′ respectively, form a partition of ∪N−1
j=0 τ j F in n′ + 1 sets P̃ ′

0, . . . , P̃
′
n′ : imag-

ine extending such a partition to a partition P̃ ′ = {P̃ ′
0, . . . , P̃

′
n} of the whole space

Ω = {0, . . . , n}Z, arbitrarily.
Show that if F is the partition of {0, . . . , n}Z into F and {0, . . . , n}Z/F we get that

∨N−Nτ i(P̃ ′ ∨ F) contains a partition P̃ with n elements formed by unions of its atoms

and such that: d(P, P̃) < 2ε. (Hint: The partition ∨N−Nτ i(P̃ ′∨F) reduces on ∪N−1
i=0 τ i F

to the partition into levels and, therefore, we reconstruct from it, by means of operations

of unions of atoms, the partition P on ∪N−1
i=0 τ i F , etc.)

[3.4.14]:Q3.4.14 Show that the partition P̃ built via the procedure illustrated in problems
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[3.4.9] to [3.4.13], is such that

∑

σ′
0
...σ′

n−1

|µ′(C0 u−1
σ′
0
...σ′

n−1

)− µ(P 0...u−1
σ′
0
...σ′

n−1

)| −−−−−−−−→
N→∞,ε→0

0

|s(P̃ ′, τ)− s(P, τ)| −−−→ε→0 0

It is therefore possible to “represent a process with larger entropy into one of lower
entropy and within a prefixed approximation” without losing in entropy more than a
prefixed quantity beyond the obviously necessary loss (s(µ′, τ ′)−s(µ, τ)). (Hint: Use the
strengthened form of the Shannon–McMillan theorem in problems [3.2.1], [3.2.3] and the
fact that if N is very large the strings (short because the length u is fixed) σ′0, . . . , σ

′
u−1

appear with frequency almost equal to µ′(C0...u−1
σ′
0
...σ′

n−1

) in the sequences of C1,ε,u(N).)

[3.4.15]:Q3.4.15 (Copying a dynamical system into another)

Deduce from the results of problem [3.4.14] that, under the same hypotheses of [3.4.11]
but with s(µ′, τ) = s(µ, τ) = s, then, given a positive integer u and given ε > 0, it
is possible to “copy” the first dynamical system into the second in the sense that it is
possible to construct a partition P of {0, . . . , n′}Z so that

|s(P, τ)− s| < ε∑

σ0...σn−1∈{0,...,n}u
|µ(C0...u−1

σ0...σn−1
)− µ′(P 0...u−1

σ0...σu−1
)| < ε

(Hint: Find in {0, . . . , n′}Z a partition ˜̃P
′
such that s(˜̃P

′
, τ) = s− 2ε. Apply then again

the construction of the [3.4.11], [3.4.12], [3.4.13] replacing P ′ with
˜̃P

′
etc).

Bibliographical note §3.4
The generator theorem of Sinai is discussed here following Appendix 19,
p. 163, of [AA69]. The problems on Rohlin’s stack and its applications are
drawn from Ornstein’s theory of Bernoulli shifts isomorphisms, [Or74].
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CHAPTER IV

Markovian pavements

§4.1 Histories compatibility. Markovian pavements

In the previous sections the problem of studying the statistics of motions
of a dynamical system (Ω, S), as seen from a partition P , has been shown
to be equivalent to studying probability distributions on the space of the
sequences of symbols associated with a partition P (cf. proposition (2.3.2)).
Upon further thought it is, however, clear that the analysis presented so far
can be of little help in concrete problems. It is true that on {0, . . . , n}Z it is
possible to study vast classes of ergodic distributions, and such a study can
be also developed in a rather detailed and concrete way, but it is hard to give
criteria that select those probability distributions (or measures) m that are
relevant for the statistical study of motions of (Ω, S). Or, in other words, it is

hard to give criteria that guarantee that m(Ω̂) = 1, cf. proposition (2.3.2),
and allow us to identify the possible symbolic motions, i.e. to recognize
whether σ ∈ {0, . . . , n}Z is the (P , S)–history of some point x ∈ Ω.
In general the values σi(x), i ∈ Z, are linked by very intricate relations and
understanding them means a very detailed understanding of the motions
structure. On the other hand it is necessarily so: indeed the action of S
regarded as an action on the symbolic histories is trivial, being reduced to a
mere shift (i.e. to a translation). Complexity of a given dynamical system
must necessarily be hidden in the map, called code in Section §1.4, which
associates with every x ∈ Ω its (P , S)–history on P ; at least in the cases in
which P is generating, i.e. it is fine enough to provide a faithful description
of the motion.
The simplest compatibility condition between elements of σ ∈ {0, . . . , n}Z
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is, perhaps, what can be called a local condition of compatibility.

(4.1.1) Definition:D4.1.1 (Compatibility matrix)
A (n + 1) × (n + 1) matrix T with entries Tσσ′ equal to 0 or to 1 will be
called a compatibility matrix. Such a matrix will be called transitive if for
every pair σ, σ′ there is a suitable integer aσσ′ such that T

1+aσσ′
σσ′ > 0. It

will be called mixing if there is a ≥ 0 such that T 1+a
σσ′ > 0 for all σ, σ′ and a

is called the mixing time of T .
A sequence σ ∈ {0, . . . , n}Z will be called T –compatible or admissible if
and only if every pair of adjacent symbols that appear in σ is admissible,
i.e. Tσiσi+1 = 1 ∀i ∈ Z or, equivalently, if and only if

+∞∏

i=−∞
Tσiσi+1 = 1. (4.1.1)e4.1.1

We shall call {0, . . . , n}ZT ⊂ {0, . . . , n}Z the (closed and translation invari-
ant) subset of the sequences σ that verify (4.1.1).
The dynamical system ({0, . . . , n}Z, τ), with (τσ)i = σi+1, is often called a
translation or shift, and the dynamical system ({0, . . . , n}ZT , τ) is called a
subshift of finite type.

One could naively think that by suitably selecting P it should be possi-
ble to obtain that the (Ω, S)–histories are all and only those sequences of
{0, . . . , n}Z which verify (4.1.1) for some suitable T . It is however clear
that the “totally disconnected” topological structure of {0, . . . , n}Z can be
topologically incompatible with the structure of Ω that, very often, is a Rie-
mannian manifold. In such cases a code that transforms the dynamics into
a symbolic dynamics that is a subshift of finite type, even if existent, could
not fail to show some pathology (like points not well coded, discontinuities,
etc.), which in turn we must necessarily expect to produce, sooner or later,
difficulties in the theory.
Nevertheless the simplicity of the condition (4.1.1) is so captivating that it
is worth looking after systems that admit such a simple symbolic represen-
tations.

We shall therefore analyze topological dynamical systems (Ω, S) and we
shall try to isolate some further conditions on (Ω, S) that will allow us
to describe through simple symbolic dynamics large classes of probability
distributions (or measures) and, more precisely, classes of probability dis-
tributions like the following ones.

(4.1.2) Definition:D4.1.2 (Topological probability distributions, topological
pavements)
Given a compact topological space Ω we call topological probability distri-
butions the probability distributions µ ∈ M0(Ω) defined on a σ–algebra of
sets containing the Borel sets of Ω which satisfy the condition

µ(G) > 0 for all open sets G. (4.1.2)e4.1.2
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If (Ω, S) is a topological dynamical system we denote byMt(Ω, S) the topo-
logical probability distributions that are S–invariant.
We say that, Q = {Q1, . . . , Qq} is a pavement of Ω if it is a covering of Ω
by closed sets, which are the closures of their internal points and are such
that Qi ∩Qj = ∂Qi ∩ ∂Qj for all i 6= j.

The key notion that, as we shall see, allows us to use effectively symbolic
dynamics for the dynamical systems for which it has a meaning, is that of
Markovian pavement (also called Markovian partition; see remark (4) after
the following definition).

(4.1.3) Definition:D4.1.3 (Markovian pavements)
Let (Ω, S) be an invertible topological dynamical system. Given a pavement
Q = {Q1, . . . , Qq} of Ω set Tσσ′ = 1 if int(Qσ) ∩ int(S−1Qσ′) 6= ∅ and
Tσσ′ = 0 otherwise, σ, σ′ ∈ {1, . . . , q}, q ≥ 2. We shall say that Q is
Markovian if the following holds.
(i) The set

X (σ) =
+∞⋂

k=−∞
S−kQσk (4.1.3)e4.1.3

is not empty and consists of a single point X(σ) for all σ such that

+∞∏

i=−∞
Tσiσi+1 = 1. (4.1.4)e4.1.4

Furthermore, for such σ the sets ∩N−NS−kQσk contain internal points for
all N . We shall call the matrix T the compatibility matrix for Q, and the
space σ ∈ {1, . . . , q}ZT of the sequences σ satisfying (4.1.4) will be called the
space of the T –compatible sequences, or simply compatible sequences if no
confusion is possible.
(ii) The correspondence σ → X(σ) between {1, . . . , q}ZT and Ω is Hölder
continuous, i.e. there exist C, a > 0 such that

d(X(σ), X(σ′)) ≤ C d(σ, σ′)a, (4.1.5)e4.1.5

where we define the distance between σ and σ′ on {1, . . . , q}Z by

d(σ, σ′) = exp
(
− ν(σ, σ′)

)
, (4.1.6)

e4.1.6

where ν(σ, σ′) is the largest integer j such that σi = σ′
i for |i| ≤ j.

(iii) There exists an upper bound M < ∞ on the number of compatible
sequences mapped into a given point x, i.e. the inverse map X−1 verifies∣∣X−1(x)

∣∣ ≤M , for all x ∈ Ω. The number M will be called multiplicity of
the code.
(iv) Setting ∂i = ∂Qi, i = 1, . . . , q, and ∂ = ∪qi=1∂i there exist two closed
sets ∂+ and ∂− such that

∂ = ∂+ ∪ ∂−, S∂− ⊂ ∂−, S−1∂+ ⊂ ∂+, (4.1.7)e4.1.7

20/novembre/2011; 22:18



106 §4.1: Histories compatibility. Markovian pavements

i.e. the boundary ∂ can be decomposed into two parts, the first of which
(denoted ∂−) “contracts” under the action of S while the other (denoted
∂+) “expands”.

Remarks: (1) The continuity of σ → X(σ) insures that X is a Borel map
(i.e. the inverse images of the Borel sets are Borel sets).

(2) One has X(τσ) = SX(σ) so that S is coded into the symbolic dynamics.

(3) If x ∈ Ω \ ∪i∈ZS−i∂ the (Q, S)–history of x is naturally and un-
ambiguously defined and the correspondence between Ω \ ∪iS−i∂ and
X−1(Ω \ ∪iS−i∂) is one-to-one and maps, together with its inverse, Borel
sets into Borel sets (by Kuratowsky’s theorem, cf. footnote 1, Section §2.3).
(4) Although Q is not a partition of Ω it is convenient to adopt conventions
and notations similar to those used for partitions. We shall denote

QJσ = ∩
j∈J

S−jQσi , J ⊂ Z, σ ∈ {1, . . . , q}J , (4.1.8)e4.1.8

and a cylinder CJσ will be called T –compatible if CJσ ∩{1, . . . , q}ZT 6= ∅. Note,
however, that while the T –compatibility of CJσ implies QJσ 6= ∅ the vice
versa in general is not true, because a point might belong to the boundary
of several Q’s.

(5) In analogy to what happens in the case of partitions, sometimes it can
be convenient to consider also non-generating Markovian pavements: they
are defined exactly as in definition (4.1.3), by eliminating only the condition
that the set (4.1.3) consists of a single point. Then, if we want to stress the
difference with respect to the ones defined in definition (4.1.3), we can refer
to the latter as generating Markovian pavements (see problems [4.3.6] and
[4.3.7] for some examples).

(6) The set Ω \ ∪iS−i∂ = ∩i(Ω \ S−i∂) is an intersection of a countable
family of dense open sets, therefore it is not empty and, in fact, dense.1N4.1.1

Therefore T “cannot have too many zeroes”; see problem [4.1.3].

(7) It is easy to realize that every point of Ω is the image of some sequence
σ ∈ {1, . . . , q}ZT . If x ∈ Ω \ ∪iS−i∂ this is obvious. If x ∈ ∪iS−i∂ there
exists σ such that x ∈ Qσ; then we set σ0 = σ and there must exist σ′ such
that int (Qσ0) ∩ int(S−1Qσ′) 6= ∅, and Sx ∈ Qσ′ (because Qσ = int (Qσ)
and this property is also true for S±1Qσ, since S is a homeomorphism). We
shall set then σ1 = σ′ and, by construction, Tσ0σ1 = 1, etc.: in this way one
constructs a sequence σ ∈ {1, . . . , q}ZT such that x ∈ S−kQσk for all k ∈ Z.
Therefore x = X(σ).

(8) If µ ∈ M0(Ω) is a Borel probability measure on Ω such that µ(Sk∂) = 0,
for all k ∈ Z, it is clear that the partition of Ω\∪iS−i∂ generated by Q is S–
separating and in fact S–expansive, cf. (4.1.7), on Q∩ (Ω \∪iS−i∂). Hence
Q restricted to Ω \ ∪iS−i∂ is a generating partition for every topological
measure which is invariant and such that µ(∂) = 0.

1 This is a consequence of a general Baire’s theorem, see [DS58], p. 20.
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The following proposition is, essentially, a tautology because definition
(4.1.3) originated precisely by an effort to collect hypotheses sufficient to
make true the properties that it states.

(4.1.1) Proposition:P4.1.1 (Codings of topological dynamical systems into
symbolic ones via a Markovian pavement)
Let (Ω, S) be an invertible topological dynamical system which admits a
Markovian pavement Q = {Q1, . . . , Qq} with a compatibility matrix T .

(i) If the distribution m is in M0({1, . . . , q}ZT ) (i.e. m ∈ M0({1, . . . , q}Z)
and m({1, . . . , q}ZT ) = 1) the relation

Am(E) = m(X−1E) for all E ∈ B(Ω) (4.1.9)
e4.1.9

defines a probability measure Am ∈ M0(Ω). The map A transforms τ–
invariant measures in S–invariant measures, τ–ergodic measures in S–
ergodic measures, etc. Since Ω is compact A is continuous.
(ii) If m ∈Me({1, . . . , q}ZT ) is a topological measure, then Am ∈ Me(Ω, S)
and Am is a topological measure.
(iii) The correspondence A between ergodic topological measures on the space
of compatible sequences {1, . . . , q}ZT and on Ω is, imagining the measures to
be completed,2 a correspondence between measures isomorphic mod 0. TheN4.1.2

dynamical systems ({1, . . . , q}ZT , τ,m) and (Ω, S,Am) are, for such measures
m, isomorphic mod 0.

Remarks: (1) Because of property (iii) it is possible to “reduce” the anal-
ysis of the S–invariant ergodic topological measures on Ω to the analysis
of the analogous τ–ergodic topological measures on {1, . . . , q}ZT . Since the
latter, as we shall see, can sometimes be studied in detail, this possibility is
of great interest. For instance if T is mixing, i.e. there exists N > 0 such
that (TN)σσ′ > 0 for all σ, σ′, cf. definition (4.1.1), it is easy to see that
there exist S–ergodic topological measures and this is, by itself, already
a nontrivial fact: we shall come back to this point in more detail in the
forthcoming sections.
(2) The validity of proposition (4.1.1) rests mainly on the remark that, if
µ ∈ Me(Ω, S) is a topological ergodic measure, then µ(∂−) = 0. In fact
∂− ⊃ S∂− and, hence, µ(∂−) is 0 or 1 by ergodicity:3 however Ω \ ∂− isN4.1.3

open and hence µ(Ω \ ∂−) > 0 and µ(∂−) = 0. Likewise the ergodicity of
µ with respect to S−1 implies µ(∂+) = 0, hence µ(∂) = 0; by invariance it
follows then that µ(∪iS−i∂) = 0.

Proof: Continuity of the code X implies that the inverse image of a Borel
set E ∈ B(Ω) is again a Borel set, so that Am is well defined and one has
only to check that it is a measure: this is a general property because the

2 i.e. we imagine extending the σ–algebra of the measurable sets by adding the sets which
are not Borel sets but which are contained in zero measure Borel sets.

3 Since SE ⊂ E and µ(SE) = µ(E) the sets E and SE differ mod 0, i.e. E is invariant
mod 0 and therefore µ(E) = 0, 1.
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X−1–images of the elements of a countable family of pairwise disjoint sets
is a countable family of pairwise disjoint sets.
To prove (ii) note that if m is ergodic then also Am is ergodic. In fact if E
is an invariant set for S then X−1E = X−1SE = τX−1E, so if E has Am–
measure different from 0 or 1 also X−1E has the same m–measure. By the
remark (2) one has Am(∪iSi∂) = 0; this means that m(X−1(∪iSi∂)) = 0
and, hence, X (which is a one-to-one correspondence between Ω\∪iSi∂ and
{1, . . . , q}ZT \X−1(∪iSi∂)) is an isomorphism mod 0 between Am and m.
Furthermore if G is open in Ω and x ∈ G\∪iS−i∂ let σ(x) be a compatible
sequence coded into x. There must exist N such that ∩N−NS−iQσi(x) ⊂ G;
indeed by (4.1.5) the diameter of this set is infinitesimal as N →∞. But

X−1
(
∩N−N S−iQσi(x)

)
⊃ C−N ... N

σ−N (x)...σN (x),

and the measure of the latter cylinder is positive because it is T –compatible
and m is a topological measure: hence Am(G) > 0.
To prove (iii) note that from the ergodicity of µ ∈Me(Ω, S) and from the
preceding remark (2) it follows that µ(∪iS−i∂) = 0; then the measure m on
{1, . . . , q}ZT defined by

m(E) = µ(X(E \X−1(∪iS−i∂)) for all E ∈ B({1, . . . , q}ZT ) (4.1.10)e4.1.10

is isomorphic mod 0 to µ and Am = µ.
If the cylinder C−N...N

σ−N ...σN is T –compatible we have that

X(C−N...N
σ−N ...σN \X−1(∪iS−i∂)) =

= ∩N−NS−iQσi \ ∪iS−i∂ = ∩N−NS−iQσi mod 0,
(4.1.11)e4.1.11

and, therefore, m(C−N...N
σN ...σN ) > 0 because µ is a topological measure and, by

(i), int
(
∩N−NS−iQσi

)
6= ∅. Combining this with property (ii) property (iii)

follows.

Remarks: (1) In fact the above arguments also prove that A establishes a
one-to-one correspondence between measures µ on Ω such that µ(∪iSi∂) = 0
and measures m on {1, . . . , q}ZT such that m(X−1(∪iS−i∂)) = 0; further-
more corresponding measures are isomorphic mod 0.
(2) The preceding proposition would remain valid if the condition (4.1.5), in
the definition of Markovian pavement, was modified into “d(X(σ), X(σ′))→
0 if d(σ, σ′)→ 0”. We chose to state the result in a less general form because,
as we shall see, Hölder continuity is a very natural regularity property of
codes X and it will play an essential role in various applications.

Problems for §4.1 (On Perron–Frobenius’ theorem and on the structure
of Markovian chains)

[4.1.1]:Q4.1.1 Consider the dynamical system ({0, . . . , n}Z, τ) and show that the pavement

Q = {Q0, . . . , Qn} of {0, . . . , n}Z with Qσ = {σ′ | σ′
0 = σ} is Markovian. (Hint: In this

case ∂ is empty.)
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[4.1.2]:Q4.1.2 Find examples of dynamical systems with Markovian pavements and matrices

of compatibility with some zero entry. (Hint: The space of sequences of 0, 1’s with

T =

(
0 1
1 1

)
.)

[4.1.3]:Q4.1.3 Check that the matrix

(
0 0
1 0

)
cannot be a compatibility matrix for a Marko-

vian pavement. (Hint: No point would have a compatible symbolic history).

[4.1.4]:Q4.1.4 (Compatibility graphs)

Let σ, σ′ = 0, 1, . . . , n and let Tσσ′ ≥ 0 be a matrix. Let GT be the graph obtained by
connecting all pairs σ, σ′ verifying Tσ,σ′ > 0 by an arrow pointing from σ to σ′: we say

that σ′ follows σ. A symbol σ can follow itself (i.e. Tσσ > 0) or it can follow and be
followed by a symbol σ′ (i.e. Tσσ′ > 0 and Tσ′σ > 0). Two labels σ, σ′ will be called
equivalent if there is a closed loop of coherently oriented arrows in GT that start at σ
and return, proceeding always in the direction of the arrows, to σ after passing through
σ′. Show that the set of labels can be divided into the set I0 = I of labels that are
inequivalent to any other label, that we call inessential labels, and into sets I1, . . . , Ia
(called “classes”) such that each Ij contains labels equivalent to any of the other labels
in the same Ij but inequivalent to any label in Ik if k 6= j. (Hint: Try to draw some
special cases first, like the ones corresponding to the matrices

T1 =

(
0 1 1
0 0 1
0 1 0

)
, T2 =

(
0 1 0
0 0 1
1 1 0

)
, T3 =

(
0 1 0
0 0 1
1 0 0

)
, T4 =




0 1 0 0
0 0 1 0
0 0 0 1
1 0 1 0


 ,

and illustrated in Fig. (4.1.1).)

(1)

(2)

(3)

(4)

1

2

3

1

2

3

1

2

4

3

1

2

3

Fig.(4.1.1)F4.1.1 The graphs GT corresponding to the three matrices T = T1, T2, T3, T4 of
problem [4.1.4].

[4.1.5]:Q4.1.5 In the context of problem [4.1.4] call a semi-infinite sequence σ ∈ {0, . . . , n}Z+

compatible if Tσiσi+1 > 0 for all i ≥ 0. Likewise call an infinite sequence σ ∈ {0, . . . , n}Z
compatible if Tσiσi+1 > 0 for all i ∈ Z. The spaces of compatible sequences will be denoted

{0, . . . , n}Z+

T
or {0, . . . , n}ZT : they are subshifts of finite type in the sense introduced in

this section (see definition (4.1.1). Show that any semi-infinite or infinite compatible
sequence contains at most a finite number of inessential labels. Show also that a semi-
infinite compatible sequence consists eventually only of labels σi ∈ Ik+ for some k+.

Likewise an infinite compatible sequence consists, to the right of 0, eventually of labels in
some Ik+ and, to the left of 0, eventually of labels in some Ik− , for some k+, k−. However
if k+ = k− = k then σi ∈ Ik for all i. Furthermore no infinite compatible sequence with
k− = k+ contains inessential labels.

[4.1.6]:Q4.1.6 In the context of problems [4.1.4], [4.1.5] let {0, . . . , n}ZT be the space of the

compatible sequences. Show that if E is a translation invariant Borel set in {0, . . . , n}ZT
and µ is an ergodic measure such that µ(E) = 1 then µ–almost all elements σ ∈ E have
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symbols σi in a single Ij . (Hint: By problem [4.1.5] all compatible sequences σ are such

that the frequency ℓ+j (σ) of appearance of symbols in Ij in the “future part σ0, σ1, . . .

of σ” is well defined and it is either 0 or 1. By ergodicity almost all sequences must

have the same value of ℓ+j (σ), so that there will be a single j0 such that ℓ+j0
(σ) = 1

while for all j 6= j0 one will have ℓ+j (σ) = 0. But the frequency in the future is equal to

the frequency in the past (i.e. in the “past part . . . , σ−1, σ0 of σ”, see problem [2.2.46]),

therefore one has ℓ−j (σ) ≡ ℓ+j (σ) µ–almost everywhere: hence the “typical” sequences

will have symbols that eventually in the past and the future all lie in Ij0 : in the language
of problem [4.1.5] one has k− = k+ = j0, hence σi ∈ Ij0 for all i.)

[4.1.7]:Q4.1.7 (Classes and periods of a compatibility matrix)

If σ ∈ Ij set d(σ) = greatest common divisor of the integers nσ > 0 such that (Tnσ )σσ >
0. Show that d(σ) is constant for σ ∈ Ij . This allows us to define dj for the class Ij
as dj = {d(σ) : σ ∈ Ij}; we shall say, for reasons that will be clarified later, that dj is
the period of the class Ij . (Hint: If s, m, n are such that T sσσ > 0, Tm

σσ′ > 0, Tn
σ′σ

> 0,

one has Tn+m+ks
σ′σ′ ≥ Tm

σ′σ
T ksσσT

n
σσ′ > 0, so that d(σ′) divides n+m+ ks for all k, hence

it divides s. This implies d(σ′) ≤ d(σ); by changing the roles of σ and σ′ one finds
d(σ) = d(σ′).)

[4.1.8]:Q4.1.8 (Transitivity and mixing of compatibility matrices)
In the context of the previous problems suppose that the matrix T is such that all labels
σ are equivalent (i.e. there are no inessential labels and all the labels form a single class
I1). Show that if the period is d = 1 then there is p such that T p

σσ′ > 0 for all σ, σ′. If
the period is d ≥ 2 then the set I1 can be divided into d disjoint subsets I1,1, . . . , I1,d,
with I1,d+1 ≡ I1,1, such that Tσσ′ > 0 only if σ ∈ I1,i and σ′ ∈ I1,i+1 for some

i. Furthermore if p > 0 is large enough T pd
σσ′ > 0 for all σ, σ′ ∈ I1,i for some i and 0

otherwise, i.e. the block of the matrix T d corresponding to the labels σ, σ′ ∈ I1,i ismixing.

(Hint: Let nσσ′ > 0 be such that T
nσσ′

σσ′ > 0. Suppose first that there is an element σ0

such that Tσ0σ0 > 0, hence nσ0σ0 = 1 and d1 = 1. Then we take p =
∑

σσ′ nσσ′ ,

n = p−nσσ0−nσ0σ′ and we see that T p
σσ′ ≥ T

nσσ0
σσ0 T nσ0σ0T

nσ0σ′

σ0σ′ > 0. Consider next the

case in which d = 1 and σ = 0, 1, and let n00, n11 be relatively prime integers such that
Tn00
00 > 0, Tn11

11 > 0. Then any integer k large enough can be simultaneously written in
the following forms

k = mn00 + n01 +m′n11,

k = m̃′n11 + n10 + m̃n00,

k = m̂n00 + n01 + m̂′n11 + n10,

k = m̂′n11 + n10 + m̂n00 + n01,

for suitably chosen integers m,m′, m̃, . . . because if k is large also k −
∑

nσσ′ is large.

Therefore we can write T k = (Tn00 )mTn01 (Tn11 )m
′
, using the first expression and, in

this way, we realize that T k01 > 0, etc. This clearly implies that T k
σσ′ > 0 for all pairs

σ, σ′ and for all k large enough. Analogously one discusses the case d = 1 with n > 1.
The general case, d ≥ 2 and n ≥ 1, is similar.)

[4.1.9]:Q4.1.9 Particularize the results of problem [4.1.7] to the case of the matrices of problem

[4.1.4].

[4.1.10]:Q4.1.10 (Iterates of a compatibility matrix)

Check that the result of the previous problems means that the space Ω̃ = {0, . . . , n}ZT of
compatible infinite sequences can be divided into d disjoint spaces Ω1,Ω2, . . . ,Ωd, and the
shift maps Ωj onto Ωj+1, with Ωd+1 ≡ Ω1. (Hint: Note that, by the previous problems,
d will turn out to be the period of the class I1.)

[4.1.11]:Q4.1.11 (Spectral decomposition of subshifts)
Under the hypotheses of the previous problems and assuming that all labels are essential

and belong to the same class I1 show that the space Ω̃ = {0, . . . , n}ZT can be split as
a union of d disjoint closed sets Ω1, . . . ,Ωd, and the shift τ maps Ωi into Ωi+1, with
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Ωd+1 ≡ Ω1, so that τd maps Ωi into itself for each i, and given any pair F,G of relatively

open sets in Ωi there is a large enough q > p such that τq
′ dF ∩G 6= ∅ for all q′ > q.

A matrix T with only essential labels and only one class of them is called transitive
matrix. (Hint: One has to note, see problem [4.1.5], that a sequence is in Ωi if and only
if σ0 ∈ I1,i; furthermore any open set can be obtained as a union of cylinders with a

long enough finite base. The fact that T dp
σσ′ > 0 if σ, σ′ ∈ I1,i means that fixed i we can

obtain compatible sequences which have at sites multiple of dp arbitrary labels in Ωi.)

[4.1.12]:Q4.1.12 (Perron-Frobenius theorem for transitive matrices)

Under the hypotheses of problems [4.1.11] show that there exist d eigenvectors of the

matrix T d, to be denoted e(0), e(1), . . . , e(d−1), with zero components except those in
correspondence of the labels of I1,1, . . . , I1,d, respectively, relative to the matrix T d. The

components of e(i) with labels in I1,i are strictly positive. (Hint: Use that T d is a block
matrix which acts in a mixing way in every block, cf. problem [4.1.8], and apply Perron–
Frobenius’ theorem in its elementary form discussed in problems [2.3.7]÷[2.3.12]).

[4.1.13]:Q4.1.13 In the context of problem [4.1.12] show that Te(i) = λe(i+1), for all i =

0, 1, . . . , d−1, if we set e(d) = e(0), and if the eigenvectors are suitably rescaled and λ > 0
is suitably chosen. (Hint: Note that T transforms a vector with nonzero components on
the group of labels I1,i into one with components nonzero on the successive group I1,i+1,
etc.)

[4.1.14]:Q4.1.14 Deduce from problem [4.1.13] that the eigenvalue of T d relative to e(i) is

λd > 0, independently from i.

[4.1.15]:Q4.1.15 Always in the context of problem [4.1.12], let e be an eigenvector for T with

eigenvalue µeiϕ, µ > 0. Setting ê
(i)
j = 0 if j /∈ I1,i, and ê

(i)
j = ej if j ∈ I1,i, one has

T dê(i) = (µeiϕ)d ê(i). If the eigenvalue µeiϕ is, among those of T , one with the largest

absolute value, show that ê(i) is proportional to e(i) and, furthermore, (eiϕ)d = 1, µ = λ.

[4.1.16]:Q4.1.16 By making use of the result of problem [4.1.15] show that if the eigen-
value corresponding to e is one with largest absolute value, then it has the form

e =
∑d−1

j=0
e−

2πi
d
pje(j) and this corresponds to the eigenvalue λe

2πi
d
p.

[4.1.17]:Q4.1.17 (Perron–Frobenius theorem for general matrices)

Deduce from problems [4.1.10]÷[4.1.16] that if T is a matrix with non-negative entries the
eigenvalues of largest absolute value of T are arranged proportionally to the d–th roots
of unity on a circle of radius λ ≥ 0. The number d varies, if λ > 0, in a subset of the set
of the periods of the blocks of equivalent labels. In fact, more generally, to each of these
blocks I of period dI correspond dI eigenvectors of the type λIe

2πip/dI , p = 0, . . . , dI−1,
with simple multiplicity: between them one finds those of largest absolute value (that
are precisely those that maximize λI).

[4.1.18]:Q4.1.18 (Errant and non wandering points)

If (Ω, S) is a topological dynamical system we say that a point x ∈ Ω is errant or
wandering if one of its neighborhoods U is such that eventually no point initially in U
evolves into point again in U , i.e. if there exists an open U ∋ x and an integer NU such
that SnU ∩U = ∅, for all n ≥ NU . Interpret the results of the previous problems [4.1.4]
and [4.1.5] as the statement that the set of the nonwandering points of {1, . . . , q}ZT is

(I1)ZT ∪ . . . ∪ (Ia)ZT , where the subscript T means that one considers only compatible
sequences.

[4.1.19]:Q4.1.19 (Topological transitivity and mixing)

If (Ω, S) is a topological dynamical system with Ω compact we say that (Ω, S) is topo-
logically transitive if there exists x ∈ Ω such that the set ∪n≥0{Snx} is dense in Ω;

we say that (Ω, S) is topologically mixing if given F , G open there exists N0 such that
F ∩ SNG 6= ∅ ∀N ≥ N0. Show that if (Ω, S) is topologically transitive or mixing and
if it admits a Markovian pavement with compatibility matrix T , then T is transitive or,
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respectively, mixing.4N4.1.4

[4.1.20]:Q4.1.20 (Smale spectral theorem)

Let (Ω, S) be a topological invertible dynamical system endowed with a Markovian pave-
ment Q = {Q1, . . . , Qq}. Show that the set Ωnw of the nonwandering points of Ω, apart
from a set of zero measure for all the ergodic topological measures on Ω, is representable
as

Ωnw =

a⋃

i=1

di⋃

j=1

Ωi,j ,

where Ωi,j are closed sets such that SΩi,j = Ωi,j+1, with Ωi,di+1 = Ωi,1, and Sdi is
topologically mixing on Ωi,j . (Hint: Use the results of problem [4.1.19] and set Ωi,j =

X(Ω̃i,j); see problem [4.1.19] for the notion of topological mixing).

[4.1.21]:Q4.1.21 Find the decomposition into equivalence classes of communicating labels of
the matrices that follow, compute the periods and determine the subclasses Ωi,j for every
indecomposable block:

T3 =




0 1 1 0 0
0 0 0 1 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0


 , T2 =




1 0 0 0 1
0 0 1 0 0
0 0 0 1 0
0 1 0 0 0
0 0 0 0 1


 , T1 =

(
1 1
0 1

)
.

Bibliographical note to §4.1
The abstract notion of Markovian pavement, given here, is inspired by
the some of its concrete applications. Other directions in which one can
think for an abstract interpretation of the results that lead to the notion of
Markovian pavement are possible. See for instance, [Ca76].
The idea of using Markovian pavements to study certain classes of topo-
logical measures goes back to the work of Adler and Weiss, [AW68] and
to the works of Sinai, [Si68a], [Si68b], with important extensions in [Si72],
who proposed a very original method to treat the existence problem and
the analysis of the ergodic properties of invariant topological measures as-
sociated with a hyperbolic system.

§4.2 Markovian pavements for hyperbolic systems

An interesting class of dynamical systems for which it is possible to con-
struct Markovian pavements Q consisting of sets of arbitrarily small diame-
ter is the class of the smooth hyperbolic systems, also called Anosov systems.
The prototype of such systems is among those discussed in Section §1.2:
it is the dynamical system (Ω, S), where Ω = T

2
= bidimensional torus

regarded as a Riemannian manifold with the flat metric ds2 = dϕ2
1 + dϕ2

2

and

S

(
ϕ1

ϕ2

)
=

(
1 1
1 2

)(
ϕ1

ϕ2

)
mod 2π. (4.2.1)e4.2.1

4 See definition (4.1.1).
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This system is hyperbolic in the sense that for every point ϕ ∈ Ω there
exist two manifolds Wu(ϕ) and W s(ϕ) which enjoy the properties that we
now list.
W s(ϕ) is the straight line directed as the eigenvector v1 relative to the

eigenvalue λ < 1 of the matrix

(
1 1
1 2

)
while Wu(ϕ) is the straight line

directed as the eigenvector v2 relative to the eigenvalue λ−1 > 1 of the same
matrix:

v1 =

(
1

λ− 1

)
, v2 =

(
1

λ−1 − 1

)
, λ = (3 −

√
5)/2, (4.2.2)e4.2.2

and, since their slope is irrational, the two straight lines fill densely Ω.
Furthermore the lines W a(ϕ) are covariant, i.e. SW a(ϕ) = W a(Sϕ) for

a = u, s, and any two points ψ and ψ′ onW s(ϕ) become close at exponential
rate under the action of S, while any two points onWu(ϕ) become separated
with exponential rate, i.e. , for all n > 0,

d(Snψ, Snψ′) ≤ λnd(ψ, ψ′) for all ψ, ψ′ ∈ W s(ϕ),

d(S−nψ, S−nψ′) ≤ λnd(ψ, ψ′) for all ψ, ψ′ ∈ Wu(ϕ),
(4.2.3)e4.2.3

where d is the distance measured along W s(ϕ) or Wu(ϕ) respectively (and

it coincides with the geodesic distance if ψ, ψ′ are close enough).
From Fig. (4.2.1) it is also clear that, if Wu

γ (ϕ) and W s
γ (ϕ) denote the

connected parts ofWu(ϕ) andW s(ϕ) containing ϕ and contained in a circle

of small enough radius γ,1 then there exists ε > 0 such that if d(ϕ, ϕ′) < ε
N4.2.1

it follows that [ϕ′, ϕ]
def
= Wu

γ (ϕ
′) ∩W s

γ (ϕ) consists of a unique point.2
N4.2.2

Furthermore if ε is small enough d(ϕ, ϕ′) < ε implies that [ϕ′, ϕ] depends
continuously on ϕ, ϕ′.

ϕ
ϕ′

Wu
γ (ϕ

′)

[ϕ, ϕ′]

W s
γ (ϕ)

Fig.(4.2.1)F4.2.1 Representation of the operation that associates [ϕ′, ϕ] with the two points

ϕ and ϕ′ as the intersection of a short connected part Wu
γ (ϕ

′) of the unstable manifold

of ϕ′ and of a short connected part W s
γ (ϕ) of the stable manifold of ϕ. The size γ is

short “enough”, compared to the diameter of Ω, and it is represented by the segments to
the right and left of ϕ and ϕ′.

1 The circle is defined in terms of the geodesic distance.
2 Why is it necessary to require smallness of γ to have, say, uniqueness here?
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The manifolds (straight lines, in this case) Wu(ϕ) and W s(ϕ) are called,
respectively, the unstable manifold and the stable manifold of the point ϕ.
Such manifolds are covariant with respect to the action of W , i.e.

SW s(ϕ) =W s(Sϕ), S−1Wu(ϕ) =Wu(S−1ϕ). (4.2.4)e4.2.4

It is natural to call “hyperbolic” the map S: in every point the action
of S is strongly unstable analogously to what happens near the unstable
equilibrium points called in stability theory “hyperbolic”.
The example just discussed is very special and simple because of the local
linearity of the map S. However the above described situation is sufficiently
simple to admit natural generalizations to the case of more complex maps.

(4.2.1) Definition:D4.2.1 (Smooth hyperbolic system or Anosov system)
Let (Ω, S) be a dynamical system on a compact connected Riemannian man-
ifold Ω of class C∞ with S a diffeomorphism of class C∞.3 Suppose thatN4.2.3

the system is topologically transitive, i.e. there is a dense orbit.4 SupposeN4.2.4

furthermore that there exists a smooth Riemannian metric d (possibly dif-
ferent from the one given on Ω, yet equivalent to it) such that measuring
lengths with d the following properties hold.
(i) (Splitting property) There exist two manifolds W̃u(x) and W̃ s(x), that we
shall suppose of class Ck, with k > 2, and with tangent plane at x depending
on x with Hölder regularity. Furthermore the manifolds W̃u(x) and W̃ s(x)
are transversal in x and have complementary positive dimensions.5N4.2.5

(ii) (Covariance property) Calling Σγ(x) the sphere of radius γ centered at

x and setting Wu
γ (x) = {connected part of W̃u(x) ∩ Σγ(x) containing x}

and W s
γ (x) = {connected part of W̃ s(x) ∩Σγ(x) containing x}, there exists

γ > 0 such that

SW s
γ (x) ⊂W s

γ (Sx), S−1Wu
γ (x) ⊂Wu

γ (S
−1x). (4.2.5)e4.2.5

(iii) (Hyperbolicity property) There exists λ < 1 such that, for all n ≥ 0,

d(Sny, Snz) ≤ λnd(y, z) for all y, z ∈W s
γ (x),

d(S−ny, S−nz) ≤ λnd(y, z) for all y, z ∈Wu
γ (x).

(4.2.6)e4.2.6

(iv) There exists ε > 0, ε < γ such that, if x, y ∈ Ω and d(x, y) < ε,
the set Wu

γ (x) ∩W s
γ (y) consists in just a single point [x, y] which depends

continuously on x and y.
In the above circumstances we say that (Ω, S) is a smooth hyperbolic system
or an Anosov system and that the Riemannian metric d is adapted to the
map S.

3 One often requires just class C2.
4 Or, equivalently, for all nonempty open U, V ⊂ Ω one has U ∩ SnV 6= ∅ for some n.
5 The Hölder continuous dependence on x means there is δ > 0 such that in each chart of

an atlas for Ω we can find a base of vectors in the plane V αx tangent to W̃ a(x), a = u, s,
whose corresponding components ξx verify |ξx − ξy| < Cd(x, y)α if d(x, y) < δ.
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The latter definition is formulated so that it will turn out to be useful
for the applications but it contains several elements of redundancy and it
involves conditions and assumptions that appear rather difficult to verify:
the following proposition could be used to replace definition (4.2.1) with a
“purer” one. One can show that the following holds.

(4.2.1) Proposition:P4.2.1 (Anosov)
Let (Ω, S) be a dynamical system on a compact connected C∞ Riemannian
manifold Ω and let S be a C∞ diffeomorphism. Suppose the following prop-
erty for the linearization6 of Sn hold at the every point x ∈ Ω.N4.2.6

(i) (Splitting) It is possible to decompose (or “split”) the tangent space Vx
at x ∈ Ω into two complementary (non-zero) spaces:

Vx = V sx ⊕ V ux , (4.2.7)e4.2.7

such that dSnV sx = V sSnx and dS−nV ux = V uS−nx (covariance), and V sx and
V ux depend with continuity on x (continuity).
(ii) (Hyperbolicity) There exist C > 0 and λ < 1 for which, for all n ≥ 0,

‖(dSn)v‖VSnx ≤ Cλn‖v‖Vx for all v ∈ V sx ,
‖(dS−n)v‖VS−nx

≤ Cλn‖v‖Vx for all v ∈ V ux ,
(4.2.8)e4.2.8

where the subscripts to the modulus signs indicate that the lengths are mea-
sured in the metric used for the tangent vectors at the appropriate points.
(iii) (Transitivity) There is a point with a dense orbit.
Then (Ω, S) is a smooth hyperbolic system. The decomposition of the tan-
gent space into the two spaces V sx , V

u
x is called the hyperbolic splitting.

Remarks: (1) Vice versa, if (Ω, S) is hyperbolic in the sense of the defini-
tion (4.2.1) then it verifies the hypothesis of proposition (4.2.1) and therefore
proposition (4.2.1) can be considered as a differential definition of hyper-
bolicity. Sometimes one defines a hyperbolic dynamical system as a system
that verifies the hypothesis of proposition (4.2.1), possibly replacing the
regularity requirement in class C∞ by that of regularity in class C2.
(2) Definition (4.2.1) brings directly into light the properties which are useful
for proving existence of Markovian pavements and it is better suited for
further generalizations.
(3) Therefore one can take as definition either the statements of definition
(4.2.1) or of proposition (4.2.1). However an even weaker and more satis-
factory definition, implying all the above statements, can be given. It is
discussed in problem [4.2.1] below.
(4) One could define Anosov systems without requiring the existence of a
dense trajectory. It is not known whether a system verifying the properties
(i) and (ii) of definition (4.2.1) is necessarily transitive.

6 Usually denoted dSn and thought of as an operator between the tangent space Vx at x
and the tangent space VSnx at Snx.
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(5) A proof of a stronger result is presented in the problems at the end of
the section.

(4.2.2) Proposition:P4.2.2 (Anosov)
Given any 0 < α < 1 and under the assumptions of proposition (4.2.1) the
fields of spaces V sx , V

u
x are Hölder continuous in x with exponent α.

Remarks: (1) See footnote 5 for a definition of Hölder continuity of a field
of spaces.
(2) This theorem is particularly important because in a sense it is optimal:
there exist analytically smooth Anosov maps whose stable and unstable
spaces split the tangent plane in a nonsmooth way (still Hölder continuous,
of course). For the proof see problem [4.2.8].

The construction of Markovian pavements for hyperbolic systems is based
on the notion of S–rectangle or hyperbolic rectangle.

(4.2.2) Definition:D4.2.2 (S–rectangle)
Using the notations of definition (4.2.1) a set R ⊂ Ω is an S–rectangle for
the hyperbolic system S, cf. definition (4.2.1), if

(a) R = int(R), (b) diam(R) < ε, (c) x, y ∈ R⇒ [x, y] ∈ R,

with ε small enough, so that property (iv) in definition (4.2.1) (where the
operation [·, ·] is defined) holds.

In the example at the beginning of this section simple S–rectangles are
(small) parallelograms with sides parallel to the eigenvectors v1 and v2 of

the matrix

(
1 1
1 2

)
.

Fig.(4.2.2)F4.2.2 Two examples of S–rectangles, shaded in the figure, for the map of the

torus T
2 generated by the matrix

(
1 1
1 2

)
. In the second case the rectangle is not a

connected set and is obtained by letting x run on the disconnected intervals marked on

one of the sides of the previous rectangle and y run over a neighbouring side and forming

[x, y] defined in definition (4.2.1), (iv), and illustrated in Fig.(4.2.1).

However a more general S–rectangle is, in this case, a union of such paral-
lelograms constructed by assigning a point ϕ and drawing from it W s(ϕ)
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and Wu(ϕ) and, on them, a finite number of closed disconnected intervals
and, then, performing the construction in Fig. (4.2.2).

Hence an S–rectangle can be disconnected (nevertheless, in this section,
only connected S–rectangles will be considered).

(4.2.3) Proposition:P4.2.3 (Existence of Markovian pavements)
If (Ω, S) is an Anosov system and δ > 0, there exists a Markovian pavement
Q = {Q1, . . . , Qq} of Ω consisting of S–rectangles of diameter less than δ.

Remarks: (1) In the general case the proof that follows becomes somewhat
involved because one cannot rely on simple drawings; however with some
imagination the two-dimensional analysis carries over essentially unchanged
to the higher dimensional cases. Therefore we restrict ourselves, here, to
the two–dimensional case, but we do not make use of several simplifications
that would make the analysis not immediately extendible to the general case.
See problem [4.3.10] for a simpler construction in the two-dimensional case.
Our present analysis therefore follows quite closely the work of Bowen, see
[Bo75] p.78–83, in which existence of a Markovian pavement for much more
general dynamical systems is derived (cf. definition (4.2.3) and proposition
(4.2.5) at the end of this section).
(2) For a first reading it may be useful to follow the arguments by imagining
that we are dealing with the very special case of Arnold’s cat map, i.e. of

the diffeomorphism of T2 generated by the matrix

(
1 1
1 2

)
. In this case a

simpler proof could be devised but, again, it would not be simply extendible
to the higher dimensional cases.

(3) Most of what follows is devoted to illustrate a few very simple geometri-
cal constructions. The wording may look intricate but the actual construc-
tions are very simple and easily automatized for use on a digital computer.
Therefore drawing what is described in words make the various statements
easily intelligible.

Proof: (case d = 2).

(A) Geometric description of a generic rectangle.
If A is an S–rectangle and x ∈ int(A), set C =Wu

γ (x)∩A, D =W s
γ (x)∩A;

hence we have

A = [C,D] = ∪
y∈C, z∈D

[y, z] (4.2.9)
e4.2.9

and we call x the center of A with respect to the cross, or pair of axes, C
and D (note that any point of A is a center with respect to suitable pair of
axes). This is illustrated in Fig.(4.2.3). We shall say that C is an unstable
axis and D a stable one; if C,D and C′, D′ are two pairs of axes for the
same rectangle we say that C and C′, or D and D′, are “parallel”; one has
either C ≡ C′ or C ∩C′ = ∅.
The boundary of A is composed by four connected sides ∂sβA, β = 1, 2, ∂uβA,
β = 1, 2; the first two are parallel to the stable axis C and the other two
to the unstable axis D, and they can be defined in terms of the boundaries
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C

D

x

Wu
γ (x)

W s
γ (x)

A

Fig.(4.2.3)F4.2.3 A rectangle A with a pair of axes C,D crossing at the corresponding

center x.

∂C and ∂D of C and D considered as subsets of the unstable and stable
lines that contain them. Each such boundary consists of two points ∂1C
and ∂2C or ∂1D and ∂2D, see Fig. (4.2.4).

x

∂1D
∂s1A

∂1C

∂2D

∂u2A
∂s2A

∂2C

∂u1A

Fig.(4.2.4)F4.2.4 The stable and unstable boundaries of a rectangle A and the two pairs

of points ∂1C, ∂2C and ∂1D, ∂2D that generate them.

We define the stable and unstable parts of the boundary as

∂sβA = [D, ∂βC], ∂uβA = [∂βD,C], β = 1, 2. (4.2.10)e4.2.10

We shall prove the existence of a pavement Q of Ω with S–rectangles of
diameter < 2α, where α = δ/2 is half the preassigned δ, such that for all
β = 1, 2 and for all Q ∈ Q one has

S∂sβQ ⊂ ∂sβ′Q′, S−1∂uβQ ⊂ ∂uβ′′Q′′, (4.2.11)e4.2.11

where β′, β′′, Q′, Q′′ depend on β and Q.
It is important to realize immediately that a pavement Q built with S–
rectangles verifying (4.2.11) is Markovian. In fact equation (4.2.11) obvi-
ously implies (setting ∂sQ = ∂s1Q ∪ ∂s2Q and ∂uQ = ∂u1Q ∪ ∂u2Q)

S ( ∪
Q∈Q

∂sQ) ⊂ ∪
Q∈Q

∂sQ, S−1( ∪
Q∈Q

∂uQ) ⊂ ∪
Q∈Q

∂uQ, (4.2.12)e4.2.12
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and it is also implied by (4.2.12).7N4.2.7

(B) An equivalent problem.
It is convenient to suppose that the map S has very large expansion and
contraction rates. This is not a loss of generality because the problem can
be further reduced to showing existence of a pavement B of Ω consisting of
S–rectangles of diameter < α and such that for some m > 0

Sm ∪
B∈B

∂sB ⊂ ∪
B∈B

∂sB , S−m ∪
B∈B

∂uB ⊂ ∪
B∈B

∂uB. (4.2.13)e4.2.13

Given such a pavement B, a pavement Q satisfying the previous property
(4.2.12) can be constructed as follows. We consider, if m > 1, the pavement
Q whose elements are the S–rectangles Q having the form

Q =
m−1∩
k=0

SkBk, (4.2.14)e4.2.14

with B1, . . . , Bm−1 ∈ B. Here we use the fact that the intersection between
two small S–rectangles is still an S–rectangle; it is easy to check that such
S–rectangles are a pavement of Ω verifying (4.2.12).
The proof of the existence of B, which is what remains to do, is in fact a
description of a nice explicit construction of B.
(C) Construction of a covering by rectangles.
We begin by considering a covering A0 = {A0

1, . . . , A
0
r} of Ω by means

of connected S–rectangles whose internal points cover Ω; this is possible
because Ω is a compact connected Riemannian manifold. Furthermore we
suppose that such S–rectangles have small diameter α < min{δ/2, γ/2},
where δ is the length prefixed in the statement of the proposition and γ
is the size of the local portions of stable and unstable manifolds (whose
existence is part of the definition of Anosov system).
We imagine that the rectangles A0

j are constructed, as discussed in item

(A) above, as products of two axes C0
j and D0

j through a center point xj :

A0
j = [C0

j , D
0
j ]. (4.2.15)e4.2.15

(D) Lebesgue length of the covering.
A key role will be plaid by a certain length a > 0 that is a natural extension
of the notion of Lebesgue length associated with a covering of a compact
space by finitely many open sets. A Lebesgue length of a covering is defined
as a length a such that every point x is “well inside” some element of the

7 One checks directly the properties of definition (4.1.3), after having visualized (with
the help of a drawing) the geometric meaning of (4.2.11). Use that the two relations
in (4.2.12) must be simultaneously valid and that S is a map that transforms points
relatively internal to ∂sβC into points relatively internal to S∂sβC: assuming that (4.2.11)

does not follow from (4.2.12) attempt to represent the situation by a drawing in order
to see the arising absurdity.
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covering in the sense that the entire sphere of radius a around any point x
is contained in the interior of some element of the covering.
The extension that we need here is that out of a covering by S–rectangles
like A0 we can always find for each x an element AF (x) ∈ A0, with a suitable
label F (x), whose boundary parallel to the s–direction stays at a distance
> a from W s

γ (x) ∩ AF (x), i.e. from the stable axis of AF (x) through x;
and another one AF ′(x) ∈ A0, with a suitable label F ′(x), whose boundary
parallel to the u–direction stays at a distance > a from Wu

γ (x) ∩ AF ′(x),
i.e. from the unstable axis of AF ′(x) through x; actually we can even suppose
that F (x) = F ′(x). To be precise we should require that, for every y ∈
W s
x ∩ A0

F (x), the distance between y and the intersection of W s
γ (y) with

∂uA0
F (x) is greater than a if it is measured along W s

γ (y). Here and in what
follows we will always assume that the length α is so small that one can think
of W s

a (x) as a straight segment of length 2a centered in x. This simplifies
the presentation following argument without any loss of generality.
Given A0 we shall fix a length a > 0 enjoying the above properties and such
that a < α/2 where α < δ/2 is the above defined maximum diameter of the
elements of AA0 (the reason for this choice will become clear in following).
We call a a Lebesgue length for A0.
(1) Imagine to have drawn through x the manifolds Wu

γ (x) ∩ A0
F (x) and

W s
γ (x) ∩ A0

F (x).

(2) Through each of the points z in Wu
γ (x)∩A0

F (x) and z
′ in W s

γ (x)∩A0
F (x)

we can draw, respectively, the segments W s
a (z) and Wu

a (z
′) of unstable

and stable manifold, respectively, with a < α/2: by our definitions and
our choice of the Lebesgue length a such segments lie entirely in A0

F (x), as

illustrated in Fig.(4.2.5).

2a

2a

Wu
a (z)

Ws
a (z′)

z

z′

Fig.(4.2.5)F4.2.5 Illustration of the check that each point of Ω is far at least as a in the

direction of both stable and unstable manifolds from the boundaries of “some” element
of the covering A0. The short segments are portions of stable or unstable manifold of
length 2a, where a is (much) smaller than the diameter α of the rectangle.

(E) Replacing S by g = Sm with m large.
Let m > 0 be an integer such that the following sum is small enough (i.e. as
small as indicated)

2
∑∞
k=1 λ

mkα = 2λm(1− λm)−1α < a/2. (4.2.16)e4.2.16
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Calling g
def
= Sm we show that a Markovian pavement B for g can be con-

structed starting from a covering A made of S–rectangles with diameter less
than 2α < δ for which a < α/2 is a Lebesgue distance and verifying the
following properties.

(I) For every β = 1, 2 and A ∈ A there exist β′, β′′ ∈ {1, 2}, A′, A′′ ∈ A for
which

g ∂sβA ⊂ ∂sβ′A′, g−1 ∂uβA ⊂ ∂uβ′′A′′. (4.2.17)e4.2.17

(II) Every z ∈ ∂sAi is such that gz is “well inside” a boundary of the same
type (i.e. stable) of some other rectangle Aj(z), i.e. W s

a/2(gz) ⊂ ∂sAj(z)
for a suitable j(z); and, symmetrically, every z ∈ ∂uAi is such that
Wu
a/2(g

−1z) ⊂ ∂uAk(z) for a suitable k(z) (see Fig. (4.2.6)).

To construct B starting fromA is the main difficulty of the analysis because
realizing properties (I) and (II) will be rather straightforward. We shall see
later how to construct the covering A starting form the initial covering A0.

g

z

i

s

A0
i

2a

A0
j(z) gA0

i

Fig.(4.2.6)F4.2.6 Geometrical meaning of the properties (I) and (II). The g image of the

part of the boundary of the (shaded) rectangle A0
i on the left containing z is mapped,

greatly shortened to a size < a/2 at least by (4.2.16), on the upper boundary of another
rectangle of the covering A0

j(z)
; and in fact well in the middle so that even by widening

it on either side by (1− 1
2
)a = a/2 it remains in the upper boundary of A0

j(z)
.

Indeed suppose that the coveringA satisfies the above described properties
(I) and (II). We can obtain a finer pavement of Ω by intersecting some of
the set of A with the complements of the others. More precisely for every
subset r ⊂ {1, . . . , r} we can set Pr = (∩i∈rAi) ∩ (∪i6∈rΩ\Ai). Clearly the
collection P of the non-empty Pr forms a pavement of Ω 8 such that for allN4.2.8

P ∈ P one has g∂sP ⊂ ∪P ′∈P ∂sP ′, g−1∂uP ⊂ ∪P ′∈P ∂uP ′, i.e. P is close
to satisfy (4.2.13). Moreover remark that the sets Pr are the connected

8 The elements P of P have boundaries constituted by stable parts (∂sP ) and by unstable
parts (∂uP ).
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Fig.(4.2.7)F4.2.7 The sets obtained by intersecting in all possible ways the elements of the

covering A have interiors which are pairwise disjoint but are not necessarily rectangles,
e.g. see the gray set. One can call such sets “incomplete” rectangles.

components of Ω\ ∪A∈A ∂A. However P has the defect of not necessarily
consisting of S–rectangles (see Fig. (4.2.7)).

Nonetheless it is possible to build from P a pavement consisting of S–
rectangles and verifying (4.2.13). One just “continues a little” the sides of
every set A ∈ A along the stable or unstable manifold that contains them,
see Fig. (4.2.8), until an encounter with a boundary (of unstable or stable
type, respectively, i.e. of “opposite” type) is obtained. The boundary where
we stop the continuation is the first one meets (this construction depends
on the order in which the the sides to be continued are examined, hence it
contains some arbitrariness). Since the sets in A are very small the length
of the added parts of lines will be small (i.e. not exceeding 2α).

∂u
1
A0

∂s
1
A0

∂s
2
A0

∂u
2
A0

∂̃u
1
A0 ∂̃u

2
A0

∂̃s
2
A0⊂Wu

∂̃s
1
A0⊂Ws

Fig.(4.2.8)
F4.2.8

Prolonging the sides of the rectangles of the covering A in order to

“complete” the incomplete rectangles like the one shaded in Fig.(4.2.7). The continuation
is performed until a line reaches a boundary of a set in A (see Fig.(4.2.9)) and it means
prolonging by a length at most 2α.

More precisely the continuation can be done by replacing ∂sβA, ∂
u
βA by

∂̃sβA = ∪
x∈∂s

β
A
W s
γ (x), ∂̃uβA = ∪

x∈∂u
β
A
Wu
γ (x), (4.2.18)e4.2.18

i.e. we continue ∂sβA, ∂
u
βA on either side by adding a piece of manifold of

the same type (i.e. stable or unstable) of size γ.

Of course the sets ∂̃sβA, ∂̃
u
βA will go beyond the point where they first meet

the boundary of the elements of A which intersect A. This is so because
diam (A) < 2α for all A ∈ A and γ > 2α.
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However we can just delete the parts of such lines that go outside the
elements of A which intersect A. What is left is represented in Fig.(4.2.9)
where A0 is the shaded rectangle and the dashed lines correspond to the part
of the continuations of the boundaries of A0 which have not been deleted:
we denote the lines so constructed by ∂̂sβA ⊂ ∂̃sβA and ∂̂uβA ⊂ ∂̃uβA. This
construction is repeated for each of the rectangles of A and at the end we
shall have a pavement consisting only of S–rectangles, i.e. there will be no
more “incomplete rectangles” like those appearing in Fig.(4.2.7).

Fig.(4.2.9)F4.2.9 Rectangles obtained by the geometric operations illustrated in Fig.

(4.2.7), (4.2.8) applied to the shaded rectangle: we see that the number of “incomplete”
rectangles becomes smaller (at the expense of an increase in the number of rectangles).
The size of the dashed lines is ≤ 2α. The construction has to be repeated for each
rectangle, successively.

If z /∈ ∪j(∂̂sAj ∪ ∂̂uAj), i.e. if z is not on the boundary of any of the
just constructed rectangles, there exists a unique connected component of
Ω\∪j(∂̂sAj ∪ ∂̂uAj) that contains z. This component is clearly an open set
and its closure is a S-rectangle B. As z varies such S–rectangles describe a
finite family B that is a pavement of Ω with S–rectangles of diameter < 2α,
being intersections of rectangles with diameter already < 2α.
Let z ∈ ∂sβB, B ∈ B; then z will not be, in general, on the boundary of
some elements of A but, by construction, there will exist x ∈ {boundary
of a suitable rectangle A ∈ A} such that z ∈ W s

2α(x). Since A enjoys, by
hypothesis, properties (I) and (II) (cf. (4.2.17)) and gW s

2α(x) ⊂ W s
a/2(gx)

by (4.2.16) we get

g x ∈ ∂sAj(x) and W s
a/2(g x) ⊂ ∂sAj(x). (4.2.19)e4.2.19

Noting that the diameter of gW s
2α(x) is smaller than 2λmα < a/2 by the

choice (4.2.16) of m, we see that gW s
2α(x) ⊂ W s

a/2(gx) so that (4.2.19)
implies

g ∂sβB ⊂ ∪
B′∈B

∂sB′, (4.2.20)e4.2.20

and, likewise, we would evince that

g−1∂uβB ⊂ ∪
B′∈B

∂uB′. (4.2.21)e4.2.21

This means that B satisfies (4.2.13), i.e. it is a Markovian pavement for
the map g. As we noticed in point (B) it is easy to construct a Markovian
pavement B′ for S starting from B, see (4.2.14). Moreover in (4.2.14) the
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element B0 of B appearing in the intersection has diameter less than 2α so
that the diameter of the elements of B′ is also smaller that 2α.

Therefore we are reduced to show that if the covering A0 does not already
enjoy properties (I) and (II) stated in connection with (4.2.17) above, it is
still possible to modify it slightly so that it becomes a covering A of the
same type which, however, satisfies properties (I) and (II) above. This can
be done through an inductive procedure of successive approximations.

(F) Successive refinements to build a covering verifying properties (I) and
(II)
Consider g C0

j , j = 1, . . . , r, and note that it is a “very long curve” (because

of our choice of largem and because g ≡ Sm). Select a coveringA0
i1 , . . . , A

0
ikj

of g C0
j made of elements ofA0 such that gC0

j “passes” through each of them
and well inside, i.e. at a distance ≥ a from the parallel boundary where a
is the above introduced Lebesgue length, see Fig. (4.2.10)

u

s

ξ

C0
j

A0
j A0

ip
gξ

discarded

gC0
j

Fig.(4.2.10)F4.2.10 Here the g-image of C0
i is represented as a long curve. The covering of

the g-image is realized by discarding the elements of A0 whose expanding boundaries
pass too close to g C0

i , i.e. closer than the Lebesgue length of A0, see item (D).

In general some A0
ip
, in this covering, are not completely crossed by gC0

j ;

see the square A0
ip

in Fig. (4.2.10). Then continue a little C0
j so that gC0

j

crosses all the sets A0
i1
, . . . , A0

ik
of the just considered covering of g A0

j : this

means replacing A0
j with A1

j = [C1
j , D

0
j ], where

C1
j =

kj∪
h=1

g−1
(
{continuation of gC0

j until it crosses all

of A0
ih
} ∩ A0

ih

)
=

kj∪
h=1

g−1([C0
ih , g C

0
j ∩ A0

ih ]);

see Fig. (4.2.11).

Inductively we shall set

Cnj =
kj∪
h=1

g−1([Cn−1
ih

, g Cn−1
j ∩ An−1

ih
]). (4.2.22)e4.2.22

At each step the lengthening of Cnj with respect to Cn−1
j is by about a factor

λm shorter so that it is ≤ 2(λm)nα: this is seen by induction, recalling that
diam (A0

j ) ≤ α.
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ξ1

ξ
C0
j

gξ

gC0
j

Fig.(4.2.11)F4.2.11 Enlarging the manifold C0
j up to the point ξ1 so that the g–image of

the enlarged manifold ends on the appropriate boundary of the rectangle A0
ip
, with the

notations of the previous figure.

Hence we can pass to the limit n → ∞ to define Cj =
∞∪
n=0

Cnj and this

makes sense if α and λm are so small that (see (4.2.16))
∑∞

n≥1(λ
m)n2α <

a < α/2 < γ/2.
Likewise one proceeds to lengthen D0

j to construct Dn
j and to define Dj

(using g−1 instead of g).
Define then the rectangles Aj , with j = 1, . . . , r, as [Cj , Dj ], that form a
covering A of Ω with sets of diameter smaller than 2α.
By construction, if z ∈ Aj ∈ A, there exist Aj′ ∈ A such that g z ∈ Aj′
and g−1z ∈ Aj′′ and

g [Cj , z] ⊃ [Cj′ , g z], g−1[z,Dj] ⊃ [g−1z,Dj′′ ]. (4.2.23)e4.2.23

Furthermore: Aj′ ⊃ W s
a
2
(y) for all y ∈ [Cj′ , gz], and Aj′′ ⊃ Wu

a
2
(y) for all

y ∈ [g−1z, Dj′′ ], provided that, as we can suppose, α and, therefore, the
rectangles are small enough so that their sides can be treated as straight in
the continuation operations. Drawings can be very useful to visualize the
above statements; furthermore diam (Aj) < 2α ≤ δ.
Hence A satisfies the properties (I) and (II) stated in connection with
the (4.2.17). The correspondence that associates a point x ∈ Ω with a
compatible sequence σ is Hölder continuous, (4.1.6), and its inverse has
finite multiplicity if the value of δ is small enough so that the intersection
between any element of P and the S–image of any other is a connected set,
which certainly happens if α is small enough. Hence the proof is complete.

A consequence of the definition (4.2.1) is the following result.

(4.2.4) Proposition:P4.2.4 (Transitivity and mixing of compatibility matrices
for Markovian pavements for Anosov maps)
If P is a Markovian pavement for an Anosov map, cf. definition (4.2.1), then
its compatibility matrix is transitive and mixing (cf. definition (4.1.1)).

Proof: By definition (4.2.1) and problem [4.1.19] transitivity follows. The
mixing property is tightly related to the assumption that Anosov systems
are maps of a connected phase space Ω. Even dropping connectedness it
is still possible to construct a Markovian pavement by the construction of
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proposition (4.2.3). The transition matrix will have the properties described
in the problems [4.1.4] through [4.1.11]. Hence the system can be decom-
posed into a union of disjoint closed sets ∪a−1

i=1 ∪dij=1 Ωi,j and a “remainder
set” Ω′ open and invariant (consisting of the wandering points, cf. problem
[4.1.16]) by problem [4.1.17] which must be empty by the transitivity as-
sumption: connectedness then implies a = 1, d = 1 hence Ω = Ω1,1 and S
acts in a topologically mixing way on Ω so that also T is mixing.

The just described construction of a Markovian pavement is generalizable
to a situation that, in some applications, turns out to be quite useful; we
shall describe it in the following definition (due to Ruelle, who called the
systems that will be defined below an abstract hyperbolic systems or Smale
systems, see p. 125–130 in [Ru78]).

(4.2.3) Definition:D4.2.3 (Abstract hyperbolic systems)
Let (Ω, S) be a topological dynamical system. Suppose that (Ω, S) is topo-
logically transitive (i.e. there exists a point x of Ω with a dense orbit
(Snx)n∈Z+).
The system (Ω, S) is said to be an abstract hyperbolic (transitive) system
if there exist a metric d for the topology of Ω and three constants λ < 1,
γ > 0, ε > 0, with λ > 0 and γ > ε, and a function x, y → [x, y] defined on
the pairs {x, y |x, y ∈ Ω, d(x, y) < ε} such that
(1) [x, x] = x
(2) [[x, y], z] = [x, z] and [x, [y, z]] = [x, z], whenever the last expressions
have a meaning.
(3) S[x, y] = [Sx, Sy], when both sides have a meaning.
(4) Setting

W s
γ (x) = {u|u = [u, x] , d(u, x) < γ},

Wu
γ (x) = {u|u = [x, u] , d(u, x) < γ},

(4.2.24)e4.2.24

it follows that for all n > 0

d(Sny, Snz) < λnd(y, z) if y, z ∈W s
γ (x),

d(S−ny, S−nz) < λnd(y, z) if y, z ∈Wu
γ (x).

(4.2.25)e4.2.25

Remark: The simplest examples of such systems are naturally the subshifts
of finite type with a transitive compatibility matrix. The setW s

γ (σ) consists
of all the strings that agree with σ on the sites with label i ≥ −p if γ = e−p.

Then the following proposition holds.

(4.2.5) Proposition:P4.2.5 (Bowen)
Every abstract hyperbolic system admits a Markovian pavement with sets of
diameter ≤ δ where δ > 0 is arbitrarily prefixed.

The proof of this proposition follows, grosso modo, the ideas in the proof
of proposition (4.2.3). It presents difficulties of topological character due
to the lack of hypotheses of connectedness and differentiability on Ω and
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S: this forces us to be careful in stating as obvious certain properties that
are such in the case studied in proposition (4.2.3). See, for details, [Bo75],
[Ru76].

A remarkable property enjoyed by such systems is the so called shadowing
or “existence of a shadow motion”.

(4.2.6) Proposition:P4.2.6 (Shadow symbols)
Let T be a transitive n×n compatibility matrix. Let {σj}∞j=−∞ be a sequence

of elements (sequences) in {0, . . . , n− 1}ZT such that d(τσj , σj+1) < δ where
τ is the shift; the sequence {σj} is called a δ–approximate motion for the

dynamical system ({0, . . . , n−1}ZT , τ). Then there exists C > 0 independent

of the sequence {σj}∞j=−∞ and σ ∈ {0, . . . , n − 1}ZT such that d(τ jσ, σj) <
Cδ.

Remark: Therefore given a symbolic motion that is at each time perturbed
by δ one can find a true motion which remains close to the perturbed motion
within Cδ for all times j ≥ 0 where C is a universal constant (e.g. C = e). In
colorful words “the perturbed motion is a shadow of a true motion” (under
a slightly trembling light). This is particularly interesting as it implies that
the “same” property holds for motions in a more general Smale system,
hence for Anosov maps: see proposition (4.2.7) below.

Proof: The distance between elements σ, σ′ of {0, . . . , n − 1}ZT is the ex-
ponential of minus the maximal k such that σi = σ′

i for all |i| ≤ k; see
(4.1.6). Let δ = e−p. We define σj for |j| ≤ p by σj = (σ0)j . Then we
set σp+1 = (σ1)p+1 and more generally σp+j = (σj)p+j for j > 0 while
σ−p+j = (σj)−p+j for j < 0. Then the result is true with C = 1. If δ
does not have the form e−p with p integer then the same argument can be
repeated but one gets that C can be larger than 1 but always < e. Hence
C = e.

(4.2.7) Proposition:P4.2.7 (Shadowing)
Let (Ω, S) be an abstract hyperbolic system, in the sense of definition (4.2.3)
above. There is a constant C such that if . . . , x−1, x0, x1, . . . is a sequence
with d(Sxj , xj+1) < δ and δ is small enough then there exists a point x such
that d(Sjx, xj) < Cδ for all j.

Proof: The ambiguity in the code X that associates a symbolic motion with
a point forbids saying that the proof of the previous proposition implies this
result. However we can simply mimic the proof of proposition (4.2.6). We
start with x0 and construct the image Sx0 which will be very close to x1 so
that a point ξ1 = [Sx0, x1] on the unstable manifold of Sx0 and on the stable
of x1 exists. We have that S−1ξ1 is on the unstable manifold of x0. Then we
construct Sξ1 and define ξ2 = [Sξ1, x2] which is a point such that S−2ξ2 is
on the unstable manifold of x0. More generally ξn = [Sξn−1, xn]: all points
S−iξi are on the unstable manifold of x0 and all points ξi are at distance < δ
from xi and from the Sξi−1. The limit ξ = limn→∞ S−nξn exists because by
construction the variation in position of S−nξn with respect to S−(n−1)ξn−1
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has size of order λnδ because the points ξn lie systematically on the unstable
manifold of x0: hence ξ exists and is on the unstable manifold of x0. This
also implies that there is C such that d(Sjξ, xj) < Cδ for j > 0. We can
repeat this construction using S−1 and the points x−1, x−2, . . . and find a
point η on the stable manifold of x0 such that d(Sjη, xj) < Cδ for j < 0.
It is now enough to set x = [ξ, η].

Remark: It should be noted that the proof of proposition (4.2.6) immedi-
ately suggests the proof of proposition (4.2.7) if one takes into account that
in symbolic dynamics the unstable “manifold” (quotes used here because it
is not a manifold but just a set) consists of the compatible sequences which
agree over the labels to the left of a suitable label (i.e. for times preceding
a certain time).

Problems for the §4.2 (Existence, regularity, smoothness, uniqueness of
the stable and unstable foliations for Anosov maps)

[4.2.1]:Q4.2.1 (Continuity and invariance of the foliations, from [AS67])

In the context of proposition (4.2.1) do not assume continuity nor covariance of the fields
of spaces V sx , V

u
x as functions of x and replace the assumption in (4.2.8) by

‖(dSn)v‖VSnx ≤ Cλ
n‖v‖Vx for all v ∈ V sx ,

‖(dS−n)v‖V
S−nx

≤ Cλn‖v‖Vx for all v ∈ V ux ,
‖(dS−n)v‖V

S−nx
≥ Cλ−n‖v‖Vx for all v ∈ V sx ,

‖(dSn)v‖VSnx ≥ Cλ
−n‖v‖Vx for all v ∈ V ux ,

(∗)

for all positive n. Show that this implies (a) covariance of the fields, and (b) continuity
of the fields. (Hint: Continuity at fixed n of dS±n implies that for a = s, u if xj → x0
and vj ∈ V axj → v0 then v0 ∈ V ax0 . This proves “lower semicontinuity” of the function

x→ da(x)
def
= dimension of V ax . However the dimension is an integer and ds(x)+du(x) is

identically equal to the dimension of the manifold. Hence the dimensions of V ax are both
upper and lower semicontinuous, i.e. they are continuous, and being integer valued they
are constant. Therefore the above inclusion limV axn ⊆ V ax0 implies continuity of V ax .)

[4.2.2]:Q4.2.2 Let J be a matrix on R
d and assume that R

d = V s ⊕ V u and that there is
λ < 1 such that for all n ≥ 0

|Jnv| < λn|v|, v ∈ V s, |J−nv| < λn|v| v ∈ V u,
|J−nv| > λ−n|v|, v ∈ V s, |Jnv| > λ−n|v| v ∈ V u,

(∗∗)

then V s, V u are invariant under the action of J±1. Furthermore there exist α, ε > 0 such
that the cones Γu,α and Γs,α consisting of all the lines forming an angle ≤ α with the
plane V s or, respectively, V u are such that

JΓu,α ⊆ Γu,(1−ε)α, J−1Γs,α ⊆ Γs,(1−ε)α

i.e. the cones Γu,α and Γs,α “shrink by a factor (1 − ε)” under the action of J or,
respectively, J−1.

[4.2.3]:Q4.2.3 If in the right hand side of (∗∗), in problem [4.2.3], one inserts a constant C
then the same conclusions hold if J is replaced by Jn0 with n0 large enough.

[4.2.4]:Q4.2.4 (Hadamard–Perron theorem at a hyperbolic fixed point)

Let S be a C∞ map of Rd into itself with a fixed point at the origin and with a Jacobian
matrix J at the origin which verifies the property in (∗∗), in problem [4.2.4], for a given
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λ < 1 and for all n ≥ 0. Given k > 0, inside a sphere of radius δk > 0, with δk small
enough, around the origin there exist two surfaces W s and Wu of class Ck tangent to
V s and V u at the origin, respectively, and such that SW s ⊂ W s and S−1Wu ⊂ Wu.
Furthermore there exists C > 0 and λ′ < 1 such that |Snx| < Cλ′n|x| for x ∈ W s

and |S−nx| < Cλ′n|x| for x ∈ Wu. (Hint: Let k = 0 and let Σδ be the sphere in
V s of radius δ and center at the equilibrium point. The results of problems [4.2.2] and
[4.2.3] imply that if δ is small enough then a smooth surface whose points have the
form (s, γ(s)), with s ∈ V s ∩Σδ and γ(s) a smooth function, and whose tangent plane
forms everywhere an angle with respect to V s not exceeding α is mapped by S−1 into
a surface of the same type inside Σδ but extends beyond the boundary of Σδ. Then
one modifies S−1 outside the sphere Σδ. Let (s, u) be a point near the origin and write
S−1(s, u) = (f(s, u), J−1u + g(s, u)), where, with a slight abuse of notation, we are
denoting J−1(0, u) = (0, J−1u): modify the map S−1 outside Σδ into a new auxiliary
map

X(s, u) =
(
σ(s, u)f(s, u) , J−1u+ σ(s, u)g(s, u)

)
,

with σ(s, u) = σ̃(ρ) where ρ = sqrtu2 + s2 and σ̃(ρ) is a C∞ non-negative decreasing
function that is identically 1 for ρ ≤ δ and is 0 for ρ > 2δ. Check that if δ is small enough
then the map X still maps the cone Γs,α into itself as well as any surface γ tangent to
V s at the origin and forming with V s and angle < α into a surface of the same type.
Furthermore if (s, γ(s)) and (s, η(s)) are two such surfaces and (s, γ′(s)), (s, η′(s)) are
their X–images, one has max|s|<2δ |γ′(s) − η′(s)| ≤ λ′ max|s|<2δ |γ(s) − η(s)|, where λ′

can be chosen as close as wished to λ provided δ is taken sufficiently small. Therefore
if (s, γ0(s)) with γ0(s) ≡ 0 is a special initial surface ∆0 the iterates Xn∆0 converge
exponentially fast to a limit ∆∞ which has the property of being tangent at the origin to
V s (because such are all Sn∆0) and of being invariant (because it is a limit of iterates);
it has also the property of contracting exponentially to the origin (because every point
in the cone Γs,α ∩Σδ gets closer to the origin); furthermore the function γ∞(s) defining
∆∞ verifies a Lipshitz property (being the limit of functions with derivatives bounded
by α). Hence ∆∞ is a continuous surface and, in fact, it is even Lipshitz continuous.
More generally if we fix k > 0 one proceeds in a similar way by controlling also the
derivatives of the function γ∞(s), and one can prove that ∆∞ is a Ck−1 regular surface
with (k − 1)–th derivatives verifying a Lipshitz property.)

[4.2.5]:Q4.2.5 (Hadamard–Perron theorem at a hyperbolic point)

Let S be a system that satisfies point (i) and (ii) of proposition (4.2.1) with C replaced
by 1 in (4.2.8). Moreover let x0 be a point whose trajectory under S is xj = Sjx0, j ∈ Z.
We imagine to consider a coordinate system that “follows” x0 in its motion: this means
that we consider a sequence of spheres Σδ(S

jx) on which a coordinate system with origin
at xj is defined introducing coordinates (s, u) such that s = 0 is a surface tangent at
the origin to V u

Sjx0
and u = 0 is a surface tangent at the origin to V s

Sjx0
. One can

choose the coordinate systems to be quite similar to each other, i.e. one can construct
all of them by choosing the origin and a neighborhood of it out of the charts of a finite
atlas for Ω (thus the “units of measure” of the lengths cannot vary wildly as j varies).
Show that if δ is small enough the cones Γs,α

Sjx0
and Γu,α

Sjx0
regarded as sets of points of

Σδ(S
jx0) with coordinates (s, u) such that |u| < α|s| and, respectively, |s| < α|u|, for α

small enough, are mapped into Γ
s,(1−ε′)α
Sj−1x0

and Γ
u,(1−ε′)α
Sj+1x0

respectively by S−1 and S, for

some ε′ > 0. Likewise a surface in ΣSjx0 whose tangent plane forms everywhere angles

< α to the axis V s
Sjx0

is mapped into a surface with the same property in Σδ(S
j−1x0)

by S−1. Furthermore two sequences of surfaces γj , ηj in Σδ(S
jx0) with the property of

being contained in the cone Γs,α
Sjx0

or Γu,α
Sjx0

will be mapped by S−1 or, respectively, by S

into surfaces which are closer by a factor λ′ to each other at every point. Conclude that
there exist manifoldsW s(Sjx0),Wu(Sjx0) in each Σδ(S

jx0) which are tangent to V s
Sjx0

and V u
Sjx0

which verify the properties (4.2.5) and (4.2.6). (Hint: Repeat the analysis of

problem [4.2.4] carrying along the label j).

[4.2.6]:Q4.2.6 Making use of problem [4.2.3] show that one can repeat the analysis in problems

[4.2.4] and [4.2.5] with C not equal to one but suitably modifying (4.2.6), i.e. substituting
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λn with Cλn. (Hint: Check the existence of surfaces W s,Wu near every point that
satisfies (4.2.5) with S replaced by Sn0 and n0 large enough.)

[4.2.7]:Q4.2.7 (Existence of an adapted metric)
Show that it is always possible to change the Riemannian metric on Ω in such a way
that if (4.2.8) holds for the old metric then it holds also for the new metric but with
C = 1 and a different λ, i.e. show the existence of an adapted metric.(Hint: Let λ1
be such that λ < λ1 < 1. Setting v = vs + vu with vs ∈ V sx , v

u ∈ V ux let ||v|| =∑∞
n=0

λ−n1 ||∂Snvs||V sSnx +
∑∞

n=0
λ−n1 ||∂S−nvu||V u

Snx
The new metric satisfies (4.2.8)

with C = 1 but with λ1 replacing λ. However it can fail to be smooth. To avoid this
show that it is enough to limit the sum in the definition to a large N , suitably chosen
(i.e. so that for a suitably large C′ one has λ1(1 + (λ/λ1)NC′) < λ2 < 1), to obtain
(4.2.8) with λ2 replacing λ.)

[4.2.8]:Q4.2.8 (Anosov theorem)

Show that the spaces V sx , V
u
x are not only continuous (as discussed in problem [4.2.1]) but

they are also Hölder continuous with an exponent < 1 (arbitrarily prefixed), i.e. prove
proposition (4.2.2). (Hint: Let for simplicity d = 2, i.e. consider the two dimensional
case first. Since we have seen that the surfaces Wu

x ,W
s
x are smooth in Ck (for any

prefixed k) we only have to see how close is V sx to V sy when x, y are in the same manifold
Wu
x and close enough. We study the various geometrical objects that we introduce in a

coordinate system (s, u) in a sphere Σδ(x) in which u = 0 and s = 0 are surfaces tangent
to V sx , V

u
x . Suppose that there is a sequence yn → x with yn ∈ Wu

x and d(yn, x) = δn,
but suppose also that the angle α(yn) between the stable and unstable manifolds at yn
is such that α(yn)−α(x) >

√
δn. Then the differential of S at x and the one at yn differ

by O(δn): dSyn = dSx + O(δn), and the vector vn tangent to W s
yn

has a component

along V ux which by assumption has size
√
δn at least. Therefore if we apply dSm to vn

with m = − log(
√
δn) we get a vector which has lenght O(λ−m

√
δn) ≃ 1 times the initial

length instead of a vector of length of order λm times the initial one: the point is that
the difference between dSyn and dSx is of order δn and therefore dSm cannot rotate the
vector vn enough to overcome the expansion along the unstable direction at least not if

m is not too large. A similar argument works if
√
δn is replaced by δαn with any α < 1:

but not with α = 1. Therefore the V sx are Hölder continuous but not necessarily Lipshitz
(or smoother): and in fact counterexamples to smoothness can be constructed. This
shows that V sx is Hölder continuous with exponent α < 1 at x. Examining more carefully
the argument one concludes that the Hölder continuity constant can be chosen C = 1
independently of x for any prefixed α < 1: the price that one pays is that the smaller is
C or the closer is α to 1 the closer y has to the to x so that |ξy − ξx| < Cd(x, y)α holds
for a component ξy of the tensor that determines the plane V sy in a chart on Ω.)

[4.2.9]:Q4.2.9 (Uniqueness of the stable and unstable manifolds)

Show that if (Ω, S) is a hyperbolic system in the sense of definition (4.2.1) there cannot

exist two manifolds for x ∈ Ω, W̃ s(x) and
˜̃
W
s

(x) of class C∞ and mutually transversal,

such that if y, z ∈ W̃ s(x) or y, z ∈ ˜̃W
s

(x) one has d(Sny, Snz) ≤ Cλnd(y, z), for all
n ≥ 0. (Hint: Consider the following figure which describes an impossible situation if

W̃ 6= ˜̃W and if one imagines to apply to it iterates of the map S.)

x

ξ

ξ′
˜̃
W
s

(x)

Wu(ξ) W̃ s(x)

Fig.4.2.12: Illustration of the contradiction in which one would incur if the unstable
manifold of x was not unique and two stable manifolds would emerge from x.

[4.2.10]:Q4.2.10 (Mixing and non-transitive hyperbolic systems)
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If the connectedness condition in the definition of Anosov system is dropped then one
obtains a hyperbolic system whose phase space Ω can be decomposed into a union of

disjoint closed sets ∪ai=1∪
di
j=1 Ωi,j and a “remainder set” Ω′. The sets Ωi,j are permuted

by the action of S and each of them is invariant under a suitable iterate of S which then
acts in a topologically mixing way on it; the points x ∈ Ω′ admit small neighborhoods
Ux whose points evolve under the iterations of S without ever returning to visit Ux
and they are called wandering points. If (Ω, S) is a connected Anosov system then it is
topologically mixing. (Hint: It follows from the fact that even dropping connectedness
it is still possible to construct a Markovian pavement by the construction of this section.
The transition matrix will have the properties described in the problems of Section §4.1
and the result of problems [4.1.19] and [4.1.20] implies the first part. That a connected
Anosov system has to be topologically mixing can be seen by noting that if Ω′ 6= ∅ then
there cannot be a dense orbit; while if Ω′ is empty then Ω will be the union of a finite
number of disjoint sets and therefore it cannot be connected unless there is only one set
Ωi,j ≡ Ω and in this case Ω will be topologically mixing.)

[4.2.11]:Q4.2.11 (Splitting and hyperbolicity alone imply the Anosov property)

Let (Ω, S) be a smooth dynamical system which verifies the properties of Anosov systems
with the possible exception of the existence of a dense orbit. Show that it is necessarily
an Anosov system. (Hint: The construction of a Markovian pavement discussed in the
proof of proposition (4.2.1) can be performed and it leads to a representation of the points
of Ω by symbolic strings with a certain compatibility matrix T : the result of problem
[4.1.13] shows that the system can fail to be an Anosov system only if the matrix T is
not mixing. However in this case the space Ω is disconnected or the matrix T contains
inessential labels and correspondingly Ω contains wandering points.)

[4.2.12]:Q4.2.12 Find an explicit bound for C and a of (4.1.5) in the pavement constructed in

proposition (4.2.3).

General properties of smooth hyperbolic systems discussed without the use of Markovian
pavements.

[4.2.13]:Q4.2.13 (Existence of a dense set of periodic orbits)

Let (Ω, S) be an Anosov system (cf. definition (4.2.1)). The system (Ω, S) admits a dense
set of periodic points. (Hint: Consider the case d = 2. Let x0 generate a dense orbit.
Then choose x ∈ Ω and let P be the rectangle with axes W s

δ (x) ×Wu
δ (x) with δ very

small. Suppose, without loss of generality that x0 ∈ P . Then there will exist k0 large
such that Sk0x0 ∈ P again. The image Sk0P will be, if k0 is large enough long and thin
and it will cross P from “left to right” (i.e. from one of the two stable boundaries to the
other) in a narrow connected band that contains Sk0x0. This band that we can call P1

will be the image of a very narrow band “from top to bottom” of P (i.e. from one of the
unstable boundaries of P to the other) containing x0 and which we shall call P0. The
band P1 is the connected part of Sk0P that contains Sk0x0 and P1 = Sk0P0. A much
narrower band P−1 inside P0 will become under iteration by S2k0 a much narrower band
P2 ⊂ P1, etc. In this way we determine a unique point ξ ⊂ Pj , for all j. And one has

Sk0ξ = ξ: hence there is a periodic point of period k0 inside P . The latter set was a
rectangle of prefixed size of O(δ) around a prefixed point x: hence periodic points are
dense.)

[4.2.14]:Q4.2.14 (Connectedness and Anosov systems)

Let (Ω, S) be an Anosov system. Suppose that there is a fixed point x. Show that
∪∞i=0 S

iWu
δ
(x) is dense in Ω. Assuming that (Ω, S) verifies all the properties in definition

(4.2.1) except the connectedness of Ω show that connectedness follows. (Hint: Do not sup-

pose that Ω is connected. Let x0 generate a dense orbit. Suppose Ω 6= A
def
= ∪∞i=0 S

iWu,δ
x

.

Then there will be a point y 6∈ A at distance d(y, A)
def
= ε > 0 from A. We can find a

point Sk+x0 at distance < ε/4 from y and k− < k+ such that Sk−x0 is closer than ε/4
to the set A. And ε can be prefixed to be ε ≪ δ. Then the (part of) stable manifold

W s
δ
(Sk−x0) will intersect the unstable manifold of a point z ∈ A. This will imply that

d(Sk+−k−z, Sk+x0) < ε which contradicts d(y, A)
def
= ε. So far connectedness of Ω has
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not been used. Furthermore if x is a fixed point then ∪∞i=0 S
iWu

δ (x) is connected and
therefore Ω is connected and any two points z,w ∈ Ω will be very close to points of A
and therefore their stable manifolds will intersect ∪∞i=0 S

iWu
δ
(x) so that we can connect

by a continuous curve z,w because ∪∞i=0 S
iWu

δ
( x) is connected.)

[4.2.15]:Q4.2.15 (Density of stable and unstable manifolds for fixed points in Anosov maps)

Let (Ω, S) be an Anosov system. Let x be a fixed point. Then for all y ∈ Ω one has

Ω = ∪∞i=0 S
iWu

δ
(y). (Hint: Let the point x0 generate a dense orbit. The points of

Wu
δ
(y) will be very close to the points that are obtained by iterating a small segment of

Wu
δ (x). Therefore it suffices to show that the result is true if y ∈Wu

δ′
( x) no matter how

small δ′ > 0 is. But if z 6∈ ∪∞i=0 S
iWu

δ′
(y) we can find an iterate of x0 very close to y

and a successive iterate very close to z and we are in a situation like the one met in the
hint to problem [4.2.14]).

[4.2.16]:Q4.2.16 (Density of stable and unstable manifolds for periodic points in Anosov maps)

Let (Ω, S) be an Anosov system and assume that the point x0 generates a dense orbit.

Let x be a periodic point of period k. Then Ω = ∪∞i=0 S
iWu

δ
(x). (Hint: Same proof as

for problem [4.2.14]: however we could not conclude that Ω is connected if we dropped
the connectedness assumption as in problem [4.2.14].)

[4.2.17]:Q4.2.17 Let (Ω, S) be an Anosov system. Let x be a periodic point of minimal period

k. Then let Ω0 = ∪∞i=0 S
i kWu

δ
(x), Ω1 = SΩ0, . . . ,Ω k−1

= S k−1Ω0. Show that the sets

Ωj must coincide. Show also that if x0 generates a dense orbit, then the iterates multiples

of k of x0 are dense as well. (Hint: Suppose k = 2 for simplicity. Then if S2ix0 is dense in

Ω0 by repeating the argument in problem [4.2.15] we get that Ω0 = ∪∞j=−∞ S kjWu
δ
(y)

if y ∈ Ω0. Thus if y ∈ Ω0 ∩Ω1 6= ∅ one should have Ω0 = Ω1. Therefore we have to
check that the even iterates of x0 are dense in Ω0 or, if not, then the odd iterates of
Sx0 are dense in Ω0 and then replace x0 by Sx0. Suppose, for instance, that x can be
approximated by a sequence of even iterates of x0. Then a sequence of even iterates of

x0 can approximate any point y ∈ ∪∞i=0 S
i kWu

δ (x) or in the closure of the latter set, by
the last hint to problem [4.2.15].)

[4.2.18]:Q4.2.18 (Density of the stable and unstable manifolds of all points in Anosov maps)

Let (Ω, S) be an Anosov system. Show that the stable and unstable manifolds of any
point, defined as ∪∞−∞ SjW a

γ (x), a = u, s, are dense in Ω.

[4.2.19]:Q4.2.19 (Non-wandering points in systems with an absolutely continuous invariant

measure)
Let (Ω, S) be a smooth dynamical system admitting an invariant measure µ which is
absolutely continuous with respect the the volume measure: show that the set of non-
wandering points, see problem [4.2.10], is the whole Ω. (Hint: Poincaré’s recurrence
theorem holds.)

[4.2.20]:Q4.2.20 (Non-wandering points and density of periodic points)

Let (Ω, S) be a smooth dynamical system which verifies the properties of Anosov systems
with the possible exception of the existence of a dense orbit. Show that if the set of non-
wandering points is the whole Ω then the periodic points are dense. (Hint: The absence
of wandering points allows us to imitate the argument in problem [4.2.12].)

Bibliographical note to §4.2
The proof of the existence theorem of Markovian pavements is taken from
the paper of Bowen, see [Bo70], by particularizing its proof to case in-
vestigated here. The proof of Bowen widely generalizes and at the same
time simplifies the original proof of Sinai, [Si68a], [Si69b]. The first idea
and construction of a Markovian pavement appeared in connection with
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the theory of the automorphism

(
1 1
1 2

)
of T2 in T

2 by Adler and Weiss

(see [AW68]): in this work one explicitly and analytically constructs some
pavements. This preceded the work of Sinai where the general notion of
Markovian pavement for hyperbolic maps is introduced and its existence is
shown in full generality.
It is useful to consult also the monograph [Bo75]. The notion of hyper-
bolic system goes back to Anosov: for elementary as well as for some not
elementary properties of such systems see [AS67], (where they are called
U–systems), [AA68] (where they are called C–systems), and [Av76]. The
abstract version of hyperbolic system is due to Ruelle, see [Ru68].
The problems are classical results, see [AS67], [KH95], and summarize
Anosov’s extension of the stability theory for fixed points.

§4.3 Coding of the volume measure of smooth hyperbolic systems

In this section we illustrate via an example the method to perform the
operations that we have shown to be possible in Section §4.1 for systems
that admit Markovian pavements, considering the case of smooth hyperbolic
systems.
We shall see that the volume measure on Ω can be described by means of
the symbolic code X associated with a Markovian pavement Q.
The fundamental notions for this study are described in the following two
definitions: the first of them, setting the notion of conditional probability,
will also be fundamental in the coming sections.

(4.3.1) Definition:D4.3.1 (Conditional probability)

Let m be a Borel probability measure on the space {1, . . . , q}Z of the se-
quences with q symbols and let J = {j1, . . . , js} ⊂ Z and σJ = (σ1, . . . , σs) ∈
{1, . . . , q}.
Consider the σ–algebras B(Jc) generated by the cylinders CJ

′

σ′ , with base

J ′ ⊂ Jc = Z \ J . Given σJ we can define on B(Jc) the measures

E → m′(E)
def
= m(E ∩ CJσ

J
), E → m(E)

def
= m(E), (4.3.1)e4.3.1

for E ∈ B(Jc). Therefore the measure m′ is absolutely continuous with re-
spect to m, i.e. m′ is proportional to m via a suitable function (the Radon–
Nykodim derivative dm′/dm of m′ with respect to m). Set

m(σJ |σ′
Jc) =

dm′

dm
(σ′), (4.3.2)e4.3.2

where the notation is correct because σJ is fixed and (dm′/dm)(σ′) is B(Jc)–
measurable: hence the latter depends, m–almost everywhere, only on σ′

Jc ,
i.e. (dm′/dm)(σ′) = (dm′/dm)(σ′

Jc).
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134 §4.3: Coding of the volume

The expression (4.3.2) is called probability of σJ conditional to σ′
Jc : if we

think of it as a function of σ′ it is m–measurable and m–measurable as well.

Remarks: (1) Note that m is the restriction of m to the sets in B(Jc).
(2) The notion of conditional probability is important because, as we shall
see, in terms of it one can describe in a simple way large classes of nontrivial
measures on {1, . . . , q}Z.
(3) The functions σJ , σ

′
Jc → m(σJ |σ′

Jc) must verify suitable compatibility
conditions implicit in their definition; for instance

∑
σ
J
m(σJ |σ′

Jc) = 1.

(4) The just mentioned compatibility condition shows that in order to define
the function in (4.3.2) it is sufficient, if J is fixed, to assign all ratios

m(σ′
J |σJc)/m(σ′′

J |σJc) for all σ′
J , σ

′′
J , σJc . (4.3.3)e4.3.3

Coming back to Anosov systems we note that the stable and unstable man-
ifolds are smooth (see proposition (4.2.2) and problem [4.2.8]). Therefore it
makes sense to consider, at x, the map S as a map between a neighborhood
of x on W a

x and a neighborhood of Sx on W a
Sx, a = u, s. The Jacobian

matrices of these maps are linear maps, i.e. matrices, between V ax and V aSx.
We shall call the latter matrices the expanding and the contracting Jaco-
bian matrices at x (their dimensions will be da × da if da is the dimension
of the manifolds W a, a = u, s).
Note however that such matrices will be smooth functions of x along the
(smooth) manifolds W a

x0
of any given point x0, but they will only be Hölder

continuous as functions of x as x varies in Ω. The Hölder continuity expo-
nent can be taken to be α < 1 and the Hölder continuity modulus C as well
can be taken to be independent of the point x if the comparison involves
close enough points (how close may depend on the choice of α).
We consider for simplicity only the two-dimensional case: but most of what
we say carries over to the higher dimensional cases simply by replacing
the contraction and expansion coefficients by the absolute values of the
determinant of the expanding and contracting Jacobian matrices. The latter
are Hölder continuous functions on Ω.

(4.3.2) Definition:D4.3.2 (Local expansion and contraction coefficients and
exponents)
Let (Ω, S) be a bidimensional Anosov system with a Markovian pavement
Q = {Q1, . . . , Qq} built with S–rectangles. Let T be its compatibility matrix

(see definition (4.1.3)) and call X the corresponding code X : {1, . . . , q}ZT →
Ω. We set

λ−1
u (x) =

∣∣∣dS
−1

dξ
(x)
∣∣∣
u
, λs(x) =

∣∣∣dS
dξ

(x)
∣∣∣
s
, (4.3.4)e4.3.4

where the subscripts indicate the derivative of S considered as a map from
the stable or unstable manifold at x into the corresponding manifold at S(x)
and ξ represent the arc length parameterization of these manifolds. They
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will be called the local expansion and contraction coefficients, while (the
opposite of) their logarithms

Au(σ) = − logλ−1
u (X(σ)), As(σ) = − logλs(X(σ)), (4.3.5)e4.3.5

defined on the space of the compatible sequences σ ∈ {1, . . . , q}ZT , will be
called the local expansion and contraction exponents or rates.

Remarks: (1) For all x ∈ Ω one has

∣∣∣dS
−M

dξ
(x)
∣∣∣
u
=

M−1∏

k=0

∣∣∣λu(S−kx)
∣∣∣
−1

,
∣∣∣dS

M

dξ
(x)
∣∣∣
s
=

M−1∏

k=0

∣∣∣λs(Skx)
∣∣∣,

(4.3.6)e4.3.6
by the differentiation rules and by the covariance of the manifolds W s

x and
Wu
x , cf. (4.2.5).

(2) Note that in an adapted metric, see definition (4.2.1), λ−1
u , λs will be

everywhere < λ < 1, and of course > 0. However in general it might well
be otherwise: the values of the local expansion and contraction coefficients
can be quite arbitrarily changed by changing the metric on Ω. Of course
eventually for large M both quantities in (4.3.6) will become < 1.
(3) The definition of smooth hyperbolic system implies that the functions
(4.3.4) and (4.3.5) are Hölder continuous in x ∈ Ω. Since the code X is
Hölder continuous as well (cf. definition (4.1.3)) we deduce

|Aa(σ)−Aa(σ′)| ≤ C e−κν(σ,σ′), a = u, s, (4.3.7)e4.3.7

with suitable positive C and κ, if ν(σ, σ′) = max{j|σk = σ′
k, for all |k| ≤ j}.

In other words σ → Aa(σ) is “Hölder continuous” on the space {1, . . . , q}ZT .
It is convenient to find a representation of Aa in terms of potentials.

(4.3.1) Proposition:P4.3.1 (Contraction and expansion potentials)
Let (Ω, S) be an Anosov system and let Q = {Q1, . . . , Qq} be a Markovian
pavement of Ω with compatibility matrix Tσσ′ . Consider the local expan-
sion and contraction exponents Aa(σ) defined by (4.3.5). Then the function
Aa(σ) can be written as a sum of cylindrical functions:1N4.3.1

Aa(σ) = constant +

∞∑

n=0

Φa2n+1(σ−n, . . . , σn), a = u, s, (4.3.8)e4.3.8

where the functions Φu,Φs, which will be called the expansion and contrac-
tion potentials, are defined on the T–compatible strings of 2n+ 1 symbols,
i.e. on {1, . . . , q}2n+1

T , and decay exponentially in the sense that

|Φa2n+1(σ−n, . . . , σn)| ≤ C e−κn (4.3.9)e4.3.9

1 A function on {1, . . . , q}Z is called cylindrical if it depends only on the values of σj
corresponding to a finite number of labels j.
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for suitable positive constants C, κ.

Proof: To check (4.3.8) and (4.3.9) let σ0 ∈ {1, . . . , q}ZT and let z > 0 be such
that T zσσ′ > 0, for all pairs σ, σ′: such z exists because of the topological
transitivity and mixing properties of Anosov systems (see problems [4.1.19],
[4.2.10]). We construct σ0, σ1, σ2, . . . ∈ {1, . . . , q}ZT by “chopping” the
sequence σ at sites ±j and “attaching” to the right and to the left of it the
semi-infinite strings read out of the parts of σ0 with positive or negative
labels. This will be done so that the sequence σ1 has the entry with the
label in the site 0 coinciding with the corresponding entry of σ, while it
coincides with σ0 in the sites j with |j| > z, σ2 coincides with σ in the sites
between −1 and 1 and with σ0 in those with |j| > 1 + z, σ3 coincides with
σ between −2 and 2 and with σ0 in the sites with |j| > 2 + z, etc.: the 2z
insertions “between” σ and σ0 are each time made arbitrarily (and they are
possible because T zσσ′ > 0, by our choice of z). Set constant = Aa(σ

0) and

Φa2n+1(σ−n, . . . , σn) = Aa(σ
n+1)−Aa(σn); (4.3.10)e4.3.10

then equations (4.3.8) and (4.3.9) follow immediately from (4.3.7), i.e. from
the Hölder continuity of the symbolic code and of the stable and unstable
manifolds.

We can now describe the action of the code X on the (normalized) volume
measure µ0 on Ω (Sinai).

(4.3.2) Proposition:P4.3.2 (Symbolic code for the volume measure)
Let (Ω, S) be a bidimensional smooth topologically mixing hyperbolic system
and let Q = {Q1, . . . , Qq} be a Markovian pavement with compatibility ma-

trix T (necessarily mixing, cf. problem [4.1.19]); let X : {1, . . . , q}ZT → Ω be
the corresponding code. Let µ0 be the volume measure on Ω associated with
the metric on Ω and let m0 be the measure on {1, . . . , q}ZT isomorphic to it
via X (cf. remark (1) following (4.1.11)).

(i) The measure m0 has the following conditional probabilities:

m0(σ
′
−n . . . σ

′
n|σj , |j| > n)

m0(σ′′
−n . . . σ′′

n|σj , |j| > n)
=

sinϕ(X(σ′))
sinϕ(X(σ′′))

· (4.3.11)
e4.3.11

· exp
(
−

∞∑

k=1

[Au(τ
kσ′)−Au(τkσ′′) +As(τ

−kσ′)−As(τ−kσ′′)]
)
,

where As, Au are defined in (4.3.5) and satisfy (4.3.7), x→ ϕ(x) is the angle
between the stable and unstable manifolds in x, and σ′, σ′′ are sequences in
{1, . . . , q}ZT whose values on the labels j with |j| > n coincide, i.e. σ′

j =
σ′′
j = σj for |j| > n.

(ii) The restriction m+
0 of m0 to the σ–algebra B(Z+), generated by the
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cylinders with base in Z
+
, has conditional probabilities of the form

m+
0 (σ

′
0 . . . σ

′
n|σi, j > n)

m+
0 (σ

′′
0 . . . σ

′′
n|σj , j > n)

=
f(σ′)
f(σ′′)

·

· exp
(
−

∞∑

k=0

[Âu(τ
kσ′)− Âu(τkσ′′)]

)
,

(4.3.12)e4.3.12

where f > 0 and Âu are Hölder continuous functions on {1, . . . , q}ZT .
(iii) Finally there exist Φa2n+1 : {1, . . . , q}2n+1 → R such that

Aa(σ) =

∞∑

n=0

Φa2n+1(σ−n . . . σn), Âa(σ) =

∞∑

n=0

Φa2n+1(σ0 . . . σ2n+1),

(4.3.13)e4.3.13

for a = u, s and there exist constants C̃, κ̃ > 0 for which

|Φa2n+1(σ−n . . . σn)| ≤ C̃e−κ̃n for all n ≥ 0. (4.3.14)e4.3.14

Remarks: (1) Even though, at first sight, this may appear strange, it
is convenient to think of (4.3.13) in the following form. Let (ΦaX)X⊂Z be
a family of functions parameterized by the finite subsets X ⊂ Z, ΦaX :

{1, . . . , q}Z → R, such that

ΦaX(σX) = 0 unless X = (z, z + 1, . . . , z + 2n),

ΦaX(σX) = Φa2n+1(σX) if X = (z, z + 1, . . . , z + 2n),
(4.3.15)e4.3.15

for σX ∈ {1, . . . , q}X = {1, . . . , q}2n+1 and some z ∈ Z. Then one has, or
one defines

Aa(σ) ≡
∑

X centered on 0

ΦaX(σX), a = u, s,

Âa(σ) ≡
∑

X∋0,X⊂Z
+

ΦaX(σX), a = u, s,

Aa(σ)
def
=
∑

X∋0

ΦaX(σX)

|X | , a = u, s.

(4.3.16)e4.3.16

The above notations are useful for later use and for a quick check of the
following algebraic identity that will be used below:

∞∑

k=1

[Aa(τ
kσ′)−Aa(τkσ′′)] =

∞∑

k=0

[Âa(τ
kσ′)− Âa(τkσ′′)]+

+W (σ′)−W (σ′′),
+∞∑

k=−∞
[Aa(τ

kσ′)−Aa(τkσ′′)] =
+∞∑

k=−∞
[Âa(τ

kσ′)− Âa(τkσ′′)] =

=

+∞∑

k=−∞
[Aa(τ

kσ′)− Aa(τ
kσ′′)],

(4.3.17)e4.3.17
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whereW is a suitable Hölder continuous function on {1, . . . , q}ZT and σ′, σ′′

are defined after (4.3.11) (the check is left to the reader).
(2) If one follows the steps of the proof by considering the particular case
of the paradigm of the Anosov systems, i.e. Arnold’s cat map,

Ω = T
2
, S

(
ϕ1

ϕ2

)
=

(
1 1
1 2

)(
ϕ1

ϕ2

)
, µ0(dϕ1dϕ2) =

dϕ1dϕ2

(2π)2
, (4.3.18)e4.3.18

with Q an arbitrary Markovian pavement, one should realize that in this
case the proof is very simple because the necessary computation of several
limits becomes trivial.

Proof: We prove (4.3.11) in the case n = 0. The proof however can be
immediately adapted to cover the arbitrary n ≥ 0 case. Let σ′ and σ′′ ∈
{1, . . . , q}ZT with σ′

j = σ′′
j = σj for |j| > 0, and set X(σ′) = x, X(σ′′) = y,

assuming, furthermore, that x, y /∈ ∪qi=1 ∂Qi. By Doob’s theorem (cf. the
part of the proof of proposition (3.2.1) that follows equation (3.2.25) and,
in particular, equation (3.2.28)) one has, m–almost everywhere,

m0(σ
′
0|σj , |j| > 0)

m0(σ′′
0 |σj , |j| > 0)

= lim
N→∞

m0(C
−N...−1 0 1...N
σ−N ...σ−1σ′

0σ1...σN
)

m0(C
−N...−1 0 1...N
σ−N ...σ−1σ′′

0 σ1...σN
)
. (4.3.19)e4.3.19

SNQσ−N

Qσ′
0

S−NQσN

δxs
δxu

Fig.(4.3.1)F4.3.1 The angle ϕ(x′) is marked in the dashed region (in general it is not

90o) around the corner denoted x′ in the text; the marked corners represent x′′ and x′′′

(with the first up and the latter on the left of x′); the shadowed region represents the
intersection ∩N−NS−jQσj , with σ0 = σ′0.

A schematic geometric representation of the numerator of the second mem-
ber of (4.3.19) is in the drawing in Fig. (4.3.1): the shadowed rectangle is
precisely C−N...0...N

σ−N ...σ′
0...σN

. Note also that such a small rectangle has sides

≤ αλ+N , if α is the largest diameter of the elements of Q and λ is the hy-
perbolicity parameter entering in the definition of smooth hyperbolic system
(cf. definition (4.2.1) in §4.2.) The area of the rectangle is 2

N4.3.2

|δxu| · |δxs | sinϕ(x) + higher order infinitesimals, (4.3.20)e4.3.20

2 By higher order infinitesimal one means o(λ2N ), whereas the first term in (4.3.20) is
O(λ2N ).
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where, see caption to Fig. (4.3.1), δxu and δxs are the segments x′x′′ and
x′x′′′, |δxu| and |δxs | are the corresponding lengths (in the S–adapted metric
considered here), and ϕ(x) is, up to higher order infinitesimals, equal to the
angle ϕ(x′) between them (always in the considered metric). By definition
of m0 (4.3.20) is also the m0–measure of the cylinder C−N ...0 ... N

σ−N ...σ′
0...σN

.

One repeats an analogous argument for the cylinder C−N... 0... N
σ−N ...σ′′

0 ...σN
and,

therefore, the limit (4.3.19) coincides with

sinϕ(x)

sinϕ(y)
lim
N→∞

|δxu| · |δxs |
|δyu| · |δys |

. (4.3.21)e4.3.21

If we call x′, x′′ the extremes of δxu and y′, y′′ the extremes of δyu we see that
x′, x′′ are on the same unstable boundary of SNQσ−N and, likewise, y′, y′′

are on the same unstable boundary of SNQσ−N , see Fig. (4.3.2), although
of course the segments δxu and δxu may be very far from each other as the
first is inside Qσ′

0
and the second inside Qσ′′

0
with σ′

0 6= σ′′
0 .

We can therefore write, for all k with 0 ≤ k < N ,

|δxu|
|δyu|

=
|S−kSkδxu|
|S−kSkδyu|

=
(
∏k
j=1 λ

−1
u (Sjx′))|Skδxu|

(
∏k
j=1 λ

−1
u (Sjy′))|Skδyu|

, (4.3.22)e4.3.22

where x′ and y′ tend, respectively, to x and y for N →∞. We can remark
that k is arbitrary, so that we conveniently choose it to be k = ωN with
ω ∈ (0, 1) to be fixed below.
Since the points Sjx′ and Sjy′ are on the same stable manifold they get
close exponentially fast and their distance is ≤ λj , see Fig.(4.3.2).

x′′

x′

Qσ′
0

u

s

y′′

y′

Qσ′′
0

Fig.(4.3.2)F4.3.2 The points x′, y′ and x′′, y′′ are, respectively, on the same stable manifolds

because their symbols coincide at all sites different from 0 so that they are on the same
“vertical” boundary of SNQσ−N . However they lie in different elements of the Markovian

pavement (namely Qσ′
0
and Qσ′′

0
).

The Hölder continuity of λu(x) therefore implies that the ratio of the prod-
ucts in (4.3.22) converges as k = ωN → ∞. The two arcs SωNδxu and
SωNδyu become very close to each other and their distance is of the order
of ≤ O(λωN ) because they are on the same stable manifolds and initially
they are far away at a distance of order 1. Considering that the initial
length of δxu and δyu is O(λN ) we see that although their extreme points
(x′, x′′ or y′, y′′) grow quite far from each other these segments stay short,
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SMx′

SMx′′

SMy′

SMy′′

QσMλ(1−ω)N→

↑ λωN
Fig.(4.3.3)F4.3.3 The result of the application of a large iterate M = ωN of S to the

region x′, x′′, y′, y′′ in Fig. (4.3.2) if the segments (x′, x′′) = δxu and (y′, y′′) = δyu are
short enough. The stable manifold arc x′, y′ becomes very short while the arcs x′, x′′ and
y′, y′′ remain short because they were extremely close and, for large N , ωN = M ≪ N .
The result is that the SM image of the rectangle x′, x′′, y′, y′′ is small in all directions
and if ω is chosen close enough to 1 (but < 1) it will look like a rectangle which is very
elongated vertically, i.e. in the unstable direction: d(SMx′, SMy′), d(SMx′′, SMy′′) ≪
d(SMx′, SMx′′), d(SMy′, SMy′′). In the figure the two dimensions of the rectangle are
drawn of the same order of magnitude and the rectangle is drawn so big for illustration
purposes but it should be much smaller than the enclosing rectangle QσM .

i.e. O(λ(1−ω)N ). Therefore we can find 0 < ω < 1 such that for M = ωN
the picture is as in Fig.(4.3.3).
The angles between the four sides of the rectangle vary quite smoothly
(i.e. Hölder continuously), therefore the ratio between the lengths |SMδxu|
and |SMδyu| gets as close to 1 as wished for N → ∞: this, together with a
symmetric argument to study the ration |δxs |/|δys |, yields the conclusion

lim
N→∞

δxu
δyu

=
∞∏

k=1

λ−1
u (Skx)

λ−1
u (Sky)

, lim
N→∞

δxs
δys

=
∞∏

k=1

λs(S
−kx)

λs(S−ky)
. (4.3.23)

e4.3.23

This proves property (i).
To show property (ii) one proceeds analogously and the details are omitted.
The statement (iii) is a consequence of (4.3.8) and (4.3.9) and of the explicit
equations that are derived to obtain (4.3.12): one thus deduces naturally an
expression for the f in (4.3.12) and its Hölder continuity. Details are again
omitted: essentially identical arguments will be exposed in detail in Section
§(5.3) in connection with a similar problem and the reader can refer to it.

A corollary of the above proof, in particular of the argument leading to
(4.3.23), is the following version of Fubini’s theorem

(4.3.1) Corollary:C4.3.1 (Adapted Fubini’s theorem)
Let (M,S) be a two-dimensional Anosov map. Given x0 ∈ M consider
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the rectangle R = W s
δ (x0) ×Wu

δ (x0) where δ is small enough so that the
point [x, y] is uniquely defined (cf. Fig.(4.2.1)). Then the volume of a subset
E ⊂ R is given by

µ0(E) =

∫

Wu
δ
(x0)

dσy

∫

W s
δ
(x0)

dσx·

· sinα([y, x])
∞∏

i=1

λ−1
u (S−i[y, x])

λ−1
u (S−ix)

λs(S
i[y, x])

λs(Six)
χE([y, x]),

(4.3.24)e4.3.24

where dσy , dσx are the area measures (i.e. arc length) on Wu
δ (x0),W

s
δ (x0)

and α([y, x]) is the angle between the stable and unstable manifolds at [y, x].

This result in fact is general and it holds in any dimension. An interesting
similar result will be mentioned in Section §(6.2).
Problems for §4.3

[4.3.1]:Q4.3.1 (Markovian interval maps)

Consider a continuous map S of [0, 1] into itself. Suppose that S is of class C1+ε, ε > 0,
in [ai, ai+1] = Qi, i = 0, . . . , n − 1, where a0 = 0 < a1 < a2 < . . . < an−1 < an = 1.
Suppose that |S′(x)| ≥ λ > 1, for all x ∈ [ai, ai+1] (at the extremes one should interpret
S′ as right or left derivative). Finally assume that S is “Markovian”: for each i = 0, . . . , n
there is j(i) such that Sai = aj(i). Set Tσσ′ = 0 if S(a0, aσ+1) ∩ (aσ′ , aσ′+1) = ∅ and

Tσσ′ = 1 otherwise. Show that the code that associates with σ ∈ {0, . . . , n − 1}Z+

T the
point

X(σ) =
∞
∩
k=0

S−kQσk

is Hölder continuous in the sense that |X(σ) − X(σ′)| < C d(σ, σ′)α, with C > 0 and
α = log λ.

[4.3.2]:Q4.3.2 Denote by ϕσ : [Saσ, Saσ+1] → [aσ , aσ+1] the inverse function of S on

[Saσ, Saσ+1] (“σ–th branch of the inverse S−1 of S”). Show that the function Â(σ) =
− log |ϕ′

σ0
(X(σ1σ2 . . .))| is Hölder continuous on {0, . . . , n− 1}ZT .

[4.3.3]:Q4.3.3 (Coding of Lebesgue measure via a Markovian interval map)

Show that the Lebesgue measure µ0 on [0, 1] is coded by X into a measure m0 on

{0, . . . , n− 1}Z+

T
such that

m0(σ′0 . . . σ
′
n|σn+1 . . .)

m0(σ′′0 . . . σ
′′
n|σn+1 . . .)

= exp

(
−

∞∑

k=0

[Â(τkσ′)− Â(τkσ′′)]
)
,

where τ(σ0σ1 . . .) = (σ1 . . .). Note that the sum is, in fact, finite. (Hint: One repeats
the argument leading to (4.3.23): however in this case it becomes much simpler.)

[4.3.4]:Q4.3.4 (Expansive maps and Markovian pavements)
Give a definition of Markovian pavement for an expansive map of a compact topological
metric space inspired by the previous problems and by the definition (4.1.3). Here we say
that S is expansive on Ω (a metric compact space) if there exist λ < 1 and ε > 0 such
that d(x, y) ≤ λ · d(Sx, Sy), for every pair x, y such that d(x, y) < ε; and furthermore
the equation Sy = y′ has only one solution y such that d(x, y) < ε/2 for every x such
that d(Sx, y′) < ε/2.

[4.3.5]:Q4.3.5 (Interval maps and invariant absolutely continuous measures)

Show, in the context of problem [4.3.3], that the condition for the existence of an S–

invariant measure µ = hµ0 absolutely continuous with respect to µ0 is that there exists

20/novembre/2011; 22:18



142 Problems for §4.3

a solution to the equation in L1(m0)

h(σ0σ1σ2 . . .) =

n−1∑

σ′=0

e−Â(σ′σ0σ1...)h(σ′σ0σ1 . . .)

m0–a.e, if we set h(σ) = h(X(σ))). (Hint: Write the condition µ(E) = µ(S−1E), that
is

h(x) =

n−1∑

σ′=0

|ϕ′
σ′(x)| h(ϕσ′ (x)) x ∈ L1(µ0)

in the symbolic variables σ.)

[4.3.6]:Q4.3.6 (A non-generating Markovian pavement for the square root of Arnold’s cat

map)

Consider the map of T2 into itself defined by the matrix S =

(
2 1
1 1

)
and let v± be the

two eigenvectors of S with components (1, λ+−1) and (1, λ−−1) where λ± = (3±
√
5)/2

are the eigenvalues of S. Construct the pavement formed by three rectangles with sides
parallel to v± as in Fig. (4.3.4).

1 1

2

2

3

Fig.(4.3.4)F4.3.4 The pavement of problem [4.3.6] with three rectangles whose sides lie on two
connected portions of stable and unstable manifold of the fixed point at the origin.

Check that it verifies the property (4.1.7). Show that nevertheless it is not a Markovian
pavement according to definition (4.1.3) (see remark (5) after that definition). Show that

the same pavement is also not Markovian for the map of T
2 generated by the matrix

S0 =

(
1 1
1 0

)
and note that S2

0 ≡ S. Compute the transition matrix for the latter map

showing that it is

T =

( 1 2 3

1 0 1 0
2 1 0 1
3 1 0 0

)

and that T 5
ij > 0 for all i, j = 1, 2, 3. (Hint: The property (4.1.7) follows simply because

the unions of the boundaries consisting of stable or of unstable manifolds of the origin
are connected and therefore invariant under S or S−1 respectively. It is not Markovian
because the sets in (4.1.3) do not consist of a single point, so that the property (i) in
definition (4.1.3) is not fulfilled. The image of the rectangle labeled 1 (for instance)
crosses the rectangle labeled 2 in two sets with disconnected interiors.)
grestore

[4.3.7]:Q4.3.7 (A generating Markovian pavement of the square root of Arnold’s cat map)

Consider the partition in Fig.(4.3.5) and show that it is a Markovian partition for the
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1 1

2

2

3
1 1

3

3

4

2

2

3

1
1

1
1

3
3

2
2

4

4

Fig.(4.3.5)F4.3.5 A Markovian pavement (left) for the square root S0 of Arnold’s cat map.
It is obtained from the partition in Fig. (4.3.4) by continuing a little further the stable
manifold of the origin breaking into two parts the rectangle labeled 2 (whose large size
was responsible for the non-Markovian nature of the pavement in Fig. (4.3.4)). The
images under S0 of the pavement rectangles is shown in the right figure: corresponding
rectangle are marked by the same colors.

square root S0 of Arnold’s cat map with transition matrix

T =




1 2 3 4

1 0 1 1 0
2 1 0 0 0
3 1 0 0 1
4 1 0 0 0


,

and check that T 5
σσ′ > 0 for all σ, σ′ = 1, 2, 3, 4.

[4.3.8]:Q4.3.8 (An example of a hyperbolic algebraic map on T
3)

The compatibility matrix of a Markovian pavement may define a hyperbolic algebraic
map on a torus of dimension equal to the number of elements of the pavement. Check
that this is the case for the matrix T in problem [4.3.6]. Check also that this is not the
case for the matrix T , which is the compatibility matrix of a generating pavement, in
problem [4.3.7]. (Hint: The characteristic equation for the eigenvalues of the matrix T of
problem [4.3.6] is λ3 = λ+1 and the eigenvector corresponding to the largest eigenvalue
λ (spiral mean) is (1, λ, λ−1). This is a vector with rationally independent components,
see problems [8.1.2], [8.1.4] and [8.1.4] below.)

[4.3.9]:Q4.3.9 (A simple construction of Markovian pavements for two-dimensional Anosov

systems)
Show that the construction of Markovian pavements in two dimensional Anosov systems
admitting a fixed point can be easily obtained by generalizing the construction in problem
[4.3.6], i.e. by drawing a connected part of the stable and unstable manifolds of the fixed
point and letting them “go around” until they form a net whose elements have a diameter
smaller than a prefixed δ (using the density of the stable and unstable manifolds, see
problem [4.2.18]) and stopping the drawing of the stable manifold when its extremes
cross the unstable manifold and viceversa, as done in the illustration in Fig.(4.3.4).

[4.3.10]:Q4.3.10 By problem [4.2.18]) also the stable and unstable manifolds of a periodic point
are dense. Furthermore Anosov systems admit a dense set of periodic points, as problem
[4.2.13] shows. Show that this implies that the construction in problem [4.3.9] can be
estended to Anosov systems which have no fixed point. (Hint: Let x0 be a periodic point
for S with period p. Then x0 is a fixed point for the Anosov map Sp and the stable
and unstable manifolds for Sp and for S are the same. Then we construct a Markovian
pavement P0 with the method of problem [4.3.9] and, by the argument discussed in the

proof of proposition (4.2.1), at item (C), ∩p−1
j=0 S

jP0 is a Markovian pavement for S.)

Bibliographical note to §4.3
The idea of using Markovian pavements to code symbolically topological
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measures associated with an algebraic hyperbolic map of the torus is due
to Adler and Weiss, [AW68], and Sinai, [Si68a], [Si68b], [Si72], who proved
and applied various versions of proposition (4.3.2). Another interesting
application to the theory of systems endowed of an attractor that verifies
the axiom A of Smale is in [Ru76]. Markovian maps of the interval have
been studied by several authors, see for early contributions [Ru77], [PY79]
and [CE80a].
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CHAPTER V

Gibbs distributions

§5.1 Gibbs distributions

The study of the general structure of dynamical systems, begun in the pre-
vious sections, could continue and constitutes one of the directions in which
ergodic theory can be developed. We shall, however, look in a somewhat
different direction dedicating attention to a few concrete problems that do
not belong to the general theory. The more concrete studies involve analytic
work of “classical” type and are more directly related to the applications.

In the previous sections, for instance in proposition (4.3.2), we faced for the
first time, in implicit form, the following problem: given a probability dis-
tribution on {1, . . . , q}ZT described by its family of conditional probabilities,
under which conditions do the latter determine the probability distribution
uniquely?

If the conditional probabilities are assigned in a form similar to (4.3.11)
or (4.3.12) with the functions Aa having the form (4.3.13) or (4.3.16) the
problem is known as the “determination of a Gibbs distribution from its
potential”.

To proceed orderly it is convenient to set up a general definition and an ap-
propriately suggestive nomenclature, in spite of a few repetitions of notions
and definitions already discussed previously in different contexts.

Let T be a (n+ 1)× (n+ 1) compatibility matrix, with entries equal to 0
or 1, and let Ω = {0, . . . , n}ZT = {σ |σ ∈ {0, . . . , n}Z, ∏+∞

−∞ Tσiσi+1 = 1} be
the space of the T –compatible sequences, cf. definition (4.1.1).

We shall say that the cylinder CJσ with base J and specification σ (J =
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{j1, . . . , jq} ⊂ Z, σ ∈ {0, . . . , n}J) is a T –compatible cylinder if CJσ ∩
{0, . . . , n}ZT 6= ∅.
If Λ ⊂ Z is a set, finite or not, B(Λ) will be the σ–algebra generated by
the cylinders with base in Λ. If Λ is finite with |Λ| elements then B(Λ) is a
finite σ–algebra with at most |Λ|n+1 atoms.
The matrix T is said mixing, cf. (4.1.1), if there exists an integer z ≥ 0
such that T z+1

σσ′ > 0 for all σ, σ′ ∈ {0, . . . , n}: the minimum value of such z
will be denoted a(T ) and it will be called mixing time (or mixing length) of
T .
If T is mixing the dynamical system ({0, . . . , n}ZT , τ) will be topologically
mixing.1N5.1.1

If m is a probability distribution on Ω and if Λ ⊂ Z is a finite set,2 we canN5.1.2

define, for every T –compatible cylinder CΛ
σΛ

with base Λ, the probability

distribution on B(Λc)

m′(E) = m(CΛ
σ
Λ
∩ E), E ∈ B(Λc). (5.1.1)e5.1.1

Such a probability distribution is obviously absolutely continuous with re-
spect to the restriction of m to B(Λc), which we shall still denote with
m, and the Radon–Nykodim derivative of m′ with respect to m will be a
(m,B(Λc))–measurable function:

σ′ → m(σΛ|σ′
Λc) =

dm′

dm
(σ′), (5.1.2)e5.1.2

where the notation is admissible because dm′

dm (σ′), being (m,B(Λc))–
measurable, depends on σ′ only via the restriction to Λc of σ′ : σ′

Λc =
(σ′
j)j∈Λc .

The (5.1.2) is the probability of the event σΛ in Λ conditional to the event
σ′
Λc in Λc.

Extending a convention, employed so far, we shall consider pairs J1 and
J2 ⊂ Z, J1 ∩ J2 = ∅, and if σJ1

∈ {0, . . . , n}J1 and σJ2
∈ {0, . . . , n}J2 then

σJ1
σJ2

will denote the element σ′
J1∪J2

∈ {0, . . . , n}J1∪J2 such that σ′
i = σi,

for all i ∈ J1 ∪ J2.
The following general definition of Gibbs distribution or Gibbs measure or
Gibbs state is obviously inspired by (4.3.11), (4.3.12) and (4.3.16); making
use of the notions and notations previously introduced we set the following
definition.

(5.1.1) Definition:D5.1.1 (Potentials for symbolic dynamics)

Let T be a mixing compatibility matrix for the sequences in {0, . . . , n}Z and
let a(T ) be the mixing time of T , cf. definition (4.1.1). Let B the space

1 Given two open sets F and G there exists N0 such that SNF ∩G 6= ∅ for all N ≥ N0.
2 We shall say that Λ is an interval or, equivalently, that it is connected if Λ is given by

the intersection of Z with an interval of R.
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of the sequences Φ = {ΦX}X⊂Z parameterized by the finite subsets of Z,
consisting in the functions

ΦX : {0, . . . , n}X → R (5.1.3)e5.1.3

such that, having set ‖ΦX‖ = maxσ∈{0,...,n}X |ΦX(σ)|, one has
(i) (Shift invariance) Φ is invariant under translations of Z, i.e. for all
σ1, . . . , σp

ΦX(σ1, . . . , σp) = ΦτX(σ1, . . . , σp), (5.1.4)e5.1.4

if X = (ξ1, . . . , ξp) and τX = (ξ1 + 1, . . . , ξp + 1).
(ii) (Stability) Φ is “summable”:

‖Φ‖ ≡
∑

X∋0

‖ΦX‖
|X | < +∞. (5.1.5)e5.1.5

We shall say that B is the space of the potentials on {0, . . . , n}ZT = Ω. The

function on {0, . . . , n}ZT (cf. the third of (4.3.16)) defined by

AΦ(σ) =
∑

X∋0

ΦX(σX)

|X | (5.1.6)e5.1.6

will be called potential energy per site or energy function associated with Φ.

Remark: In classical potential theory the energy of a configuration of
points on Z interacting via a potential Φ(x, y) is written as

∑

(x,y)∈Z2

σxσyΦ(x, y) =
∑

x∈Z

(∑

y∈Z

y 6=x

σxσyΦ(x, y)

2

)
, (5.1.7)e5.1.7

where σx = 0 if the site x is empty and σx = 1 if it is occupied. This explains
the name given to (5.1.6) and why Φ is called a many-body potential or, more
properly, a collection of many-body potentials. In the case of (5.1.7) one
can imagine that ΦX = 0 unless X = {x, y} and Φ{x,y}(σ, σ′) = σσ′Φ(x, y):
this is the case in which the potential is a two-body potential.

In terms of potentials it is possible to give a general enough notion of Gibbs
distribution.

(5.1.2) Definition:D5.1.2 (Gibbs distributions, DLR equations)

In the context of definition (5.1.1) we shall say that m ∈M0({0, . . . , n}ZT ) is
a Gibbs distribution on {0, . . . , n}ZT with potential Φ ∈ B if it is a probability

distribution on the Borel sets of {0, . . . , n}ZT whose conditional probabilities
m(σΛ|σΛc) are, m–almost everywhere, such that 3

N5.1.3

m(σ′
Λ|σΛc)

m(σ′′
Λ|σΛc)

= exp
(
−

+∞∑

k=−∞
{AΦ(τ

kσ′)−AΦ(τ
kσ′′)}

)
(5.1.8)e5.1.8

3 One refers to (5.1.8) by calling it Dobrushin–Lanford–Ruelle relations or simply DLR
relations; see also remark (5) after this definition.
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for every interval Λ ⊂ Z longer than a(T ) and for σ′ = (σ′
ΛσΛc), σ

′′ =

(σ′′
ΛσΛc) ∈ {0, . . . , n}ZT .4N5.1.4

Equivalently: m is a Gibbs distribution with potential Φ if for every long
enough interval Λ one has, m–almost everywhere,

m(σΛ|σΛc) =
exp

(
−∑R∩Λ6=∅ ΦR(σR)

)
∑
σ′
Λ
exp

(
−∑R∩Λ6=∅ ΦR(σ

′
R)
) , (5.1.9)e5.1.9

where (5.1.9) are interpreted as zero if σ /∈ {0, . . . , n}ZT .
The set of the Gibbs distributions with potential Φ will be denoted G0(Φ),
G(Φ) ⊂ G0(Φ) will be the set of the Gibbs distributions on {0, . . . , n}ZT
which are invariant under translations,5 Ge(Φ) ⊂ G(Φ) will be the set ofN5.1.5

the ergodic Gibbs distributions with potential Φ, etc.

Remarks: (1) It is necessary to associate with this definition an existence
theorem. Indeed it is by no means clear that Gibbs distributions exist, as it
is not obvious that translation invariance of the potential implies translation
invariance of the relative Gibbs distributions. In fact shift invariance is not
in general a consequence of the shift invariance of the potential. We shall not
meet such “pathologies” in what follows because the potentials we consider
will have further properties which allow to exclude them.
(2) Equivalence between (5.1.8) and (5.1.9) follows from (5.1.6) and from
the observation that

∞∑

k=−∞
{AΦ(τ

kσ′)−AΦ(τ
kσ′′)} =

∑

R∩Λ6=∅
{ΦR(σ′

R)− ΦR(σ
′′
R)}, (5.1.10)e5.1.10

that is obtained from the definitions. Furthermore in (5.1.10) the sum can
be decomposed, as shown by the right hand side, into 2 absolutely conver-
gent sums. This shows immediately that m(σΛ|σΛc) must be proportional
to exp(−∑R∩Λ6=∅ ΦR(σR)). The denominator in (5.1.9) is precisely the
normalization coefficient determined by the condition

∑
σΛ
m(σΛ|σΛc) = 1,

which holds because m(σΛ|σΛc) is a conditional probability.
What said so far is correct for every connected Λ ⊂ Z provided all the
elements of T are positive. In the general case, if T is only mixing, it is nec-
essary to consider in the previous argument only T –compatible sequences.
This does not present particular difficulties provided Λ is a large enough in-
terval (at least longer than a(T )). If Λ is too short and T has many zeroes
it could happen that the denominator of (5.1.9) is zero for some σ because

4 More precisely: chosen σ ∈ {0, . . . , n}ZT m–almost everywhere and chosen σ′Λ, σ
′′
Λ ∈

{0, . . . , n}ΛT then (5.1.8) holds provided Λ is connected and of length larger than a(T ),
where a(T ) is the mixing time of T . The latter condition is needed to make sure that
the denominator in (5.1.8) or (5.1.9) does not vanish.

5 We call a distribution m on {0, . . . , n}ZT invariant under translation if τm = m where

the action of τ on the probability distributions is obvious: we set (τm)(E) = m(τ−1E),
for all E ∈ B.
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there might be no possibility to match the sequence σΛc outside Λ with at
least one sequence σΛ internal to Λ so that σΛσΛc is T –compatible. In the
latter case the definition becomes more involved as one has to appeal to
the fact that sequences σ with probability 1 will be compatible: we simply
state as a part of the definition that Λ be connected and long enough to
avoid having to deal with the problem, as it is not necessary to do so. Of
course once the conditional probabilities relative to an interval Λ are known
the ones relative to shorter intervals Λ′ ⊂ Λ are also determined so that
requiring property (5.1.9) for long intervals L is not restrictive.
(3) The reader familiar with the theory of Markov processes will recognize
without difficulty that the case ΦX = 0 if |X | > 2 or if X = {x, y} is
not a pair of nearest neighbors corresponds to the case of a mixing Markov
process: hence Gibbs processes, i.e. Gibbs distributions, constitute a (non-
trivial) generalization of Markov processes.
(4) We shall denote the expression (5.1.9) with the symbol pΦ(σΛ|σΛc) and
its denominator will be called simply the “normalization”.
(5) The properties (5.1.8) and the equivalent (5.1.9) are called DLR equa-
tions. Here they are taken as defining properties of Gibbs distributions.
However in other approaches the Gibbs distributions are defined in a differ-
ent way and the DLR relations become theorems. See also Section §(6.1).
Before discussing some properties of Gibbs distributions it is convenient to
set the following definition.

(5.1.3) Definition:D5.1.3 (Bulk and surface energies)
In the context of the definitions (5.1.1) and (5.1.2), let Φ ∈ B, Ω ∈
{0, . . . , n}ZT , Λ ⊂ Z, |Λ| < +∞, and set

(i) U0
Λ(σ) =

∑

R⊂Λ

ΦR(σR),

(ii) UΛ(σ) =
∑

R∩Λ6=∅
ΦR(σR),

(iii) EΛ(σ) =
∑

j∈Λ

AΦ(τ
jσ),

(5.1.11)
e5.1.11

which we call, respectively, the energy of σΛ in Λ, the energy of σΛ in Λ
with boundary condition σΛc outside Λ, and the contribution of Λ to the
energy of the configuration σ. Furthermore we set

UΛ(σ) = EΛ(σ) +DΛ,1(σ), U0
Λ(σ) = EΛ(σ) +DΛ,2(σ), (5.1.12)e5.1.12

and, finally,

ε(Λ) = sup
σ∈{0,...,n}Z

T

(
|DΛ,1(σ)|+ |DΛ,2(σ)|

)
, (5.1.13)

e5.1.13

εN,a = ε([a, a+ 1, a+ 2, . . . , a+N − 1]), (5.1.14)e5.1.14
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and DΛ,1(σ), DΛ,2(σ) will be called surface corrections or surface terms.

Remarks: (1) The names come from the form and the interpretation of
equations (5.1.11)÷(5.1.14) in the case of the theory of the potential dis-
cussed in the remark to definition (5.1.1): the reader should write the various
quantities just defined in that case.
(2) Note that |U0

Λ(σ)|, |UΛ(σ)|, |EΛ(σ)| ≤ ||Φ|| |Λ|.
(3) With the new notations the r.h.s. of (5.1.9) is written as

pΦ(σΛ|σΛc) =
exp

(
− UΛ(σ)

)

normalization
, (5.1.15)e5.1.15

and it is an expression that makes sense without referring to any distribu-
tion m. It will be called the “probability of the configuration σΛ in presence
of the external configuration σΛc” and we shall say that it is “proportional
to the exponential of the opposite of its energy”. In Statistical Mechan-
ics the probability distributions, on the space of the configurations of a
system, which associate with a configuration a probability proportional to
the exponential of −U , if U is the energy of the configuration, are called
Boltzmann–Gibbs distributions and have great importance for Physics.
(4) An immediate consequence of the finiteness of the norm ‖Φ‖ is that

lim
N→∞

εN,a/N = 0, (5.1.16)e5.1.16

that explains the name of “surface corrections” used for DΛ,1(σ), DΛ,2(σ).
The reader should check that if B0 ⊂ B is the space of the finite range
potentials, i.e. of the potentials Φ ∈ B with ΦX = 0 except for a finite
number of sets X , then

εN,a ≤ ‖Φ‖RΦ, (5.1.17)e5.1.17

where RΦ is defined by

RΦ = max
X,ΦX 6=0

diam(X), (5.1.18)e5.1.18

and is called the range of Φ.

We conclude this section by proving the following proposition.

(5.1.1) Proposition:P5.1.1 (Existence of Gibbs states)
If T is a mixing compatibility matrix with labels 0, . . . , n and if Φ is a poten-
tial on {0, . . . , n}Z then the sets G0(Φ) and G(Φ) are not empty: therefore
there exists at least one translation invariant Gibbs distribution with poten-
tial Φ ∈ B, cf. definition (5.1.1).

Proof: To check the proposition we begin with a general remark on prob-
ability distributions on spaces of sequences: as implied by the definition
of conditional probability a function σ′ → m(σΛ|σ′

Λc) is the conditional
probability of the event CΛ

σ
Λ
with respect to the σ–algebra B(Λc) and to
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the probability distribution m if and only if, given arbitrarily two func-
tions σ → f(σΛ) and σ → g(σΛc) continuous and, respectively, B(Λ) and
B(Λc)–measurable, the following Fubini’s conditional integration holds

∫
fgdm ≡

∑

σ
Λ

∫
f(σΛ)g(σ

′
Λc)m(σΛ|σ′

Λc)m(dσ′
Λc), (5.1.19)e5.1.19

where, for ease of notations, we do not use a different symbol for the prob-
ability distribution m on B and for its restriction to the σ–algebra B(Λc).
Note, furthermore, that Φ ∈ B (so that ||Φ|| < ∞, see definition (5.1.1))
implies that σ → pΦ(σΛ|σΛc), defined by the (5.1.15) with Λ large enough,
is a continuous function of the variable σ ∈ {0, . . . , n}ZT .
We first show that G0(Φ) is a convex and compact (possibly empty) set
if it is regarded as a subset of the space of the probability distributions
M0({0, . . . , n}ZT ) thought of, as usual, as a topological space with the weak

topology induced on it by the continuous functions on {0, . . . , n}ZT .
Indeed (5.1.19) written for m1 and m2 in G0(Φ), i.e. with m(σΛ |σΛc) =
pΦ(σΛ |σΛc) in both cases, implies that also αm1 + (1 − α)m2, α ∈ (0, 1),
is in G0(Φ) (as we see by performing the suitable linear combination of
(5.1.19) written for m1 and m2). Furthermore, if we consider a sequence
of probability distributions mk ∈ G0(Φ) weakly converging to m and we
write (5.1.19) for mk we see that, due to the continuity of f , g and pΦ as
functions of σ, also m ∈ G0(Φ), i.e. that G0(Φ) is closed (hence compact).6N5.1.6

Another preliminary observation is that if Φk ∈ B, k = 1, 2, . . . is a se-
quence of potentials in B which converges in the norm (5.1.5) to Φ ∈ B
and if mk ∈ G0(Φk), k = 1, . . ., is a corresponding sequence of Gibbs dis-
tributions converging to a probability distribution m, then m ∈ G0(Φ)
(continuity of Gibbs states as functions of their potential). In fact the con-
vergence of Φk to a Φ in B implies, as it is immediate to see, that for every
Λ = {−N, . . . , N}, N > a(T ), the limit

lim
k→∞

pΦk(σΛ|σΛc) = pΦ(σΛ|σΛc) (5.1.20)e5.1.20

takes place uniformly in σ ∈ {0, . . . , n}ZT . Therefore, due to the uniformity
in σ of the limit (5.1.20), equation (5.1.19) written for mk implies that
m ∈ G0(Φ) (by taking the limit k→∞).
From the latter considerations and from the metric compactness of the
space M0({0, . . . , n}ZT ) of the probability distributions on {0, . . . , n}ZT it
follows that it will suffice to show that G0(Φ) 6= ∅, for all Φ ∈ B0, where
B0 ⊂ B is an arbitrary subset of B which is dense in B in the norm (5.1.5).

6 We always consider the weak topology on the space of probability distributions, i.e. two
probability distributions are close to each other if the integrals that they attribute to a
finite large enough family of continuous functions are close to each other, see footnote
1, Section §2.3. In this topology the space of the probability distributions on a compact
separable space is compact.
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This will also show that G(Φ) 6= ∅: indeed if G0(Φ) 6= ∅ we shall be able
to consider, given m0 ∈ G0(Φ), the average over translations

m
(N)
0 (E) = N−1

N−1∑

k=0

m0(τ
kE), E ∈ B({0, . . . , n}ZT ), (5.1.21)e5.1.21

which is a convex combination of elements in G0(Φ) because if m ∈ G0(Φ)
also E → m0(τE) is a probability distribution in G0(Φ) (as follows from
the translation invariance of Φ and pΦ and from (5.1.19)).

Every limit point of the sequence m
(N)
0 defined in (5.1.21) is in G0(Φ),

since G0(Φ) is closed, and furthermore it is obviously τ–invariant, i.e. it is
in G(Φ), which, therefore, is not empty.
It remains to show that G0(Φ) 6= ∅ for Φ in a dense set B0 ⊂ B: it is
natural to select the set B0 to be the set of the finite range potentials (cf.
remark (4) to definition (5.1.3)). If Φ ∈ B0 we denote by RΦ its range, as
in (5.1.18), and define a sequence of “approximate” Gibbs distributions via
the integrals that they assign to continuous functions.
Let σ̂ be a configuration arbitrarily chosen in {0, . . . , n}ZT (which will be
used to define a boundary condition) and let Λk = [−k, k], k > a(T ). We
define

∫
f(σ)m

k,σ̂
(dσ)

def
=
∑

σ′
Λk

f(σ′
Λk
σ̂Λc

k
)

e
−UΛk

(σ′
Λk
σ̂Λc

k
)

∑
σ′′
Λk

e
−UΛk

(σ′′
Λk
σ̂Λc
k
)
, (5.1.22)e5.1.22

where the two sums are over the configurations σ′
Λk

and σ′′
Λk
∈ {0, . . . , n}Λk

compatible with σ̂, i.e. such that σ′
Λk
σ̂Λc

k
as well as σ′′

Λk
σ̂Λc

k
are sequences

in {0, . . . , n}ZT . The sums in the denominator involve at least one positive
element because k > a(T ). It should be noted that m

k,σ̂
only depends on

σ̂ via σ̂Λc
k
: in other words fixing σ̂ actually is a convenient way to fix a

sequence of boundary conditions on the intervals Λk.
We can compute the conditional probability mk(σΛ|σΛc) of the probability
distributions mk just defined, finding

mk(σΛ|σΛc) = pΦ(σΛ|σΛc) for all σ ∈ {0, . . . , n}ZT (5.1.23)e5.1.23

for every interval Λ = [a, b] such that |Λ| > a(T ) and Λ is “well inside” Λk,
i.e. ΛRΦ = [a−RΦ, b+RΦ] ⊂ Λk.
Thereforemk fails to verify (5.1.9), i.e. fails to be in G0(Φ), “only” because
its validity is restricted to Λ well inside Λk. Hence it is natural to take the
limit k →∞: let mki → m be a convergent subsequence extracted from the
sequence {mk}k∈N.
Imagine to write (5.1.19) for cylindrical functions f and g (i.e. for functions
dependent on σ via the values of σj corresponding to a finite number of
j ∈ Z); then the k–independence of the r.h.s. of (5.1.23) (for Λk ⊃ Λ)
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implies that the limit m, as k → ∞ of the selected subsequence verifies
(5.1.19) for all pairs of cylindrical functions f, g.
By the density of the cylindrical functions in the continuous functions and
by (5.1.23), (5.1.19) extends to all pairs of continuous functions so that
m ∈ G0(Φ) and G0(Φ), hence G(Φ) as well, is not empty.

In fact the method of the above proof gives us also an approximation
procedure for the actual construction of an element of G0(Φ).

(5.1.1) Corollary:C5.1.1 (Continuity of Gibbs states with respect to the poten-
tial)
Under the hypotheses of proposition (5.1.1) one has:
(i) G0(Φ) and G(Φ) are not empty, convex, compact and τ–invariant.
(ii) If Φ(k)−−−→

k→∞ Φ is a convergent sequence of potentials in B (convergence

in the norm (5.1.5) of B) and if mk ∈ G0(Φ(k)) and mk −−−→k→∞ m, then

m ∈ G0(Φ); symbolically we shall write

lim
Φ→Φ

G0(Φ) ⊂ G0(Φ). (5.1.24)e5.1.24

(iii) If Φ(k)−−−→
k→∞ Φ in B and if mk ∈ G(Φ(k)) and mk−−−→k→∞ m, then m ∈

G(Φ); symbolically

lim
Φ→Φ

G(Φ) ⊂ G(Φ). (5.1.25)
e5.1.25

Proof: (i) and (ii) have been proved within the proof of proposition (5.1.1)
and (iii) is a consequence of (ii).

Problems for §5.1

[5.1.1]:Q5.1.1 (Bernoulli shifts and Gibbs states)

Study the Gibbs state on {0, 1}Z with potential ΦX = 0 if |X| 6= 1 and Φ{x}(σx) = h(σx)
and prove that it is a Bernoulli scheme.

[5.1.2]:Q5.1.2 (A Markov process)

Study the Gibbs state on {0, 1, 2}ZT with Φ = 0 and T =

(
1 1 1
1 0 1
1 0 0

)
and prove that is a

Markov process. Compute its transition probabilities in terms of the spectral properties
of the matrix T .

[5.1.3]:Q5.1.3 (Gibbs distributions on higher dimensional lattices)
Generalize the notion of Gibbs distribution to the case of the space of d-dimensional

sequences {0, 1}Zd , without compatibility conditions, replacing the translation τ with

the group of the translations of Z
d so that the statements analogous to proposition

(5.1.1) and to corollary (5.1.1) remain valid. (Hint: Just suppose that Λ is a finite cubic
region and require that (5.1.15) gives the conditional probabilities of configurations in Λ
when outside of Λ there is a fixed configuration.)

[5.1.4]:Q5.1.4 (Gibbs states and Markov processes in Z
d)

Generalize the notion of Markov process to the space of the sequences {0, 1}Zd . (Hint:
See problem [5.1.3] and suppose that the range of Φ is 1, i.e. identify Markov processes
with nearest neighbour interaction Gibbs states.).
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[5.1.5]:Q5.1.5 (Averintzev–Spitzer theorem)

Consider the most general probability distribution on {0, 1}Z2
with conditional probabil-

ity m(σ0|σ′) = p(σ0|σ′1σ′2σ′3σ′4) where 1, 2, 3, 4 are the 4 nearest neighbour sites of 0 and

σ0σ′ ∈ {0, 1}Z2
. Suppose, furthermore, that m is invariant under rotations (of π/2) and

that p(.| . . .) > 0. Show that m is a Gibbs state with a potential Φ which can be chosen
so that ΦX = 0 if |X| > 2, Φ{i,j}(σi, σj) = 0 if |i − j| > 1, Φ{i,j}(σi, σj) = Jσiσj if

|i− j| = 1 and Φ{0}(σ0) = hσ0.

[5.1.6]:Q5.1.6 (An equivalence condition for potentials)

If B is the space of potentials on {0, . . . , n}ZT , show that if Φ and Ψ ∈ B and if there exists

C ∈ R and a continuous function F over {0, . . . , n}ZT such that AΦ(σ) = C + AΨ(σ) +
F (σ)− F (τσ), then G(Φ) = G(Ψ). (Hint: Use (5.1.8)).

[5.1.7]:Q5.1.7 (Potentials and Hölder continuous functions)

If A ∈ C({0, . . . , n}ZT ) is a Hölder continuous function and if T is a mixing compatibility
matrix then there exist Φ ∈ B such that A = AΦ. (Hint: See proposition (4.3.2) and
equation (4.3.13).)

[5.1.8]:Q5.1.8 (Particle potentials)

Let B0 be the space of finite range potentials. Under the hypotheses of problem [5.1.6]
with n = 1, Tσσ′ > 0, show that if Φ ∈ B0 there always exists Ψ ∈ B0 such that
G(Φ) = G(Ψ) and ΨX(σX) = 0 unless σξ 6= 0, for some ξ ∈ X. We say that Ψ is
a potential equivalent to Φ and with σ = 0 as vacuum configuration. (Hint: Define Ψ
recursively keeping in mind the equivalence condition in problem [5.1.6].)

[5.1.9]:Q5.1.9 (Existence of particle potentials)

In the context of the problem [5.1.8] find some sufficient conditions in order that Φ /∈ B0

admits an equivalent potential Ψ (i.e. such that G(Φ) = G(Ψ)) with the property of the
Ψ in problem [5.1.8]. (Hint: The recursion suggested in the hint to problem [5.1.8] leads
to an expression for Ψ in terms of sums over values of Φ over various configurations. One
just makes sure that the sums involved are absolutely convergent, including the sum that
provides an estimate for the norm ||Ψ||.)
[5.1.10]:Q5.1.10 (Open boundary conditions)
Assume that the compatibility matrix T has no vanishing entries. Replace in the r.h.s.
of (5.1.22) UΛk (σΛk

σ̂Λc
k
) with U0

Λk
(σΛk

) and f(σΛk
σΛc

k
) with f(σΛk

0) where 0 denotes

the sequence of symbols identically 0. This is equivalent to replacing mk with

m̃k =
∑

σ
Λk

exp
(
− U0

Λk
(σΛk

)
)

∑
σ′
Λk

exp
(
− U0

Λk
(σ′

Λk
)
) δ(σ

Λk
0),

where δ(σΛk
0) is the Dirac probability distribution concentrated on the configuration

that inside Λk coincides with σΛk and outside of Λk is identically zero. The distribution

m̃k is called a finite volume Gibbs distribution with open boundary conditions when 0
is the “vacuum” for the potential Φ in the sense of problem [5.1.8]. Show that every

limit point of the sequence m̃k is in G0(Φ) if Φ ∈ B0, where B0 is space of finite range
potentials. (Hint: Repeat word by word the proof of proposition (5.1.1).)

[5.1.11]:Q5.1.11 Same as problem [5.1.10] but replacing B0 with the set B (in which B0 is

dense).

[5.1.12]:Q5.1.12 Adapt definitions and results of Section §5.1 and the corresponding problems

to the case in which the matrix T is just transitive (rather than mixing).

Bibliographical note to §5.1 and §(5.2)
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The notion of Gibbs distribution represents an interesting product of the
close interaction that took place between Mathematical Physics and Theo-
retical Physics in the 1960’s. It was due to two main reasons. On the one
hand a large number of scientists with a basic formation and research activ-
ity experience in High Energy Physics became interested in the mathemat-
ical problems connected with their previous works. This was done within
the framework of a general rethinking on the foundations of a theory that
seemed to undergo a deep methodology crisis (field theory, i.e. relativistic
quantum mechanics, after the failure of its naive application to the theory of
strong interactions). On the other hand the need by several condensed mat-
ter physicists to refine the theoretical prediction instruments of statistical
mechanics in order to interpret the experimental results on phase transi-
tions (that were produced in great abundance thanks to the substantial
progress of the experimental techniques). The interest into rigorous results
developed mainly for the purposes of having reliable terms of comparison
to check the reliability of hitherto uncontrolled approximations needed to
solve delicate theoretical problems like the theoretical computation of the
critical exponents (made possible, to a previously unimaginable extent, by
the progress of electronic computational machines)
The notion of Gibbs distribution was developed independently in the West
(thanks mainly to the works of Ruelle, Fisher, Griffiths, Lanford, etc.) and
in the East (thanks mainly to the works of Dobrushin, Minlos, Sinai, etc.).
The more or less definitive formulation of the notion and of the basic prop-
erties of a Gibbs distribution can be found in the classical papers [Do68a],
[Do68b], [Do68c], [Do69], [Ru69] and [LR69].

§5.2 Properties of Gibbs distributions

For a better understanding of the nature and properties of Gibbs distri-
butions we shall discuss an important uniqueness criterion and some of its
simple consequences.

(5.2.1) Proposition:P5.2.1 (Uniqueness of Gibbs distributions)
Let T a mixing compatibility matrix with labels 0, . . . , n and with mixing
time a(T ). Let Φ ∈ B be a potential (see definition (5.1.1)) on {0, . . . , n}ZT
and suppose

‖Φ‖1 =
∑

X∋0

(1 + diam(X))

|X | ‖ΦX‖ < +∞, (5.2.1)e5.2.1

(i) Every T–compatible cylinder has positive m–measure for all probability
distributions m ∈ G(Φ) (hence every set of m–probability 1 is dense in
{0, . . . , n}ZT ).
(ii) G0(Φ) contains a unique element m.

Remarks: (1) Condition (5.2.1) says that “the interaction energy between
the left half of a configuration σ and the other half is finite, uniformly in
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σ”: indeed the interaction energy of the left half of the configuration σ with
the right half is naturally defined by

∑

R∩Z+ 6=∅, R∩Z− 6=∅
ΦR(σR) =W (σ−, σ+), (5.2.2)e5.2.2

having performed the division of σ in the left half σ− ≡ (σj)j<0 and the
right half σ+ = (σj)j≥0. Then (5.2.2) is bounded above by (5.2.1) as

|W (σ−, σ+)| ≤ ‖Φ‖1; (5.2.3)e5.2.3

furthermore there exists potentials Φ ∈ B and sequences σ ∈ {0, . . . , n}ZT
for which equality sign holds.
(2) Technically (5.2.1) or (5.2.3) will be employed to compare condi-
tional probabilities. For example if σ′ = (. . . σ̃a−1σ

′
a . . . σ

′
bσ̃b+1 . . .) and

σ′′ = (. . . σ̃a−1σ
′′
a . . . σ

′′
b σ̃b+1 . . .) are in {0, . . . , n}ZT and if we set Λ = [a, b],

one has

pΦ(σ
′
a . . . σ

′
b| . . . σ̃a−1σ̃b+1 . . .)

pΦ(σ′′
a . . . σ

′′
b | . . . σ̃a−1σ̃b+1 . . .)

= e
−
∑

R∩Λ 6=∅
(ΦR(σ′

R
)−ΦR(σ′′

R
)) ≤

≤ e4‖Φ‖1e
−
∑

R⊂Λ
(ΦR(σ′

R
)−ΦR(σ′′

R
))
,

(5.2.4)e5.2.4

as it follows immediately from (5.2.1) and from the translation invariance
of Φ.
Likewise if (. . . σ̃a−1σa . . . σbσ̃b+1) and (. . . σ̂a−1σa . . . σbσ̂b+1 . . .) are in
{0, . . . , n}ZT one has, if b− a > a(T ),

pΦ(σa . . . σb| . . . σ̃a−1σ̃b+1 . . .)

pΦ(σa . . . σb| . . . σ̂a−1σ̂b+1 . . .)
≤ e8‖Φ‖1(n+ 1)a(T ), (5.2.5)e5.2.5

as we see starting from the explicit expression for pΦ, see (5.1.9) and (5.1.15),
and paying attention to the normalization factor.
(3) Note that (5.2.4) and (5.2.5) also imply lower bounds with ‖Φ‖1 replaced
by −‖Φ‖1 and (n + 1)a(T ) by (n + 1)−a(T ), because of the arbitrariness of
σ′, σ′′, σ̃, σ̂.

Proof: In the proof of the second statement we shall suppose, for simplicity,
a(T ) = 0, i.e. Tσσ′ ≡ 1.
Note that if m, m1 ∈ G(Φ) then m is absolutely continuous with respect to
m1, and viceversa, with Radon–Nykodim derivative between exp(−8‖Φ‖1)
and exp(8‖Φ‖1). Indeed one has

m(Ca...bσa...σb) ≡
∫
m(Ca...bσa...σb)m1(dσ̃) =

=

∫
m1(dσ̃)

∫
m(dσ̂)pΦ(σa . . . σb| . . . σ̂a−1σ̂b+1 . . .) ≤ (5.2.6)e5.2.6

≤ e8‖Φ‖1

∫
m1(dσ̃)

∫
m(dσ̂)pΦ(σa . . . σb| . . . σ̃a−1σ̃b+1 . . .) ≡

≡ e8‖Φ‖1

∫
m1(dσ̃)pΦ(σa . . . σb| . . . σ̃a−1σ̃b+1 . . .) ≡ e8‖Φ‖1m1(C

a...b
σa...σb),
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having used inequality (5.2.5) in the third step.
The arbitrariness of a, b and σa . . . σb allow us to deduce from (5.2.6) that
for all E ∈ B

m(E) ≤ e8‖Φ‖1m1(E), (5.2.7)e5.2.7

that shows that m is absolutely continuous with respect to any probability
distribution m1 with Radon–Nykodim derivative f that, by the symmetric
role of m and m1, is in L∞(m1) and

e−8‖Φ‖1 ≤ f(σ) ≤ e8‖Φ‖1 m1 − almost everywhere. (5.2.8)e5.2.8

One has m = f m1 and, at the same time, m and m1 have the same
conditional probability pΦ(σΛ|σΛc), for all Λ = [a, b]: this implies that for
every Λ = [a, b] and every σ1, σ2 ∈ {0, . . . , n}Λ one has

f(σ1
ΛσΛc)

f(σ2
ΛσΛc)

≡ 1 m− almost everywhere in σΛc , (5.2.9)e5.2.9

which from a formal point of view is an obvious relation.1N5.2.1

If we set for k ≥ 0

r(k) ≡
∫
f(σ)km1(dσ), (5.2.10)e5.2.10

it follows, also, that r(k)−1fkm1 is (for every k ∈ Z) a probability distribu-
tion of G0(Φ), since (5.2.9) remains valid if we replace f with the powers of
f itself. By (5.2.8) applied by selecting m′ = r(k)−1fkm1 instead of m one
has

e−8‖Φ‖1 ≤ r(k)−1fk(σ) ≤ e8‖Φ‖1 m1 − almost everywhere, (5.2.11)e5.2.11

for all k ∈ Z.
The relation (5.2.11) and the arbitrariness of k imply that f is constant
m1–almost everywhere, i.e. m = m1. Hence G

0(Φ) consists of a single point
and, therefore, G0(Φ) = G(Φ). This proves the statement (ii).

To show that m(Ca ... bσa...σb) > 0 if Ca ... bσa...σb is T –compatible we treat the
general case, since the case Tσσ′ = 1 is easy but too special. Having set
J = [a − a(T ), b + a(T )], let σJ be a string such that m(CJσJ

) > 0 (which

certainly exists because otherwise m itself would vanish). Then

m(CJσ
J
) =

∫
pΦ(σJ |σ′

Jc)m(dσ′) > 0, (5.2.12)e5.2.12

and, hence, there exists a set D of configurations σ′ such that m(D) > ε
and pΦ(σJ |σ′

Jc) > ε′, for σ′ ∈ D, for some ε, ε′ > 0. One can therefore
construct a configuration σ̂J , T –compatible, that coincides with σJ on the

1 A rigorous check of (5.2.9) passes through Doob’s theorem already cited in Section §3.2
after (3.2.25): we leave this to the reader although it is somewhat subtle.
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extreme sites a−a(T ) and b+b(T ) and with σa, . . . , σb in the sites in [a, b]: it
is clear that σ̂J is T –compatible with σ′

Jc for all σ
′ in D. Hence (5.2.4), the

mentioned properties of m(D) and the strict positivity of pΦ(σJ |σ′
Jc) when-

ever σJ and σ′
Jc are T –compatible immediately imply that alsom(CJ

σ̂J
) > 0.

Since the cylinder Ca ... bσa...σb
that we are considering contains, by construction,

CJσ
J
the result follows.

Note the great simplification of the above proof in the case a(T ) = 0, i.e. in
the case in which all sequences are compatible.

(5.2.1) Corollary:C5.2.1 (Ergodicity and mixing of Gibbs states)
Under the hypotheses of proposition (5.2.1) one has G0(Φ) = G(Φ) =
Ge(Φ) = Gm(Φ).

Remark: Hence if ‖Φ‖1 < +∞ the corresponding Gibbs distribution m is
ergodic, and in fact mixing.

Proof: Let m be an arbitrary probability distribution on {0, . . . , n}ZT , pos-
sibly not in G(Φ). Let B(∞)m be the m–complete σ–algebra generated by
the functions of L1(m) that are B([−N,N ]c)–measurable for all N > 0.

The latter functions are often called functions measurable at infinity be-
cause their values do not change by changing any finite number of labels in
their argument σ. They form an algebra that is called the algebra at infinity
of the probability distribution m.

If B([−N,N ]c)m is the completion2 with respect to m of B([−N,N ]c) oneN5.2.2

has, by definition

B(∞)m = ∩
N>0
B([−N,N ]c)m. (5.2.13)e5.2.13

If f > 0 is a B(∞)m–measurable function and if it ism–summable with inte-
gral 1, then the probability distribution m1 = fm has the same conditional
probabilities, i.e. m(σΛ|σΛc), of the probability distributionm. Indeed such
probabilities would be in general given by the left hand side expression in
the relation

f(σ′
ΛσΛc)m(σ′

Λ|σΛc)

f(σ′′
ΛσΛc)m(σ′′

Λ|σΛc)
=
m(σ′

Λ|σΛc)

m(σ′′
Λ|σΛc)

, (5.2.14)e5.2.14

where the equality takes place because, if f is B(∞)–measurable, f(σ′
ΛσΛc)

= f(σ′′σΛc) since f must assume the same value on configurations that
differ only in a finite number of sites.

It follows that if m ∈ G(Φ) one must have that B(∞)m is a trivial σ–
algebra: if indeed nonconstant B(∞)m–measurable functions f existed then
there would exist positive ones among them and bounded away from 0
and +∞ (e.g. if f was such a function one could take (1 + |f(·)|)/(2 +
|f(·)|)). It could therefore be possible, by multiplying m by any of the
latter, to construct a Gibbs distribution fm different from m itself, against
the uniqueness shown in proposition (5.2.1)

2 See appendix 1.2.
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This implies that m ∈ Gm(Φ), i.e. that m is mixing. Indeed let f , g ∈
C({0, . . . , }ZT ); consider the sequence of functions σ → g(τkσ), k = 0, 1, . . .:
by the compactness of the spheres of L∞(m) with respect to the weak
topology induced by L1(m) one can extract from the sequence a subsequence
g(τkiσ) converging, always in the weak topology, as i → ∞ to a limit
g̃(σ) ∈ L∞(m) such that ‖g̃‖L∞(m) ≤ maxσ |g(σ)|.
It is however clear that g̃ is B(∞)–measurable because

lim
k→∞

|g(τkσ′)− g(τkσ′′)| = 0, (5.2.15)e5.2.15

if σ′ and σ′′ differ only on a finite number of labels (recall that g is assumed
continuous). It follows that g̃ is constant m–almost everywhere, hence

g̃ = lim
i→∞

m(1 · τkig) ≡ m(g), (5.2.16)e5.2.16

i.e. g̃ does not depend on the choice of the subsequence. Therefore we
deduce that g(τk·)−−−−−→

k→+∞ m(g) in the L1(m)–topology of L∞(m). In other
words, and in particular,

lim
k→∞

m(fτk g) = m(f)m(g) (5.2.17)e5.2.17

for every pair of continuous functions f and g and, hence, by density it
follows that m is mixing.

Remarks: (1) We have also shown that B(∞)m (and hence also B(−∞)m =
∩N>0B([−∞,−N ])m ⊆ B(∞)m) is a trivial σ–algebra in the sense that all
functions measurable with respect to it are necessarily constant. The latter
property is, in general, stronger than mixing: the invertible dynamical sys-
tems ({0, . . . , n}Z, τ,m) such that B(∞)m is trivial are called systems with
trivial algebra at infinity, while those for which “already” B(−∞)m is trivial
are called K–systems or systems with trivial remote past.
(2) The notion of K–system is naturally generalizable to invertible metric
dynamical systems (Ω, S, µ): let P = {P0, . . . , Pn} be a nontrivial parti-
tion of Ω into µ–measurable sets (i.e. n ≥ 1 and µ(Pi) > 0 for all i) and
let ({0, . . . , n}Z, τ,m) be the symbolic dynamical system associated with
the (S,P)–histories by (2.3.19) and proposition (2.3.1); we shall say that
(Ω, S, µ) is a K–system if B(−∞)m is trivial for all choices of P .
(3) An interesting property, among many, of K–systems is that one can
show (Sinai) that the triviality of B(−∞)m is equivalent to the requirement
that, for all nontrivial µ–measurable partitions, one has s(P , S, µ) > 0, cf.
definition (3.3.2). We shall not enter into the discussion of the properties
of K–systems.

Problems for §5.2

[5.2.1]:Q5.2.1 (Fisher potential)

Consider the potential on {0, 1}Z defined as follows:
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(i) ΦX(σX) = 0 unless X = [a, b], b ≥ a, and σX = (1, 1, . . . , 1),
(ii) if X = {a, a+ 1, a+ 2, . . . , a+ n} and σa = σa+1 = . . . = σa+n = 1

ΦX(σX) = −Φn.

Show that ‖Φ‖ =
∑∞

n=0
|Φn|, ‖Φ‖1 =

∑∞
n=0

(n+1)|Φn|, and check directly the inequal-

ity |W (σ−, σ+)| ≤ ‖Φ‖1.

§5.3 Gibbs distributions on Z
+

Let T be a (n + 1) × (n + 1) mixing compatibility matrix with mixing

time a(T ) (i.e. T
a(T )+1
σσ′ > 0) and let Φ ∈ B be a potential on {0, . . . , n}ZT .

Let {0, . . . , n}Z+

T be the space of sequences σ ∈ {0, . . . , n}Z+

T such that
Tσiσi+1 = 1, i = 0, 1, . . ., i.e. the space of the “unilateral” sequences with

labels in Z
+.

If m ∈ M0({0, . . . , n}Z+

T ) and if Λ = [a, a + 1, . . . , b − 1, b] ⊂ Z
+, σΛ ∈

{0, . . . , n}ΛT , we called the function σ′ → m(σΛ|σ′
Λc), defined by dm′

dm (σ′),
where m′(E) = m(E ∩ CΛ

σ
Λ
), the “probability of σΛ conditional to σ′ with

respect to the probability distribution m” (cf. definition (5.1.2)).

(5.3.1) Definition:D5.3.1 (Semiinfinite Gibbs distributions)

Let Φ ∈ B be a potential for {0, . . . , n}ZT (see definition (5.1.1)), where T is

mixing with mixing time a(T ) ≥ 0; we shall say that m ∈M0({0, . . . , n}Z+

T )

is a semiinfinite Gibbs distribution or a Gibbs distribution on Z
+

with
potential Φ if the conditional probabilities of m verify

m(σ′
0, . . . , σ

′
a|σa+1, . . .)

m(σ′′
0 , . . . , σ

′′
a |σa+1, . . .)

= exp
(
−

∑

X∩[0,a] 6=∅

X⊂Z+

[ΦX(σ′
X)− ΦX(σ′′

X)]
)

(5.3.1)e5.3.1

for every choice of a ≥ a(T ) and of the sequences σ′ = (σ′
0 . . . σ

′
aσa+1 . . .),

σ′′ = (σ′′
0 . . . σ

′′
aσa+1, . . .) ∈ {0, . . . , n}Z

+

T .

We define the shift τ on {0, . . . , n}Z+

T as

τ(σ0, σ1, . . .) = (σ1, σ2, . . .), (5.3.2)e5.3.2

and the semiinfinite energy per site of Φ as

Â(σ) =
∑

X∋0, X⊂Z
+

ΦX(σX) σ ∈ {0, . . . , n}ZT . (5.3.3)e5.3.3
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In terms of Â we can equivalently say that m is a Gibbs distribution on Z
+

with potential Φ ∈ B if

m(σ′
0 . . . σ

′
a|σa+1 . . .)

m(σ′′
0 . . . σ

′′
a |σa+1 . . .)

= exp
(
−

∞∑

k=0

(Â(τkσ′)− Â(τkσ′′))
)
, (5.3.4)

e5.3.4

with the notations in (5.3.1), (5.3.2) and (5.3.3), (note that the series in
(5.3.4) is, in fact, a finite sum of at most a + 1 terms). We call G0

+(Φ)

the set of Gibbs distributions on Z
+ with potential Φ ∈ B, and G+(Φ) the

set of Gibbs distributions on Z
+ with potential Φ ∈ B which are invariant

under translation.

Proceeding exactly as in Sections §5.1 and §5.2 one shows the following
proposition, analogous to proposition (5.2.1).

(5.3.1) Proposition:P5.3.1 (Uniqueness of semiinfinite Gibbs distributions)
Under the hypotheses of proposition (5.1.1) one has
(i) G+(Φ) contains at least one element for all Φ ∈ B, and it is convex and
compact;
(ii) if ‖Φ‖1 < +∞, cf. (5.2.1), G+(Φ) contains a unique element m̃+;
(iii) the distribution m̃+ attributes positive probability to all T–compatible

cylinders (hence every set of m̃+–probability 1 is dense in {0, . . . , n}Z+

T );
(iv) if ‖Φ‖1 < +∞ and if B(+∞)

m̃+ = ∩N>0 B([N,+∞])
m̃+ then

B(+∞)
m̃+ is a trivial σ–algebra in the sense that if f is B(+∞)

m̃+–
measurable then f is constant m̃+–almost everywhere;
v) if Φ(k) → Φ in B then G+(Φ

(k))→ G+(Φ) in the sense analogous to that
discussed in item (ii) of corollary (5.1.1).

Analogous definitions can be given for Gibbs distributions on Z
−
: formu-

lations are left to the reader.

The interest of the semiinfinite Gibbs distributions lies in the following
remark. Let Λk = [−k, k] and, for simplicity, let Tσσ′ ≡ 1. Then, if σ ∈
{0, . . . , n}Z we can regard σ as composed by its “left and right parts” σ− =
(σi)i∈Z− and σ+ = (σi)i∈Z+ , σ = (σ−, σ+); then (cf. second equation in
(5.1.11))

UΛk(σΛk
, σΛc

k
) =

∑

X⊂Z−

X∩Λk 6=∅

ΦX(σ−
X) +

∑

X⊂Z+

X∩Λk 6=∅

ΦX(σ+
X) +WΦ(σ

−, σ+) =

def
= U−

k (σ−) + U+
k (σ+) +WΦ(σ

−, σ+), (5.3.5)e5.3.5

where WΦ is defined in (5.2.2) with the further constraint R ∩ Λk 6= ∅ (and
it verifies (5.2.3)), and U±

k are implicitly defined in (5.3.5).
Equation (5.3.5), inserted in (5.1.23), shows that the “finite volume” ap-
proximation mk, defined there, to the Gibbs distribution with potential Φ
can be expressed as

mk(dσ) =
m̃+
k (dσ

+) m̃−
k (dσ

−) e−WΦ(σ+,σ−)

c(k)
, (5.3.6)

e5.3.6
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where c(k) > 0 is a normalization constant and m̃+
k , m̃

−
k are two suitable

distributions on {0, . . . , n}Z+

and on {0, . . . , n}Z−

. For example m̃+
k is

defined by

∫
f(σ) m̃+

k (dσ) =
∑

σ∈{0,...,n}k+1

f(σ σ̃Λ+,c
k

) e
−U+

k
(σ σ̃

Λ
+,c
k

)

∑
σ′∈{0,...,n}k+1

e
−U+

k
(σ′ σ̃

Λ
+,c
k

)
(5.3.7)

e5.3.7

for every f ∈ C({0, . . . , n}Z+

T ), if Λ+
k = [0, k], hence Λ+,c

k = [k+1, . . . ,+∞)

and if σ̃ ∈ {0, . . . , n}Z+

T is an arbitrarily fixed reference configuration (a
device already repeatedly used, e.g. in (5.1.22)): for instance one could
take σ̃j ≡ 0 for all j ≥ 0, in the case Tσσ′ ≡ 1.
The following proposition appears, therefore, quite natural.

(5.3.2) Proposition:P5.3.2 (Relation between infinite and semiinfinite Gibbs
distributions)
Under the hypotheses of proposition (5.2.1) there exist two distributions m̃+,

on {0, . . . , n}Z+

T , and m̃−, on {0, . . . , n}Z−

T , such that

m(dσ) = C−1m̃+(dσ+)m̃−(dσ−)χ(σ−, σ+)e−WΦ(σ−,σ+), (5.3.8)e5.3.8

where C > 0 is a normalization constant, χ(σ−, σ+) = 1 if the bilateral se-
quence σ−σ+, obtained by appending σ+ to the right of σ−, is in {0, . . . , n}ZT
and χ(σ−, σ+) = 0 otherwise, and m is the Gibbs distribution (unique by
proposition (5.2.1)) with potential Φ.
Furthermore m̃+ is the Gibbs distribution on Z

+ with potential Φ and m̃−

is the analogous Gibbs distribution on Z
−, cf. definition (5.3.1).

Proof: For simplicity we consider only the case Tσσ′ = 1. A computation
identical to that leading from (5.1.22) to (5.1.23) shows that if Φ has finite
range R then m+

k has conditional probability such that

m+
k (σ

′
0 . . . σ

′
a|σa+1 . . .)

m+
k (σ

′′
0 . . . σ

′′
a |σa+1 . . .)

= exp
(
−

∞∑

h=0

[Â(τhσ′)− Â(τhσ′′)]
)
, (5.3.9)e5.3.9

if a+R < k, and m+
k is defined in (5.3.7).

Assuming that Φ is in the space B0 of the finite range potentials and
proceeding as in the proof of proposition (5.1.1), we see thatm+

k converges to
the semiinfinite Gibbs state m̃+. A similar argument holds form−

k ; therefore
(5.3.6) and the continuity of the function (σ−, σ+) → WΦ(σ

−, σ+) imply
(5.3.8) in the limit as k → ∞, with χ = 1 (because under our hypotheses
Tσσ′ = 1).
If Φ /∈ B0 but ‖Φ‖1 < +∞ there exists a sequence Φ(k) ∈ B0, k = 1, 2, . . .,
such that ‖Φ(k) − Φ‖1−−−→k→∞ 0. Then from (5.3.8) written for Φ(k) and
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from the uniform continuity, with respect to Φ, of the function (σ−, σ+)→
WΦ(σ

−, σ+) the validity of (5.3.8) for Φ follows in the limit k →∞.

The relation (5.3.8) and propositions (5.2.1) and (5.3.1) imply the following
corollary; if a(T ) > 0 one must also make use of (5.2.5).

(5.3.1) Corollary:C5.3.1 (Absolute continuity of the restriction to B(Z+) of a
Gibbs state with respect to the corresponding semiinfinite Gibbs state)
If Φ ∈ B and ‖Φ‖1 < +∞, if m+ denotes the restriction of the Gibbs dis-
tribution m ∈ G(Φ) to the σ–algebra B(Z+

) and if m̃+ denotes the element
of G+(Φ), one has

(
dm+

dm̃+

)±1

≤ e4‖Φ‖1((1 + n)e2‖Φ‖)a(T ). (5.3.10)e5.3.10

Furthermore the function h
def
= dm+

dm̃+
is continuous: h ∈ C({0, . . . , n}Z+

T ).

Proof: This follows immediately from the integration of (5.3.6) with respect
to σ− and from proposition (5.3.2): by expressing m̃−

k with the formula anal-
ogous to (5.3.7) one has to use that, for any string . . . , σ−a−2, σ−a−1 there
is at least one string σ0 ∈ {0, . . . , n}a such that . . . , σ−a−2, σ−a−1, σ0, σ

+ is
a compatible string, while the number of such connection strings is at most
(n+ 1)a.1N5.3.1

It is interesting to remark that the semiinfinite Gibbs states solve certain
eigenvalue problems.

(5.3.3) Proposition:P5.3.3 (Gibbs distributions as solutions of eigenvalue prob-
lems)
Let Φ be a potential for {0, . . . , n}ZT with ‖Φ‖1 <∞ and T a mixing compat-
ibility matrix; using the notations of corollary (5.3.1), proposition (5.3.2)
and definition (5.3.1), set

(Lf)(σ0σ1 . . .) =

n∑

σ=0

e−Â(σσ0σ1...)f(σσ0σ1 . . .), (5.3.11)e5.3.11

where (σ0σ1 . . .) ∈ {0, . . . , n}Z
+

T , f ∈ C({0, . . . , n}Z+

T ), Â is defined in
(5.3.3) and, finally, the sum runs over σ ∈ {0, . . . , n} such that (σσ0σ1, . . .)

∈ {0, . . . , n}Z+

T .

Then L is a continuous operator on C({0, . . . , n}Z+

T ) and its norm ||L||
is bounded by (n + 1)e‖Φ‖. Denote L∗ the adjoint operator of L acting on
M0({0, . . . , n}ZT ). There exists λ > 0 such that

Lh = λh, L∗m̃+ = λm̃+, λ > 0. (5.3.12)e5.3.12

1 To obtain the upper bound in (5.3.10) the factor (n+ 1) could be replaced with 1: the
expression in (5.3.10) has the advantage of being symmetric for the upper and lower
bounds.
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Furthermore the equations (5.3.12), regarded as eigenvalue problems in the

unknowns h > 0, h ∈ C({0, . . . , n}Z+

T ), λ > 0, and in the unknowns m̃+ ∈
M0({0, . . . , n}Z+

T ), λ > 0, admit as unique solution h and m̃+ defined in
proposition (5.3.2) and corollary (5.3.1).

Remark: The operator L is called the transfer operator. The proof below
derives the results from the previously studied existence and uniqueness
theorems for infinite and semiinfinite Gibbs states. A proof entirely based
on the spectral theory of the transfer operator is also possible, and classical
since [Ru67]: see problems below.

Proof: Consider for simplicity only the case a(T ) = 0 (i.e. Tσσ′ ≡ 1).

Note that if k > a(T ) the equation (L∗)km = λ
k
m, λ > 0, m ∈

M0({0, . . . , n}Z+

T ) is a different way of writing the condition that m has
conditional probability verifying (5.3.4): hence m̃+ verifies equation (5.3.12)
and it is its only solution because any other solution would be an element
of G+(Φ) that, instead, contains only one element.
Evidently λ = (L∗m̃+)(1).
By proposition (5.3.2) one has hm̃+ = m+ for a suitable continuous h: in

fact h(σ+) is proportional to
∫
m̃−(dσ−)e

−W (σ−,σ+
) for σ+ ∈ {0, . . . , n}Z+

by integrating (5.3.8) over σ−.
Furthermore m+ is the restriction of the probability distribution m to

B(Z+
) and m is τ–invariant. Hence for all f ∈ C({0, . . . , }Z+

T )

∫
f dm+ =

∫
f(σ0σ1 . . .)h(σ0σ1 . . .)m̃

+(dσ0σ1 . . .) =

=

∫
f(σ1σ2 . . .)h(σ0σ1 . . .)m̃

+(dσ0σ1 . . .).

(5.3.13)e5.3.13

Using in the right hand side the relation m̃+ = λ−1L∗m̃+, we see that

∫
fhdm̃+ =

n∑

σ0=0

∫
f(σ1σ2 . . .)λ

−1h(σ0σ1 . . .)e
−Â(σ0σ1...)m̃+(dσ1σ2 . . .)

=

∫
f(σ1σ2 . . .)(λ

−1Lh)(σ1σ2 . . .)m̃
+(dσ1σ2 . . .) =

=

∫
f · λ−1Lhdm̃+, (5.3.14)e5.3.14

hence by the arbitrariness of f we deduce that λ−1Lh = h, m̃+–almost
everywhere. However, as already observed in proposition (5.3.1), (iii), every
set with m+–measure 1 is dense so that the equality λ−1Lh = h, holding
on a dense set and involving continuous functions, must hold everywhere.
To prove uniqueness of h suppose that there exists another h > 0, h ∈
C({0, . . . , n}ZT ), such that Lh = λ h, λ > 0. Then we begin by remarking
that by integrating the latter relation with respect to m̃+ and using L∗m̃+ =
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λm̃+ we see that λm̃+(h) = λm̃+(h), i.e. λ = λ (because h > 0 and is
continuous). We can and shall suppose m̃+(h) = 1.
Following backwards (5.3.14), (5.3.13) we deduce that the probability dis-
tribution (λ−1Lh)m̃+ is identical to hm̃+ and it is τ–invariant in the sense
that ∫

f(σ0σ1 . . .)h(σ0σ1 . . .)m̃
+(dσ0σ1 . . .) =

=

∫
f(σ1σ2 . . .)h(σ0σ1 . . .)m̃

+(dσ0σ1 . . .).

(5.3.15)e5.3.15

It is then possible to define a τ–invariant distribution m on {0, . . . , n}Z
such that its restriction to B(Z+) is precisely hm̃+: indeed we shall set, for
f ∈ B([−N,+∞))–measurable,

∫
f(σ)dm =

∫
f(σ−Nσ−N+1 . . .)h(σ−Nσ−N+1 . . .)m̃(dσ−N . . .), (5.3.16)e5.3.16

where σ = (σ−Nσ−N+1 . . .) ∈ {0, . . . , n}[−N,+∞) is regarded as an element

σ′ of {0, . . . , }Z+

by setting σ′
j = σj−N , for all j ≥ 0.

The compatibility problems that must be faced to check that this is a

definition of a linear, continuous and positive functional on C({0, . . . , n}Z+

)
can be solved via (5.3.15).
We proceed to compute the conditional probability of the probability dis-
tribution m in order to show that m = m.
By Doob’s theorem one has, m–almost everywhere in σ,

m(σ′
−a . . . σ

′
a|σj , |j| > a)

m(σ′′
−a . . . σ′′

a |σj , |j| > a)
=

= lim
N→∞

m(σ′
−a . . . σ

′
a|σ−N . . . σ−a−1σa+1 . . . σN )

m(σ′′
−a . . . σ′′

a |σ−N . . . σ−a−1σa+1 . . . σN )
=

= lim
N→∞

m(σ−N . . . σ−a−1σ
′
−a . . . σ

′
a|σa+1 . . . σN )

m(σ−N . . . σ−a−1σ′′
−a . . . σ′′

a |σa+1 . . . σN )
=

= lim
N→∞

h(σ−N . . . σ−a−1σ
′
−a . . . σ

′
sσa+1 . . . σN )

h(σ−N . . . σ−a−1σ′′
−a . . . σ′′

aσa+1 . . . σN )
· (5.3.17)e5.3.17

· m̃
+(σ−N . . . σ−a−1σ

′
−a . . . σ

′
a|σa+1 . . . σN )

m̃+(σ−N . . . σ−a−1σ′′
−a . . . σ′′

a |σa+1 . . . σN )
,

where, in the last expression, the sequences σ′ = (σ−N . . . σ−a−1σ
′
−a . . . σ

′
a

σa+1 . . .) and σ
′′ = (σ−N . . . σ−a−1σ

′′
−a . . . σ

′′
aσa+1 . . .) are thought of as ele-

ments σ̂′ and σ̂′′ of {0, . . . , }Z+

setting, as above, σ̂′
j = σ′

j−N , σ̂′′
j = σ′′

j−N ,
j ≥ 0.

Since the distance between σ̂′ and σ̂′′ as elements of {0, . . . , n}Z+

is ≤
e−(N−a) and since h is uniformly continuous on {0, . . . , n}Z+

the first ratio
in the limit in (5.3.17) tends to 1.
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The second ratio is, by (5.3.1) (recall that m̃+ ∈ G0
+(Φ)),

exp
(
−

∑

X⊂[−N,+∞)

X∩[−N,a] 6=∅

[ΦX(σ̂′
X)− ΦX(σ̂′′

X)]
)
=

= exp
(
−

∑

X⊂[−N,+∞)
X∩[−a,a] 6=∅

[ΦX(σ′
X)− ΦX(σ′′

X)]
)
−−−−→
N→∞ (5.3.18)e5.3.18

−−−−→
N→∞ exp

(
−

∑

X∩[−a,a] 6=∅
[ΦX(σ′

X)− ΦX(σ′′
X)]
)
=

= exp
(
−

∞∑

k=−∞
[AΦ(τ

kσ′)−AΦ(τ
kσ′′)]

)
,

showing that m has the correct conditional probabilities to say that it is
the Gibbs distribution m ∈ G(Φ). It follows that hm̃+ = hm̃+, i.e. h = h,
m̃+–almost everywhere. This means that h = h everywhere because h and
h are continuous and furthermore, as already observed, the sets of m+–
probability 1 are dense.

Problems for §5.3 (Spectral theory of the transfer operator and Gibbs
states)

Remark: The spectral theory of the operator L on the space of the continuous functions

C({0, . . . , n}Z) is made easy by the results of proposition (5.3.3) proving existence of

positive eigenfunctions h, m̃+ in (5.3.12) relative to a positive eigenvalue λ. However one
can prove the existence of a positive solution to the eigenvalue problems posed by (5.3.12)
independently of proposition (5.3.3). Therefore we present problems which can be solved

by assuming that (5.3.12) has positive solutions h, m̃+ with a positive eigenvalue λ. The
independent proof of their existence (and therefore an alternative proof of proposition
(5.3.3)) will be discussed in problems [5.3.17], [5.3.18] and [5.3.19].

[5.3.1]:Q5.3.1 (Positivity of the transfer operator)

Let L be the operator defined in (5.3.11), where Φ is a potential for {0, . . . , n}Z and

‖Φ‖1 < +∞ and let h, m̃+, λ be as in (5.3.12) and assume the normalization m̃+(h) = 1.
Show that the functions (λ−1L)kf are equicontinuous and equibounded with respect to k,

if f is positive and continuous. (Hint: Consider first the case f = 1, i.e. f(σ)
def
= 1(σ) ≡ 1

and proceed by comparing with 1 the ratios (λ−1L)k1(σ)/(λ−1L)k1(σ′); for this purpose
write explicitly the ratios and use the uniform boundedness to deduce the result from
the constancy of m̃+–integral of the functions (λ−1L)k1(σ) as k varies.)

[5.3.2]:Q5.3.2 In the context and under the hypotheses of problem [5.3.1], given a continuous
non-negative function f show that there exists Nf such that for all k ≥ Nf one has

(λ−1L)kf > 0. (Hint: First note that this is obvious for cylindrical functions. Then just
take a very good cylindrical approximation of f and then k larger than the size of the
base of the cylinder on which f is cylindrical.)

[5.3.3]:Q5.3.3 In the context of problem [5.3.1], if f ≥ 0 is continuous and B([0, N ])–measurable

there exists Nf such that for every k ≥ Nf one has (λ−1L)kf ≥ e−2‖Φ‖1m̃+(f), where

m̃+ is defined as in (5.3.12). (Hint: Same argument as the one suggested in problem

[5.3.1] making use of m̃+((λL)kf) ≡ m̃+(f); Nf = N .)

[5.3.4]:Q5.3.4 (Contractivity of iterates of λ−1L; see [Ru67])

In the context of problem [5.3.1], let f be continuous, B([0, N ])–measurable and such
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that m̃+(f) = 0. There exists Nf such that for all k ≥ Nf one has

m̃+(|(λ−1L)kf |) ≤ (1− e−2‖Φ‖1 ) m̃+(|f |).

(Hint: Let f+ = (|f |+f)/2 and f− = (|f |−f)/2, then m̃+(f+) = m̃+(f−). Furthermore
by using the result of problem [5.3.3] for k large enough one has

|(λ−1L)kf | = |(λ−1L)kf+ − (λ−1L)kf−| =
|(λ−1L)kf+ − e−2‖Φ‖1m̃+(f+)− (λ−1L)kf− + e−2‖Φ‖1m̃+(f−)| ≤
≤ (λ−1L)kf+ − e−2‖Φ‖1m̃+(f+) + (λ−1L)kf− − e−2‖Φ‖1m̃+(f−).

Then integrate both sides with respect to m̃+ and note that m̃+ is an eigenvector for
(λ−1L∗) with eigenvalue 1, and that m̃+(|f |) = m̃+(f+) + m̃+(f−).)

[5.3.5]:Q5.3.5 From the result in problem [5.3.4] show that if f is continuous and m̃+(f) = 0

then the limit as k →∞ of (λ−1L)kf is 0 (in the the uniform convergence topology).

[5.3.6]:Q5.3.6 (Convergence of (λ−1L)kf)

Deduce from the result of problem [5.3.5] that if f is continuous the limit for k →∞ of

(λ−1L)kf is h m̃+(f), uniformly if h > 0 is a normalized eigenfunction Lh = λh. Check
that such an eigenfunction exists because of (5.3.12). Existence of h can be obtained
independently of proposition (5.3.3): see problems [5.3.18] and [5.3.19]. (Hint: : Write

f = hm̃+(f) + (f − hm̃+(f))).

[5.3.7]:Q5.3.7 (Exponential convergence; see [Ru67] and [GL70])

Deduce from the results of problems [5.3.3], [5.3.4] and [5.3.5] that if for some κ > 0 the

sum
∑

X∋0
eκ (diamX)‖ΦX‖ <∞ then |(λ−1L)n1(σ)− h(σ)| ≤ Ce−κ′n, for 0 < κ′ < κ.

[5.3.8]:Q5.3.8 (Case of subshifts; see [GM70])

Solve the problems analogous to the previous ones with {0, . . . , n}Z replaced by
{0, . . . , n}ZT under the only assumption that T is mixing.

[5.3.9]:Q5.3.9 (Decimation of finite range Gibbs states)

Let Φ ∈ B be a potential on {0, . . . , n}ZT with T a mixing compatibility matrix and
with finite range R, see definition (5.1.1); denote by α = 0, 1, . . . ,M the elements of

{0, . . . , n}a(T )+R
T

. Consider the restriction of m ∈ G(Φ) to the σ–algebra generated by
the cylinders with base given by ∪iΛki where ki ∈ Z and Λk = {0 + 2k(a(T ) + R),
1 + 2k((a(T ) + R), . . . , a(T ) + R − 1 + 2k(a(T ) + R)} i.e. the cylinders “measurable on
the blocks of a(T ) + R sites spaced by (a(T ) + R)”. Show that it is interpretable as a

Gibbs state on {0, . . . ,M}Z with a “nearest neighbours” potential Φ̃ (i.e. Φ̃X = 0 unless
X consists of only one or two points and, in the latter case, it is also zero unless that the

two points are adjacent). Find a possible expression for Φ̃.

[5.3.10]:Q5.3.10 (Decimation of a Markov process)

Let m be a Markov process on {0, . . . , n}Z. Show that the restriction of m to the σ–
algebra generated by the cylinders with base on the even sites is still a Markov process
and that its potential Φ(1) can be chosen by defining suitably a map Θ : Φ→ ΘΦ = Φ(1).
Such map can be chosen so that one has (having set Φ(n) = ΘnΦ)

Φ
(n)

{x}(σx)−−−−→n→∞ w(σx), |Φ(n)

{x,x+1}(σ, σ
′)| ≤ Cε2n ,

with w suitable, C > 0 and ε < 1.

[5.3.11]:Q5.3.11 (Transfer matrix)
Check that in the finite range potential case the operator L becomes “in a certain sense”
a finite matrix (called transfer matrix) and the problems of existence of m̃+, h reduce
to the Perron–Frobenius theorem for matrices.. (Hint: Note that the equations for h,
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λ−1Lh = h can be interpreted, if Φ has finite range, as an equation for a positive
eigenfunction of a finite mixing matrix with non-negative entries.)

[5.3.12]:Q5.3.12 (Finite range potentials and algebraic spectral problem for the transfer opera-

tor)
Check that from the proof of the result of problem [5.3.11] it also follows that the deter-

mination of m(C0...p
σ0...σp ) is, if R < ∞, an “algebraic” problem (i.e. it is reduced to the

study of the eigenvalues and eigenvectors of a suitable finite matrix).

[5.3.13]:Q5.3.13 (Decimation theorem)

If Φ is a potential on {0, . . . , n}ZT , with T mixing, such that ‖Φ‖1 <∞, the restriction of
m ∈ G(Φ) to the algebra generated by the cylinders measurable on the sites k n, n ∈ Z is,

for k large, a Gibbs state (in a natural sense) with potential Φ(k) that can be chosen such

that
∑

X∋0,|X|≥2
‖Φ(k)

X ‖ ≤ εΦ(k), where εΦ(k)−−−−→k→∞ 0, while Φ
(k)

{0}(σ) is a convergent

sequence as k →∞. Finally the εΦ(k) is continuous, in Φ at fixed k, with respect to the
norm ‖Φ‖1. Try to prove this result in the case proposed in the following problem and
refer to [CO81], where it is proved.

[5.3.14]:Q5.3.14 (Transfer operator for Fisher potentials)

Check the statement in problem [5.3.13] in the case of the potential of problem [5.2.1].

[5.3.15]:Q5.3.15 Via the arguments necessary to solve problem [5.3.7] and under the same
assumptions deduce the existence of Ck, α > 0 for which

|h(σ′0 . . . σ′k σk+1 . . .)− h(σ′′0 . . . σ′′kσk+1 . . .)| ≤ Cke−αk.

[5.3.16]:Q5.3.16 (Exponential mixing rates)

By the arguments necessary to solve problems [5.3.7] and [5.3.15] and under the same

assumptions deduce that the distribution m̃+ has the property of “exponential mixing
on the cylinders”:

|m̃+(C0...N
σ0...σN

∩ Cj...j+M
σ′
0
...σ′

M

)− m̃+(C0...N
σ0...σN

)(hm̃+)(C0...M
σ′
0
...σ′

M
)| ≤

≤ K m̃+(C0...N
σ0...σN

)(hm̃+)(C0...M
σ′
0
...σ′

M
) min{1, e−κ (j−N)}

for suitably chosen K, κ > 0. An identical property holds if in this relation we replace
m̃+ with hm̃+ everywhere it appears alone (i.e. except where already appears hm̃+).

[5.3.17]:Q5.3.17 (Alternative proof of existence of eigenfunction of L∗)

Let L∗ be the adjoint of the operator L on C({0, . . . , n}Z): write it explicitly as an

operator on the measures on {0, . . . , n}Z. Define m → L∗m
L∗m(1)

on the space of the

probability distributions m on {0, . . . , n}Z where 1 denotes the function identically 1 on

{0, . . . , n}Z. This is a continuous map of M({0, . . . , n}Z) into itself in the natural weak

topology induced by C({0, . . . , n}Z). Show that there is a fixed point m̃+ such that m̃+ =

L∗m̃+

L∗m̃+(1)
≡ λ−1L∗m̃+ where λ = L∗m̃+(1) > 0. (Hint: The space M({0, . . . , n}Z) is

compact and convex so that by the fixed point theorem there is a fixed point.)

[5.3.18]:Q5.3.18 (Equiboundedness and equicontinuity of (λ−1L)k1)

Show that (λ−1L)k1(σ0, σ1, . . .) is uniformly bounded and uniformly continuous in σ.

(Hint: If U(η0, . . . , ηk−1 |σ0, σ1, . . .)
def
=
∑

X∩0,...,k−1 6=∅ ΦX((ησ)X ) it is, comparing ra-

tios of terms corresponding to the same η –labels,

e−2||Φ||1

∑
η1,...,ηk

e−U(η1,...,ηk |σ0,σ1,...)

∑
η1,...,ηk

e−U(η1,...,ηk |σ′
0
,σ′

1
,...)
≤ e2||Φ||1
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However the ratio is just
Lk1(σ)

Lk1(σ′)
≡ λ−kLk1(σ)

λ−kLk1(σ′)
and there must exist a point σ where

λ−kLk1(σ) ≤ 1 and one point where λ−kLk1(σ) ≥ 1 because m̃+(λ−kLk1) = m̃+(1) =
1. Hence equiboundedness follows. Likewise one sees equicontinuity if the sequences
(σ0, σ1, . . .) are close i.e. (σ′0, σ

′
1, . . .) are such that σi = σ′i for many i′s.)

[5.3.19]:Q5.3.19 (Alternative proof of existence of an eigenfunction h for λ−1L)

Consider the sequence N−1
∑N−1

k=0
(λ−1L)k1(σ): show that the problem [5.3.18] implies

that this sequence is equicontinuous and equibounded . Therefore it admits a uniformly
convergent subsequence (by Ascoli–Arzelà theorem): show that its limit is a positive
function h with λ−1Lh = h.

Bibliographical note to §5.3
The results of this section and of Section §5.2 are due to Ruelle,[Ru67],
who substantially extended previous results and conjectures (by Van Hove,
[VH50]). The choice of the arguments of this section and of the previous,
§5.1 and §5.2, is inspired by the book [Ru78] although the exposition of this
section is somewhat different from Ruelle’s original.

§5.4 An application: expansive maps of [0,1]

As an application of the results of Section §5.3 we shall discuss a theory of
invariant probability distributions for the simplest expansive maps of [0, 1],
cf. example (1.2.7).
Let f0, f1, . . . , fn be (n + 1) functions defined on the intervals [aσ, aσ+1],
respectively, with

0 = a0 < a1 < . . . < an < an+1 = 1, (5.4.1)e5.4.1

and with values in [0, 1], such that each fσ is of class C1+ε([aσ, aσ+1]), ε > 0.
Let S be the map of [0, 1] into itself defined by

x→ Sx = fσ(x) if x ∈ (aσ, aσ+1), (5.4.2)
e5.4.2

and defined in 0 as f0(0), in 1 as fn+1(1), and, arbitrarily, in aσ as fσ(aσ)
or fσ−1(aσ), for σ = 1, . . . , n.
The (noninvertible) dynamical system ([0, 1], S) is well defined but in gen-
eral the Lebesgue measure µ0(dx) = dx is not S–invariant .
If one chooses randomly a point x ∈ [0, 1] with distribution µ0 the asymp-
totic behavior of the sequence n → F (Snx), where F ∈ C∞([0, 1]) can,
sometimes, be described by means of a Borel probability distribution µ on
[0, 1], such that

N−1
N−1∑

j=0

F (Sjx)−−−−→
N→∞

∫ 1

0

µ(dx′)F (x′) (5.4.3)e5.4.3

for µ0–almost all points x ∈ [0, 1].
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This case, obviously, occurs when there exists a probability distribution
µ absolutely continuous with respect to µ0, with a positive density h, and
which is S–invariant and S–ergodic:

µ(dx) = h(x)dx = h(x)µ0(dx), µ(E) = µ(S−1E). (5.4.4)e5.4.4

The first question that can be asked is, thus, to find conditions for the
existence of a measure µ which is S–invariant, S–ergodic and absolutely
equivalent1 or, at least, absolutely continuous with respect to µ0.N5.4.1

We shall not discuss the motivations of such questions which, at least for
what concerns their interest for Physics, rest on the necessity of simple
mathematical models to classify the phenomenology of the asymptotic be-
haviour of the solutions of nonlinear ordinary differential equations or of
sequences of points obtained by iterating a map, starting from a given ran-
domly chosen initial point.
A certain success has been achieved in the interpretation of experimental
results in terms of simple objects like, in particular, maps of the interval
[0, 1]: above all famous is the interpretation of certain turbulence phenom-
ena by Lorenz, [Lo63]. A kind of “experimental mathematics” has been
(and is being) developed with the aim of achieving an orderly classification
of the wealth of results that computer simulations or actual experiments
produce.
We shall consider here the simplest case in which the map S is strictly
expansive and surjective; this corresponds to the following conditions:

(1) |f ′
σ(x)| ≥ λ > 1 for all x ∈ [aσ, aσ+1],

(2) fσ : [aσ, aσ+1]↔ [0, 1] for all σ = 0, 1, . . . , n.

An illustration is in Fig. (5.4.1).

S(x)

f0(x)

f1(x)

S−1(x)

ϕ0(x)

ϕ1(x)

a1

a1

Fig.(5.4.1)F5.4.1 Graphs of an expansive and surjective map S and of its inverse.

The following proposition holds.

(5.4.1) Proposition:P5.4.1 (Mixing maps of the interval)
Let S be a strictly expansive surjective map of class C1+ε, ε > 0, of the
interval [0, 1] into itself.2N5.4.2

1 µ is said to be absolutely equivalent to µ0 if µ = hµ0 and h, h−1 ∈ L1(µ0), i.e. µ and
µ0 are absolutely equivalent if µ is absolutely continuous with respect to µ0 and µ0 is
absolutely continuous with respect to µ.

2 This means that fσ ∈ C1+ε([aσ , aσ+1]), for all σ = 0, 1, . . . , n.
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(i) There exists an S–invariant probability distribution µ which is absolutely
equivalent to the Lebesgue measure.
(ii) Such a probability distribution µ is mixing and one has

∫ 1

0

F (Smx)G(x)µ(dx)−−−−→m→∞

(∫ 1

0

F (x)µ(dx)

)(∫ 1

0

G(x)µ(dx)

)

(5.4.5)e5.4.5
exponentially fast if F,G ∈ Cα([0, 1]), α > 0. This means that ([0, 1], S, µ)
is a mixing dynamical system that “mixes at an exponential rate the Hölder
continuous functions”.

Remark: This theorem is a particular case of a general theorem of Lasota–
Yorke, [LY73]. We discuss it here by using a different technique of proof
based on the theory of Gibbs distributions developed in the previous sec-
tions.

Proof: Consider {0, . . . , n}Z+

and the symbolic code X : σ → X(σ) =
∩+∞
j=0 S

−jPσj , if we denote by Pσ the interval Pσ = [aσ, aσ+1] and σ =
(σj)j∈Z+ , σj = 0, . . . , n.

One deduces, by induction, calling ϕσ : [0, 1] ↔ [aσ, aσ+1] the inverse
function of fσ (cf. Fig. (5.4.1)) that

Pσ0 = P 0
σ0

= ϕσ0([0, 1]) , P 0 1
σ0σ1

= Pσ0 ∩ S−1Pσ1 = ϕσ0ϕσ1([0, 1]),

P 0...N
σ0...σN = Pσ0 ∩ S−1Pσ1 ∩ . . . ∩ S−NPσN = ϕσ0ϕσ1 . . . ϕσN ([0, 1]).

(5.4.6)e5.4.6
Furthermore ϕσ transforms intervals with interior points into intervals with
interior points, so that P 0...N

σ0...σN is an interval with interior points. Hence
X(σ) 6= ∅.
However ϕσ “contracts” (see Fig.(5.4.1)) by a scale factor which is at least
λ−1, because fσ expands by at least λ, hence the length |ϕσ0 . . . ϕσN ([0, 1])|
of the interval ϕσ0ϕσ1 . . . ϕσN ([0, 1]) is

|ϕσ0 . . . ϕσN ([0, 1])| ≤ λ−(N+1). (5.4.7)e5.4.7

so that X(σ) consists of a single point. Therefore the code X is Hölder
continuous and by (4.1.6)

d(X(σ), X(σ′)) ≤ d(σ, σ′)log λ. (5.4.8)e5.4.8

The probability distribution µ0 is coded by X into a probability distribu-

tion µ0 on {0, . . . , n}Z+

by setting

µ0(E)
def
= µ0(X(E)) for all E ∈ B({0, . . . , n}Z+

) (5.4.9)e5.4.9

isomorphic to it mod 0.3N5.4.3

3 Indeed X is continuous and invertible outside a set of measure 0,

∪+∞
j=−∞S−j{a0, . . . , an+1} = N ⊂ [0, 1],

and it is therefore bimeasurable, see Kuratowsky’s theorem quoted in the proof of propo-
sition (2.3.3), as a map between [0, 1] \N and X([0, 1] \N).
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The probability distribution µ0 is now easily identified as the Gibbs dis-
tribution on Z

+ with potential Φ such that

ΦX(σX) = 0 if X 6= {a, . . . , a+ p} and for all a, for all p ≥ 0,

Φ{a,...,a+p}(σ0 . . . σp) = Â(σ0 . . . σp000 . . .)− Â(σ0 . . . σp−1000 . . .),
(5.4.10)e5.4.10

where
Â(σ) = − log |ϕ′

σ0
(X(σ1σ2 . . .))|. (5.4.11)e5.4.11

Indeed, if σ′ = (σ′
0 . . . σ

′
N σN+1 . . .), σ

′′ = (σ′′
0 . . . σ

′′
NσN+1 . . .) and x′ =

X(σ′), x′′ = X(σ′′), one has

µ0(σ
′
0 . . . σ

′
N |σN+1 . . .)

µ0(σ
′′
0 . . . σ

′′
N |σN+1 . . .)

= lim
M→∞

µ0(σ
′
0 . . . σ

′
N |σN+1 . . . σM )

µ0(σ
′′
0 . . . σ

′′
N |σN+1 . . . σM )

=

= lim
M→∞

µ0

(
C0...N N+1...M
σ′
0...σ

′
N
σN+1...σM

)

µ0

(
C0...N N+1...M
σ′′
0 ...σ

′′
N
σN+1...σM

) =

= lim
M→∞

|ϕσ′
0
. . . ϕσ′

N
ϕσN+1 . . . ϕσM ([0, 1])|

|ϕσ′′
0
. . . ϕσ′′

N
ϕσN+1 . . . ϕσM ([0, 1])| = (5.4.12)e5.4.12

= lim
M→∞

|ϕσ′
0
. . . ϕσ′

N
(β)− ϕσ′

0
. . . ϕσ′

N
(α)|

|ϕσ′′
0
. . . ϕσ′′

N
(β)− ϕσ′′

0
. . . ϕσ′′

N
(α)| ,

where [α, β] = ϕσN+1 . . . ϕσM ([0, 1]) is an interval of size at most λ−(M−N)

around the point X(σN+1 . . .) = ξ. Hence

µ0(σ
′
0 . . . σ

′
N |σN+1 . . .)

µ0(σ
′′
0 . . . σ

′′
N |σN+1 . . .)

=

∣∣∣∣
[
d
dx ϕσ′

0
. . . ϕσ′

N
(x)
]
x=ξ

∣∣∣∣
∣∣∣∣
[
d
dx ϕσ′′

0
. . . ϕσ′′

N
(x)
]
x=ξ

∣∣∣∣
, (5.4.13)e5.4.13

and, by the composition of derivatives, this ratio is

N∏

j=0

|ϕ′
σ′
j
(ϕσ′

j+1
. . . ϕσ′

N
(ξ))|

|ϕ′
σ′′
j
(ϕσ′′

j+1
. . . ϕσ′′

N
(ξ))| . (5.4.14)e5.4.14

Noting that ϕσ′
j+1

. . . ϕσ′
N
(ξ) ≡ ϕσ′

j+1
. . . ϕσ′

N
(X(σN+1 . . .)) so that

ϕσ′
j+1

. . . ϕσ′
N
(ξ) is just X(σ′

j+1 . . . σ
′
N σN+1 . . .) we find

µ0(σ
′
0 . . . σ

′
N |σN+1 . . .)

µ0(σ
′′
0 . . . σ

′′
N |σN+1 . . .)

=
N∏

j=0

|ϕ′
σ′
j
(X(σ′

j+1 . . .))|
|ϕ′
σ′′
j
(X(σ′′

j+1 . . .))|
= (5.4.15)

e5.4.15

= exp
[
−

N∑

j=0

(
− log |ϕ′

σ′
j
(X(σ′

j+1 . . .))|+ log |ϕ′
σ′′
j
(X(σ′′

j+1 . . .))|
)]

=

= exp
[
−

N∑

j=0

(
Â(τ jσ′)− Â(τ jσ′′)

)]
= exp

[
−

∞∑

j=0

(
Â(τ jσ′)− Â(τ jσ′′)

)]
,
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from (5.4.11) and because τMσ′ = τMσ′′, if M > N . Therefore if we note
that

Â(σ) = Â(000 . . .) +

∞∑

k=0

Φk(σ0 . . . σk),

Φk(σ0 . . . σk) = Â(σ0 . . . σk000 . . .)− Â(σ0 . . . σk−1000 . . .),

(5.4.16)e5.4.16

we deduce that

µ0(σ
′
0 . . . σ

′
N |σN+1 . . .)

µ0(σ
′′
0 . . . σ

′′
N |σN+1 . . .)

= e
−
∑∞

j,k=0
{Φk(σ′

j ...σ
′
j+k)−Φk(σ

′′
j ...σ

′′
j+k)}. (5.4.17)e5.4.17

Hence by comparing (5.4.17) with (5.3.1) (or by comparing (5.4.15) with
(5.3.4)), we see that µ0 is the Gibbs distribution with potential Φ given by
(5.4.10), provided no convergence problems arise in summing the series in
(5.4.16).
If k > 2

|Φk(σ0 . . . σk)| ≡ |Â(σ0 . . . σk000 . . .)− Â(σ0 . . . σk−1000 . . .)| ≡

≡
∣∣∣ log

|ϕ′
σ0
(X(σ1σ2 . . . σk000 . . .))|

|ϕ′
σ0
(X(σ1σ2 . . . σk−1000 . . .))|

∣∣∣
≤

≤ ( inf
x∈[0,1],σ

|ϕ′
σ(x)|)−1 (5.4.18)e5.4.18

∣∣∣|ϕ′
σ0
(X(σ1σ2 . . . σk000 . . .))| − |ϕ′

σ0
(X(σ1σ2 . . . σk−1000 . . .))|

∣∣∣∣ ≤

≤ supσ Cϕσ
inf |ϕ′

σ(x)|
∣∣∣X(σ1σ2 . . . σk000 . . .)−X(σ1σ2 . . . σk−1000 . . .)

∣∣∣
ε

≤

≤ supσ Cϕσ
inf |ϕ′

σ(x)|
λ−ε(k−1) ≤ Cλ−εk,

if Cϕσ is the Hölder continuity modulus in Cε([0, 1]) of x → |ϕ′
σ0
(X)| (we

recall that fσ ∈ C1+ε([aσ, aσ+1]) and |f ′
σ| ≥ λ > 1 by assumption) and

C is a suitable constant. Hence not only the series in (5.4.16) is totally
convergent with respect to the variations of σ, but also one has

‖Φ‖1 < +∞, and
∑

X∋0

eκ (diam X)‖ΦX‖ < +∞ for all κ < ε logλ. (5.4.19)e5.4.19

From item (ii) in proposition (5.3.1) it follows that µ0 is uniquely deter-
mined by its conditional probability (5.4.17).
Furthermore from corollary (5.3.1) it follows that the Gibbs distribution µ
with potential Φ, on {0, . . . , n}Z (i.e. on the bilateral sequences), restricted
to the σ–algebra B(Z+) is absolutely continuous (in fact equivalent) with
respect to µ0 and it is τ–invariant:

µ(E) = µ(τ−1E) for all E ∈ B(Z+), (5.4.20)e5.4.20
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as a consequence of the τ–invariance of µ.
The triad ([0, 1], S, µ) with µ defined by

µ(E) = µ(X−1(E)) for all E ∈ B([0, 1]) (5.4.21)e5.4.21

is a dynamical system in which µ is S–invariant and S–mixing: this follows
from the corresponding property of µ that, in turn, follows from the results
of Section §5.2 on Gibbs distributions on {0, . . . , n}Z.
The bound on the exponential mixing rate follows from the property of µ

|µ(C0...N
σ0...σN ∩C

j...j+M
σ′
0...σ

′
M
)− µ(C0...N

σ0...σN )µ(C
0...M
σ′
0...σ

′
N
)| ≤

≤ K µ(C0...N
σ0...σN )µ(C

0...M
σ′
0...σ

′
M
)min{1, e−κ (j−N)},

(5.4.22)
e5.4.22

where κ > 0, K > 0; the latter property follows from the results discussed
in the problems [5.3.7], [5.3.15] and [5.3.16] and the second of (5.4.20).
Every F ∈ Cα([0, 1]), α > 0, with a Hölder continuity modulus CF can be
expressed in the coordinates σ by setting

F (σ) = F (X(σ)) = F (X(000 . . .)) +

∞∑

k=0

ψk(σ0 . . . σk), (5.4.23)e5.4.23

where

ψk(σ0 . . . σk) = F (X(σ0 . . . σk000 . . .))− F (X(σ0 . . . σk−1000 . . .)),

|ψk(σ0 . . . σk)| ≤ CF |X(σ0 . . . σk000 . . .)−X(σ0 . . . σk−1000)|α ≤ C′λ−αk,
(5.4.24)e5.4.24

for a suitable C′ > 0. Therefore we can remark that, having set ψ−1(σ−1) =
F (X(000 . . .)),

∫
F (Sjx)F (x)µ(dx) =

∫
F (τ jσ) F (σ)µ(dσ) =

∞∑

h,k=−1

∑

σ

ψk(σ0 . . . σk)ψh(σj . . . σj+h)µ(C
0...k
σ0...σk ∩ Cj...j+hσj ...σj+h

),
(5.4.25)e5.4.25

where
∑
σ denotes summation over σ0 . . . σk, σj . . . σj+h. From (5.4.22) and

(5.4.23) we see that the (5.4.25) converges to the square of

∞∑

k=−1

∑

σ0...σk

ψk(σ0 . . . σk)µ(C
0...k
σ0...σk

)

with exponential rate, as j → ∞, and the constant κ′ of the exponential
convergence can be chosen arbitrarily provided κ′ < (min{α, ε}) logλ.
Problems for §5.4

[5.4.1]:Q5.4.1 (Markovian maps of the interval)

If S is strictly expansive but not surjective (cf. proposition (5.4.1) and Fig. (5.4.1))
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check that the same arguments of the proof of proposition (5.4.1) can be repeated under

the hypothesis that S is Markovian i.e. ∪n+1
σ=0S

±aσ ⊆ {0, a1, . . . , an+1}, where S±(aσ)

denotes the right and left limits of S(x) as x→ aσ . (Hint: We must replace {0, . . . , n}Z±

with {0, . . . , n}Z±

T , where T is a suitable compatibility matrix (which?), see problems of
§5.3.)
[5.4.2]:Q5.4.2 (Symbolic theory of invariant distributions for Markovian maps of the inter-

val)
Show that the equation for the density h of the probability distribution µ with re-
spect to µ0 is, by proposition (5.3.3), the positive solution of the equation Lf = f on
C({0, . . . , n}Z) with

(Lf)(σ) =

n∑

σ=0

e−Â(σσ0σ1...)f(σσ0σ1 . . .).

[5.4.3]:Q5.4.3 (Density for the invariant distribution for expansive Markovian maps of the

interval)
Show that the equation of problem [5.4.2] is the symbolic version of the equation, on
L∞([0, 1]), Lg = g with:

(Lg)(x) =

n∑

σ=0

|ϕ′
0(x)|g(ϕσ(x)).

Give a geometric interpretation of this equation.

[5.4.4]:Q5.4.4 (Existence of coordinates in which the Lebesgue measure is invariant for an

expansive Markovian map of the interval)
If the interval map S admits µ as invariant probability distribution µ(dx) = h(x)dx with

h continuous and positive and if we set y = π(x) =
∫ x
0
h(ξ)dξ we define a change of

coordinates x ↔ y such that S = πSπ−1, image of S in the new coordinates, is an
expansive map (not necessarily strictly such) that admits Lebesgue measure as invariant
measure.

[5.4.5]:Q5.4.5 Interpret the result of problem [5.4.4] as the statement that “a necessary con-
dition in order that S admits an invariant measure absolutely continuous with respect to
Lebesgue measure, with continuous and positive density h, is that there exists a system
of coordinates on [0, 1] in which S appears as expansive”, [Pi79].

[5.4.6]:Q5.4.6 (About Ulam–Von Neumann map)
Strict expansivity is not a necessary condition in order that a sufficiently regular surjective
map admits an invariant probability distribution which is absolutely continuous with
respect to Lebesgue measure. For an example check that the map S(x) = 4x(1−x) admits

the measure with density (π2x(1− x))−1/2 as an invariant probability distribution.

[5.4.7]:Q5.4.7 (Markovian quadratic maps of the interval and Ruelle’s points)

The map S(x) = Ax(1 − x), A < 4 is Markovian in the sense of problem [5.4.1], with
respect to suitable decompositions a0 = 0 < a1 < . . . < an+1 = 1 of [0, 1], for infinitely
many values of A (however the decomposition can depend on A): find one such value of A.
The latter values of A are called “Ruelle’s points”. (Hint: If A is such that S3(1/2) = xA,
with xA = non-zero fixed point of S, then the decomposition 0, 1/2, xA, 1 is Markovian,
[Ru77], [Pi79], [Pi80] and [Pi81].)

Bibliographical note to §5.4
The theory of the maps of [0, 1] into itself has a long history. Its origin is
independent from the theory of Gibbs distributions and it often deals with
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cases that are not easily reduced to problems relative to Gibbs distributions:
see for instance the works of Renij, [Re57], Ulam and von Neumann, [UV47],
and Lasota and Yorke, [LY73]. The method of symbolic dynamics, is easily
applicable only in the very special “Markovian” cases (i.e. when there exists
a finite decomposition of [0, 1] into intervals such that the points on the
boundaries of the intervals are transformed by the map into a subset of
themselves, and, furthermore, in every interval of the decomposition the
map is monotonic), has been employed in [La78], [Ru77] and [Bo75]. Other
more recent applications often using other methods are in [Mi79], [CE80a],
[Pi79], [Pi80], [Pi??], [PY79], [Fe78], [Fe79] and [CEL80].
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CHAPTER VI

General properties of Gibbs and SRB distributions

§6.1 Variational properties of Gibbs distributions

The study of Gibbs distributions can be performed to remarkable depth as
we shall hint in this section and in the forthcoming ones. We begin with a
structure theorem which can be articulated into various propositions.

(6.1.1) Proposition:P6.1.1 (Thermodynamic limit)
Let T be a mixing (n+1)× (n+1) compatibility matrix and Φ a potential in
the space B of the potentials for {0, . . . , n}ZT , cf. definition (5.1.1). Define
the partition function of Φ in the box ΛN = [1, N ] as

ZN (Φ) =
∑

σ∈{0,...,n}ΛN
T

exp
[
−
( ∑

R⊂ΛN

ΦR(σR)
)]
. (6.1.1)e6.1.1

Then the limit
P (Φ) = lim

N→∞
N−1 logZN (Φ) (6.1.2)e6.1.2

exists and it defines a function Φ→ P (Φ) on B which is convex and Lipshitz
continuous:

|P (Φ)− P (Ψ)| ≤ ‖Φ−Ψ‖. (6.1.3)e6.1.3

The function P (Φ) is called the pressure of the potential Φ.

Proof: Setting1 UΦ
Λ (σ) =

∑
R⊂ΛΦR(σR), cf. (5.1.11) in definition (5.1.3),N6.1.1

1 With the notations used in definition (5.1.3) we should write U0,Φ
Λ (σ) instead of UΦ

Λ (σ):
we prefer to drop the label 0 throughout all this chapter in order not to use an over-
whelming notation.
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one has

|N−1 logZN (Φ)−N−1 logZN (Ψ)| =

=
∣∣∣N−1

∫ 1

0

dt
d

d t
logZN(Ψ + t(Φ−Ψ))

∣∣∣ = (6.1.4)e6.1.4

=
∣∣∣N−1

∫ 1

0

dt

∑
σ∈{0,...,n}ΛN

T

UΦ−Ψ
ΛN

(σ) e
−UΨ+t(Φ−Ψ)

ΛN
(σ)

∑
σ∈{0,...,n}ΛN

T

e
−UΨ+t(Φ−Ψ)

ΛN
(σ)

∣∣∣ ≤ ‖Φ−Ψ‖,

having used remark (2) to definition (5.1.3), i.e.

|UΦ
ΛN (σ)| ≤ ‖Φ‖N for all Φ ∈ B. (6.1.5)e6.1.5

Equation (6.1.1) and (6.1.5) immediately imply

−‖Φ‖+ log(n+ 1) ≤ N−1 logZN(Φ) ≤ ‖Φ‖+ log(n+ 1), (6.1.6)e6.1.6

and therefore (6.1.4) and (6.1.6) imply that in order to show existence of
the limit P (Φ) it suffices to consider Φ ∈ B0 where B0 is an arbitrary set of
potentials dense in B. Naturally, we shall select the set B0 of the potentials
Φ with finite range RΦ <∞, cf. remark (4) to definition (5.1.3).
For simplicity we consider only the case Tσσ′ = 1 ∀σ, σ′.
If the finite range of Φ is RΦ ≡ R and if σ = (σ′

1 . . . σ
′
Nσ

′′
1 . . . σ

′′
M ) =

(σ′σ′′) ∈ {0, . . . , n}N+M , we get

|UΦ
ΛN+M

(σ′σ′′)− UΦ
ΛN (σ

′)− UΦ
ΛM (σ′′)| ≤ R‖Φ‖, (6.1.7)e6.1.7

by using (5.1.18), (5.2.1) and (5.2.3). So that, by (6.1.7) and (6.1.1),

ZN+M (Φ) = ZN(Φ)ZM (Φ)eoR‖Φ‖, (6.1.8)e6.1.8

with o ∈ [−1, 1]. If N =M = 2k and Pk = 2−k logZ2k(Φ), (6.1.8) says that

Pk − 2−(k+1)R‖Φ‖ ≤ Pk+1 ≤ Pk + 2−(k+1)R‖Φ‖, (6.1.9)e6.1.9

hence (6.1.9) imply that the limit as k →∞ of Pk exists.
Let N = m2k + d, 0 ≤ d < 2k, 0 ≤ m; equation (6.1.8), repeatedly applied
(m+ 1 times) yields

ZN (Φ) = (Z2k(Φ))
mZd(Φ) e

o (m+1)R‖Φ‖, (6.1.10)e6.1.10

with o ∈ [−1, 1]. Then, at fixed k,

N−1 logZN (Φ) =
m2k

m2k + d
Pk +

m+ 1

m2k + d
oR‖Φ‖ +

+
1

m2k + d
logZd(Φ)−−−−→m→∞ Pk + 2−koR‖Φ‖.

(6.1.11)e6.1.11
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This shows, by the arbitrariness of k, the existence of the limit (6.1.2) and
that it coincides with limk→∞ Pk.
Convexity is evident for N−1 logZN(Φ) and hence for P (Φ). Lipschitz-
continuity follows from (6.1.4) and from the existence of the limit (6.1.2).

(6.1.2) Proposition:P6.1.2 (Tangent plane to the graph of the pressure)
Under the hypotheses of the preceding proposition and if µ ∈ G(Φ), the
functional

Ψ→ α(Ψ) = −µ(AΨ) (6.1.12)e6.1.12

is “tangent” to the graph of Φ→ P (Φ). This means

P (Φ + Ψ) ≥ P (Φ) + α(Ψ) for all Ψ ∈ B. (6.1.13)e6.1.13

Vice versa every functional α, tangent to the graph of the function P (Φ),
has the form (6.1.12) with µ ∈ G(Φ) and µ is uniquely determined by α.

Remark: The Gibbs states µ ∈ G(Φ) have therefore the geometric inter-
pretation of “tangent planes” to the graph of Φ→ P (Φ). The function P (Φ)
takes the role of generating function of the Gibbs states, via the relation

µ(AΨ) = −
d

dε
P (Φ + εΨ)

∣∣∣∣
ε=0

, (6.1.14)e6.1.14

that is well defined, by the convexity of the function ε → P (Φ + εΨ), at
least where G(Φ) consists of a single point (and, hence, Φ → P (Φ) has a
unique tangent plane).
This explains the importance attributed to the functional P which, be-
cause of its meaning in various problems of Statistical Mechanics, is called
pressure.

Proof: As usual we shall suppose, for simplicity, that Tσσ′ = 1 ∀σ, σ′.
If ΛN = [1, N ] and if we recall definitions (5.1.2) and (5.1.3) (see in par-
ticular (5.1.9), (5.1.11) and (5.1.12)) the conditional probabilities of the
distributions µ ∈ G(Φ) can be expressed as

pΦ(σΛN |σΛc
N
) =

exp
(
−

N∑
j=1

AΦ(τ
jσ)−DΛN ,1(σ)

)

∑
σ′

exp
(
−

N∑
j=1

AΦ(τ jσ′)−DΛN ,1(σ
′)
) , (6.1.15)e6.1.15

with σ = (σΛNσΛc
N
), σ′ = (σ′

ΛN
, σΛc

N
) ∈ {0, . . . , n}Z, see also (5.1.8). Here

DΛN ,1(σ) is a boundary term or, as we called it in definition (5.1.3), a surface
correction. Define

ZΛN (Φ, σΛc
N
) =

∑

σ′
ΛN

exp
(
−

N∑

j=1

AΦ(τ
jσ′)−DΛN ,2(σ

′)
)
, (6.1.16)e6.1.16
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where DΛN ,2(σ) is another surface correction (see again definition (5.1.3)).
Given a sequence ui ∈ R, let pi = e−ui/

∑
j e

−uj . Then from the inequality

log
∑

i

e−ui = max∑
i
pi=1, pi≥0

∑

i

pi(− log pi − ui) =

=
∑

i

pi(− log pi − ui),
(6.1.17)e6.1.17

we deduce

logZΛN (Φ, σΛc
N
) =

∑

σ′
ΛN

pΦ(σ
′
ΛN |σΛc

N
)
(
− log pΦ(σ

′
ΛN |σΛc

N
)−

−
N∑

j=1

AΦ(τ
jσ′)−DΛN ,2(σ

′)
)
.

(6.1.18)
e6.1.18

To bound this expression in terms of P (Φ), we note that (5.1.12), (5.1.13)
(5.1.14) and (5.1.16) imply the existence of a simple relation between ZN (Φ)
defined in (6.1.1) and ZΛN (Φ, σΛc

N
) in (6.1.16); namely

ZN(Φ)/ZΛN (Φ, σΛc
N
) ≤ expϑ′εN , (6.1.19)e6.1.19

with ϑ′ ∈ [−1, 1] and εN = εN,1 (see (5.1.14)) such that εN/N −−−−→N→∞ 0.

Furthermore, if σ ∈ {0, . . . , n}Z, it is tautological that

pΦ(σΛN |σΛc
N
) =

∫
µ(dσ′) pΦ(σΛN |σΛc

N
) (6.1.20)e6.1.20

(because the integrand is constant) but, by (5.2.5) (or, better, by the same
computation that leads to (5.2.5) and without making use of the hypothesis
‖Φ‖1 < +∞) we see that

pΦ(σΛN |σ′
Λc
N
)

pΦ(σΛN |σΛc
N
)
≤ expϑ′′ε′N , (6.1.21)e6.1.21

with ε′N/N −−−−→N→∞ 0 and ϑ′′ ∈ [−1, 1].2 Hence combining the tautology
N6.1.2

(6.1.20) with the bound (6.1.21) we get a bound for pΦ(σΛN |σ′
Λc
N
)

pΦ(σΛN |σΛc
N
) ≥ exp(−ε′N)

∫
pΦ(σΛN |σ′

Λc
N
)µ(dσ′) ≡

≡ exp(−ε′N)µ(CΛN
σ

ΛN

).
(6.1.22)e6.1.22

2 ε′N can be taken to depend only on N .
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Then (6.1.19) and (6.1.18) say that

N−1 logZN(Φ) ≤ N−1
∑

σ′
ΛN

pΦ(σ
′
ΛN |σΛc

N
)
(
− logµ(CΛN

σ′
ΛN

)−

−
N∑

j=1

A(τ jσ′)
)
+ ηN ,

(6.1.23)e6.1.23

with ηN −−−−→N→∞ 0, uniformly in σΛc
N
.

Equation (6.1.23) can be thought of as an inequality between functions of
σΛc

N
and it can be integrated with respect to µ. We find 3

N6.1.3

N−1 logZN(Φ) ≤ N−1
∑

σ′
ΛN

−µ(CΛN
σ′
ΛN

) logµ(CΛN
σ′

ΛN

)−

−N−1
N∑

j=1

µ(AΦ) + ηN ,

(6.1.24)e6.1.24

and, taking the limit as N →∞,

P (Φ) ≤ s(µ)− µ(AΦ), (6.1.25)e6.1.25

where s(µ) is the average entropy of the probability distribution µ with
respect to the translation, (cf. definition (3.3.2) and the theorem of the
generator given in corollary (3.4.1)).
On the other hand, in general, by (6.1.17) and for an arbitrary τ–invariant
probability distribution m ∈M({0, . . . , n}Z, τ) one has

N−1 logZN (Φ) > N−1
∑

σ
ΛN

m(CΛN
σ
ΛN

)(− logm(CΛN
σ
ΛN

)− UΦ
ΛN (σΛN )),

(6.1.26)e6.1.26
and since

∑

σ
ΛN

m(CNσ
ΛN

)UΦ
ΛN (σΛN ) =

∫
m(dσ)UΦ

ΛN (σΛN ) =

=

∫
m(dσ)

( N∑

j=1

AΦ(τ
jσ) + ∆N (σ)

)
= N(m(AΦ) + η′N )

(6.1.27)e6.1.27

with η′N −−−−→N→∞ 0, one finds for all m ∈ M({0, . . . , n}Z, τ)

P (Φ) ≥ s(m)−m(AΦ). (6.1.28)e6.1.28

3 ηN is the integral of ηN .
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By (6.1.25) and (6.1.28) we therefore obtain

P (Φ) = s(µ)− µ(AΦ) for all µ ∈ G(Φ). (6.1.29)e6.1.29

Hence by (6.1.28) and (6.1.29)

P (Φ + Ψ) ≥ s(µ)− µ(AΦ+Ψ) =

= s(µ)− µ(AΦ)− µ(AΨ) = P (Φ)− µ(AΨ)
(6.1.30)e6.1.30

which means that Ψ→ α(Ψ) = −µ(AΨ) is a tangent functional.
To show the converse part of the proposition we make use of a general
property of tangent planes to graphs of continuous and convex functions
defined on a separable Banach space: the tangent plane is unique on a set
which is at least dense and, furthermore, given Φ ∈ B and a functional αΦ

tangent to the graph of Φ → P (Φ) in the point Φ, one can find, for every

k ≥ 0, sk points Φ
(k)
1 , Φ

(k)
2 , . . . ,Φ

(k)
sk , with ‖Φ(k)

j − Φ‖ < 1/k, in which the

graph of P has a unique tangent plane αΦ(k) and sk positive numbers a
(k)
1 ,

a
(k)
2 , . . . , a

(k)
sk such that

sk∑

j=1

a
(k)
j = 1,

sk∑

j=1

a
(k)
j α

Φ
(k)
j

(Ψ)−−−→
k→∞ α(Ψ) for all Ψ ∈ B.

(6.1.31)e6.1.31

This is a general property of convex functionals 4 which can be applied toN6.1.4

our case in the following way.
We begin by remarking that given a functional α and assuming that there is
a probability distribution µ ∈ M({0, . . . , n}Z, τ) such that α(Ψ) = −µ(AΨ),
for all Ψ ∈ B, then µ is unique. The reason is that by choosing a suitable
Ψ we can compute the µ–probability of a given cylinder CJ

σ̂J
with base on

the set J .
The choice of the potential Ψ is such that ΨX = 0 unless the set X is a
translate τkJ of J for some k ∈ Z and

ΨτkJ(σJ) = δ
σ
J
σ̂
J

. (6.1.32)e6.1.32

Then

µ(AΨ) =
∑

X∋0

1

|X |µ(ΨX(σX)) ≡ µ(CJ
σ̂
J

), (6.1.33)e6.1.33

4 In other words every tangent plane in Φ can be obtained as a limit of a sequence of
planes that are (finite) convex linear combinations of planes tangent in points where the
tangent plane is unique and whose largest distance to Φ is infinitesimal. For discussion
and proof cf. p. 450 of [DS58] and p. 329 of [LR68].
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that proves the statement, because µ is in it turn determined by its values
on the cylinders.
Therefore given a tangent plane α to the graph of P in Φ one may be
tempted to define the probability distribution µ, that should generate the
plane α, by setting µ(AΨ) = −α(Ψ).
The problem is that we do not know whether the numbers µ(CJ

σ̂
J

), defined

in this way in terms of α, and which should be µ–measures of cylinders,
satisfy the properties (i), (ii), (iii) of definition (2.3.2), needed to reconstruct
from them a probability distribution (cf. proposition (2.3.1)): note that
condition (iv), i.e. the translation invariance, of definition (2.3.2) is in this
case automatically satisfied.
However equation (6.1.31) says that, if µ(CJσ

J
) has to be defined in terms of

α by (6.1.33). Note that the already proved direct part of the proposition
and the remark that α determines µ, if µ exists, imply that if there is a
unique tangent plane in Φ then G(Φ) contains a unique point. From this

follows that in the points Φ
(k)
j where the tangent plane is unique, one must

necessarily have α
Φ

(k)
j

(Ψ) = µ
Φ

(k)
j

(AΨ), for all Ψ ∈ B, where µ
Φ

(k)
j

is the

unique element of G(Φ
(k)
j ) This implies that

µ(CJσJ ) = lim
k→∞

sk∑

j=1

a
(k)
j µ

Φ
(k)
j

(CJσJ ). (6.1.34)e6.1.34

Since
∑
j a

(k)
j = 1 and the quantities µ

Φ
(k)
j

(CJσ
j
) are values of measures of

the cylinders CJσ
J
with respect to some probability distribution µ

Φ
(k)
j

the

r.h.s. of (6.1.34) verifies the (i), (ii), (iii) of definition (2.3.2) so that also
µ(CJσ

J
) verifies the same properties. Finally, by proposition (2.3.1), there

exists µ ∈M({0, . . . , }Z, τ) such that

α(Ψ) = −µ(AΨ) for all Ψ ∈ B. (6.1.35)e6.1.35

It remains to check that the distribution µ is in G(Φ).
For this purpose we remark that the first of (6.1.31) and the explicit def-
inition of conditional probability for a Gibbs distribution (cf. Section §5.1,
(5.1.9)), immediately imply

sup
j

sup
σ
|pΦ(σΛ|σΛc)− pΦ(k)

j

(σΛ|σΛc)| −−−→k→∞ 0 (6.1.36)e6.1.36

for all Λ ⊂ Z. Furthermore (6.1.34) means that µ is the weak limit limN→∞∑k
j=1 a

(k)
j µ

Φ
(k)
j

. Hence if σΛ → f(σΛ) is a B(Λ)–measurable function we

have

µ(f) = lim
k→∞

sk∑

j=1

a
(k)
j

∫
µ
Φ

(k)
j

(dσ)f(σΛ) =
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= lim
k→∞

sk∑

j=1

a
(k)
j

∑

σΛ

∫
µ
Φ

(k)
j

(dσ′)p
Φ

(k)
j

(σΛ|σ′
Λc)f(σΛ) =

= lim
k→∞

∑

σ
Λ

∫ ( sk∑

j=1

a
(k)
j µ

Φ
(k)
j

(dσ′)
)
pΦ(σΛ|σ′

Λc)f(σΛ)+ (6.1.37)
e6.1.37

+ lim
k→∞

∑

σ
Λ

∫ ( sk∑

j=1

a
(k)
j µ

Φ
(k)

j

(dσ′)
)(
p
Φ

(k)

j

(σΛ|σ′
Λc)− pΦ(σΛ|σ′

Λc)
)
f(σΛ) =

=
∑

σ
Λ

∫
µ(dσ′)pΦ(σΛ|σ′

Λc)f(σΛ),

by (6.1.36) and because σ → pΦ(σΛ|σΛc) is a continuous function (hence
uniformly continuous). Equality between first and last term in (6.1.37)
means that pΦ(σΛ|σΛc) is the conditional probability relative to the region
Λ of the distribution µ: thus, by the arbitrariness of Λ, we see that µ ∈ G(Φ).

We implicitly obtained also the following results.

(6.1.1) Corollary:C6.1.1 (Variational principle for the pressure)
Under the hypotheses of proposition (6.1.1) the set G(Φ) consists of all
probability distributions µ ∈M({0, . . . , n}ZT , τ) for which

P (Φ) = max
m∈M({0,...,n}Z

T
,τ)

(s(m)−m(AΦ)) = s(µ)− µ(AΦ). (6.1.38)e6.1.38

Remark: This is the variational principle for the determination of the
Gibbs distributions of given potential (Ruelle).

(6.1.2) Corollary:C6.1.2 (Decomposition into pure phases)
Under the hypotheses of proposition (6.1.1) the following properties hold.
(i) If µ ∈ G(Φ) then its ergodic decomposition πµ (cf. Section §2.4) has
support in Ge(Φ) = G(Φ) ∩Me.
(ii) The set Ee(Φ) = {set of the ergodic points of {0, . . . , n}ZT which generate
a probability distribution in Ge(Φ)} (cf. Section §2.3) is a Borel set and
µ(Ee(Φ)) = 1, for all µ ∈ G(Φ).
(iii) The extremal points of G(Φ) are the points of Ge(Φ).

5

N6.1.5

Remark: A consequence of this corollary is an interesting interpretation
of the pressure P (Φ) as complexity (cf. definition (3.1.1)). Let in fact DN

be a sequence of functions on {0, . . . , n}N , N = 1, 2, . . ., such that

lim
N→∞

sup
σ1...σN

N−1|DN (σ1 . . . σN )| = 0, (6.1.39)e6.1.39

5 If G is a closed convex set in a linear topological space we say that µ ∈ G is extremal if
the relation µ = α′µ′ +α′′µ′′, with µ′, µ′′ ∈ G and α′ +α′′ = 1, α′, α′′ ∈ (0, 1), implies
µ′ = µ′′.

20/novembre/2011; 22:18



Problems for §6.1 185

and set

VN (σ1 . . . σN ) = UΦ
ΛN (σ1 . . . σN ) +DN(σ1 . . . σN ). (6.1.40)e6.1.40

Then, if µ ∈ G(Φ), µ–almost all points σ of {0, . . . , n}ZT have complexity
with weight V = {VN}∞N=0 given by

s(σ, {VN}∞N=0) = P (Φ) = s(µ)− µ(AΦ). (6.1.41)e6.1.41

This is a consequence of the above corollaries and of the Shannon–McMillan
theorem, see also problem [6.1.2].

Proof: The set G(Φ) is convex and compact, see corollary (5.1.1), and
item (i) follows from the ergodic decomposition (proposition (2.4.1)) which
implies that πµ(Me ∩G(Φ)) = 1, if µ ∈ G(Φ).
Item (ii) follows immediately from the results of problem [2.4.6].
Item (iii) can be proved by noting that the extremal points ofM are the
points inMe: see remark (5) to proposition (2.4.1).
Therefore assuming existence of a distribution µ, extremal in G(Φ) but
not in M (i.e. not ergodic), one would find α ∈ (0, 1) and two probability
distributions in µ1 and µ2 with µ1 6= µ2 and µ2 ∈ M \ G(Φ) such that
µ = αµ1 + (1 − α)µ2. Then P (Φ) = s(µ)− µ(AΦ) = α(s(µ1))− µ1(AΦ)) +
(1−α)(s(µ2)−µ2(AΦ)) < P (Φ) by the convexity of the average entropy and
by the variational principle in (6.1.38). Hence the extremal points of G(Φ)
would be actually extremal also in M and therefore ergodic. The proof is
therefore complete.

Problems for §6.1

[6.1.1]:Q6.1.1 Prove (6.1.41). (Hint: Consider the function

f̂N (σ) = −N−1 log(µ(CNσΛN
)e

−VN (σ
ΛN

)
)

and show that as N → ∞ it converges in measure to s(µ) − µ(AΦ) if µ ∈ Ge(Φ); then
make use of the argument given in the remark (2) to proposition (3.2.1))

[6.1.2]:Q6.1.2 (Pressure of the Ising potential)

Compute the pressure of the potential on {0, 1}Z such that ΦX = 0 unless X is a set
which is a translation of a single point or of two nearest neighbors and

Φ{0}(σ) =
{
h σ = 1
−h σ = 0

, Φ{0,1}(σ, σ
′) = J(2σ − 1)(2σ′ − 1),

which is called “Ising potential in external field h.” (Hint: : Remark that ZN can be
written as the scalar product v ·ΞNv, where Ξ is a suitable 2×2 matrix (transfer matrix)
and v = (1, 1). P (Φ) is the linked to the eigenvalues of Ξ.)

[6.1.3]:Q6.1.3 Compute by means of the variational principle the probability µ(C00
11 ) with

respect to the probability distribution of parameters J and h considered in problem
[6.1.2].

[6.1.4]:Q6.1.4 (Fisher potential)

Like problem [6.1.3] for the Fisher potential introduced in problem [5.2.1].
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[6.1.5]:Q6.1.5 (Exact solubility of Fisher potentials)

Compute the measure of the cylinders C0...k
1...1 for the Fisher potential of the preceding

problem, using equation (6.1.33). The fact that an exact computation of the measure of
all cylinders and of the pressure, entropy and other thermodynamic functions, is possible
(and not difficult) makes the Fisher potentials an important tool for the analysis of
examples and counterexamples.

[6.1.6]:Q6.1.6 (Pressure singularities and non-uniqueness)

Check that if P (Φ) is analytic in Φ for Φ in an open subset ∆ in the space of the potentials,
∆ ⊂ B, then the tangent plane to Φ is unique in every point of ∆. (Hint: One says that
a functional P defined on a Banach space B is analytic at a point Φ if given arbitrarily
k > 0 and Ψ1, . . . ,Ψk ∈ B the function ε1 . . . εk → P (Φ+ ε1Ψ1 + . . .+ εkΨk) is analytic
in ε1, . . . , εk in a neighborhood of the origin.)

[6.1.7]:Q6.1.7 (A Fisher potential with phase transition) Show that if P (Φ + εΨ) has right

derivative different from the left derivative, as function of ε, at ε = 0 then G(Φ) contains
at least two different points (one says that a “phase transition” takes place as ε varies).

[6.1.8]:Q6.1.8 Show the existence of Fisher potentials with ‖Φ‖1 = +∞ (cf. problem [6.1.4]) for

which P is not an analytic function of the “one-body” component of Φ (i.e. of Φ{0}(1) ≡
−Φ0) and that P (Φ) has right derivative different from the left derivative at a suitable
values of Φ0. Check that this cannot happen if ‖Φ‖1 < +∞. (Hint: Consider the case
Φn = (1+ n)−1−ε, with 0 < ε < 1, for n ≥ 1 and Φ0 arbitrary; then P is not analytic as
a function of Φ0, by explicit computation. This requires having solved problem [6.1.5].)

Bibliographical note to §6.1
The contents of this section are taken from various sources, for instance
from Ch. 7, §3,4 of [Ru69], p. 450 of [DS58], [LR68]. See also the biblio-
graphical note to §5.1. The theory of the pressure regarded as a generating
function of a Gibbs state is ancient, some examples of “rigorous” applica-
tions of this elegant technique are in [Ru72].

§6.2 Applications to Anosov systems. SRB distribution

A classical application of the theory of Gibbs distributions concerns the
analysis of the invariant probability distributions associated with an Anosov
system (Ω, S) on a compact Riemannian manifold (Sinai).
The definition that we adopted of Anosov system, cf. definition (4.2.1),
assumes topological transitivity and implies topological mixing, cf. problem
[4.2.10], i.e. that, given two open sets G, F ⊂ Ω there exists k0 > 0 such
that if k ≥ k0 then SkG ∩ F 6= ∅. We shall rely on the latter properties
although several results could be suitably extended to cover much more
general hyperbolic systems. In agreement with the notations introduced in
definition (2.2.2) we shall recall or set the following definitions.

(6.2.1) Definition:
D6.2.1

(Topological and ergodic distributions)
We denote
(i) M(Ω, S) the set of the S–invariant Borel distributions on Ω,
(ii) Me(Ω, S) ⊂ M(Ω, S) the set of the distributions on Ω which are S–
ergodic,
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(iii) Mt
e(Ω, S) ⊂ Me(Ω, S) ⊂ M(Ω, S) the set of the S–ergodic distribu-

tions which give a positive measure to all open sets.
More generallyM0,t(Ω) will be the set of topological distributions, cf. defi-
nition (4.1.2), on Ω.

The aim of the following analysis is to show that Anosov systems admit
“very many” probability distributions inMt

e(Ω, S) and to show that, among
them, one can identify several ones either on the basis of a criterion of “max-
imum complexity” or by attibuting a special role to the statistical properties
of motions whose initial data are chosen randomly with a probability dis-
tribution which is absolutely continuous with respect to the volume.

(6.2.2) Definition:D6.2.2 (SRB distributions and f–complex distributions)
Given an Anosov map (Ω, S)
(i) A topological probability distribution µ ∈M(Ω, S) is said to have maxi-
mum complexity with respect to a continuous function f if it maximizes the
quantity s(µ)− µ(f).
(ii) If µ0 is a probability distribution absolutely continuous with respect to
the volume measure on Ω and if for all continuous functions F on Ω and
for µ0–almost all initial data x ∈ Ω the limit limN→∞N−1

∑N−1
j=0 F (Sjx)

esists and can be written as

lim
N→∞

N−1
N−1∑

j=0

F (Sjx) =

∫

Ω

µ(dy)F (y) (6.2.1)6.2.0

with µ ∈M(Ω, S), then µ is called the SRB distribution of (Ω, S).

Remark: (1) The results of this section are general results preparing the
key results of this Chapter: namely that all Anosov systems admit a SRB
distribution, proposition (6.3.3) and corollary (6.3.1), which furthermore is
the invariant probability distribution which maximizes complexity with re-
spect to the continuous function f(x) = λu(x), proposition (6.3.4).
(2) Technically the above properties will be closely related to the results of
this section which allow us to identify probability distributions that max-
imize complexity with suitable Gibbs distributions with short range po-
tentials, see lemma (6.2.1), and with properties of periodic motions, see
proposition (6.2.1).

The notion of complexity has been discussed in Section §3.1, where we have
given the definitions of complexity of sequences of symbols σ with respect to
families {UN}∞N≥0 of weights, i.e. of functions defined on strings of length

N in σ ∈ {0, . . . , n}NT .
Given a potential Φ ∈ B, cf. definition (5.1.1), corollary (6.1.1) shows that
a distribution µ on {0, . . . , n}ZT that maximizes the complexity of µ–almost
all the points relatively to a weight UN(σ) =

∑
R⊂{1,...,N} ΦR(σR) is a Gibbs

distribution with potential Φ; such complexity is, then, equal to the pressure

P (Φ) = max
µ′∈Me({0,...,n}ZT )

(s(µ′)− µ′(AΦ)). (6.2.2)e6.2.2
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In Anosov systems, as seen in Section §4.2, Markovian pavements, which
always exist, allow us to describe points of Ω by means of symbolic sequences
and their evolution by the shift map.
One is thus led to the search of invariant and topological distributions on
Ω via symbolic dynamics. At the same time one would like to characterize
the distributions that in the symbolic language become Gibbs distributions
in terms of quantities that do not depend explicitly on specific Markovian
pavements.
Given the one-to-one correspondence between the S–ergodic topolog-
ical distributions on Ω and the τ–ergodic topological distributions on
{1, . . . , q}ZT discussed in proposition (4.1.1) and in the relative remark
(2) one is tempted, for instance, to associate with (6.2.2) the “intrinsic”,
i.e. Markovian pavement independent, problem of finding the distributions
µ′ that maximize

s(µ′)− µ′(f) (6.2.3)
e6.2.3

onMt
e(Ω, S) with f a continuous function on Ω.

As we shall see, if f is Hölder continuous, i.e. if it verifies a “modest”
requirement of regularity beyond the mere continuity, it will be possible to
give a quite satisfactory answer to the above questions.
Let (Ω, S) be an Anosov system. Denote P = {P1, . . . , Pq} a Markovian
pavement constructed with S–rectangles as in Section §4.2: let T be its
compatibility matrix (cf. Section §4.1). Then (Ω, S) is mixing and, hence,
there exists a ≥ 0 such that (T k)σσ′ > 0 for all k > a.
Denote by σ → X(σ) the Hölder continuous code of {1, . . . , q}ZT into Ω
discussed in Section §4.1 defined by

x = X(σ) =
+∞∩
j=−∞

S−jPσj . (6.2.4)e6.2.4

The following preliminary result holds.

(6.2.1) Lemma:L6.2.1 Let (Ω, S) be an Anosov system and let P = {P0, . . . , Pq}
be a Markovian pavement for it with compatibility matrix T .
(i) If f is Hölder continuous the function µ→ s(µ)− µ(f) admits a maxi-
mum p(f) on Mt

e(Ω).
(ii) Let νN ∈ M0,t(Ω) be an arbitrary sequence of topological distributions

(cf. definition (6.2.1)) on Ω and, given σ ∈ {1, . . . , q}[0,N ]
T , let

UN (σ0 . . . σN ) =

∫
P 0...N
σ0...σN

∑N
j=0 f(S

jx)νN (dx)
∫
P 0...N
σ0...σN

νN (dx)
, (6.2.5)e6.2.5

where P 0...N
σ0...σN =

N∩
j=0

S−jPσj . Then the image m of µ ∈ Mt
e(Ω, S) via

the isomorphism mod 0 defined by (6.2.4) maximizes the complexity with
weight {UN}∞N=1 if and only if µ maximizes the function µ → s(µ) − µ(f)
onMt

e(Ω, S).
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Remark: Note that the sequence νN and the Markovian pavement P used
to formulate this theorem are in a certain sense irrelevant: the image m
of the probability distribution µ ∈ Mt

e(Ω, S), that maximizes s(µ) − µ(f),
makes largest the complexity associated with UN for any choice of P or
of the sequence νN that allows us to construct UN . Hence it is natural to
call s(µ)− µ(f) = p(f) the complexity with weight f of µ on Ω: this is the
interest of the statement (ii).

Proof: Let a be the mixing time of T . Let ρ ∈ {1, . . . , q}ZT be a T –compatible
sequence, cf. definition (4.1.1), chosen once and for all.
We first need to define a way to merge together two compatible strings into
a longer compatible string. This can be done in several “standard ways”
provided the compatibility matrix T is mixing.

Suppose that a ≥ 1 (i.e. we do not assume that the compatibility relation
is trivial). Associate with each pair of symbols σ, σ′ a T –compatible string
(ση0 . . . ηa−1σ

′) and let ϑ(σ, σ′) = (η0 . . . ηa−1).
Given such a correspondence ϑ, which we shall call an interpolation string,
for any two finite T –compatible strings σ = (σ1 . . . σp) and σ

′ = (σ′
1 . . . σ

′
q)

we can form the compatible strings

σ ϑ(σp, σ
′
1)σ

′ and σ′ ϑ(σ′
q, σ1)σ,

where, as usual, we indicate with σ ϑ(σp, σ
′
1)σ

′ the string starting with σ
continuing with ϑ(σp, σ

′
1) and ending with σ′. If σ is semiinfinite only one of

the above “mergers” is possible and if both σ, σ′ are semiinfinite one merger
is possible provided σ is infinite to the left and σ′ is infinite to the right or
vice versa. We shall simply denote σ ◦ ϑ ◦ σ′ the merger of σ and σ′ with
an interpolation string ϑ.
In the continuation of the proof just started we imagine that the set of q2

interpolating strings ϑ has been fixed once and for all. If σ, ρ ∈ {1, . . . , q}ZT
and N ∈ N we shall denote by (σ(N)ρ) a sequence whose labels for i ∈
[−N,N ] coincide with σi and for i /∈ (−N−a,N+a) coincide with ρi, while
for the other i’s the sequence (σ(N), ρ) is interpolated by the appropriate
interpolating strings ϑ.

If f ∈ Cα(Ω), as already remarked elsewhere, (cf. remark (3) to defini-
tion (4.3.2)), the quantity σ → f(X(σ)) can be well developed in terms of
cylindrical functions starting from the identity

f(X(σ)) = f(X(ρ)) +

∞∑

N=0

[f(X(σ(N)ρ))− f(X(σ(N−1)ρ))], (6.2.6)e6.2.6

where f(X(σ(−1)ρ))
def
= f(X(ρ)). In fact set

ΓY (σY ) = 0 Y 6= [−N,N ] for some N ≥ 0 and

ΓY (σY ) =
(
f(X(σ(N)ρ))− f(X(σ(N−1)ρ))

)
,

(6.2.7)e6.2.7
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where in the second line we suppose that Y is the interval Y = [−N,N ]
centered at 0. Then we rewrite (6.2.6) as

f(X(σ)) = f(X(ρ)) +
∑

Y ∋0

ΓY (σY ), (6.2.8)e6.2.8

and we note that, if Cf,α is the Hölder continuity modulus of f ∈ Cα(Ω)
while α′ is the Hölder continuity exponent of the code X (cf. definition
(4.1.3) and (4.1.5)) and C′ is the relative modulus, one has

|ΓY (σY )| ≤ Cf,αC′α exp(−αα′(N − 1)) = C̃e−bdiam(Y ), (6.2.9)e6.2.9

with C̃, b > 0. Therefore if we set

ΦX(σX) = ΓX(τ−iσX) if X = τ i([−N,N ]) for some N and i,

ΦX(σX) = 0 otherwise, (6.2.10)e6.2.10

and

AΦ(σ) =
∑

X∋0

ΦX(σX)

|X | , (6.2.11)e6.2.11

we find that Φ is a potential in the space B introduced in definition (5.1.1),
because Φ verifies the condition of the problem [5.3.7] of Section §5.3 (ex-
ponential decay of the potential), so that ||Φ||1 <∞. Hence one deduces

∣∣∣
N−1∑

j=0

(
f(SjX(σ))− f(SjX(ρ))

)
−
N−1∑

j=0

AΦ(τ
jσ)
∣∣∣ ≤ C′′ (6.2.12)e6.2.12

for every σ ∈ {1, . . . , q}ZT and for all N > 0, if C′′ is suitably chosen. We will
choose, if possible, ρ such that τ jρ = ρ, i.e. ρ = (. . . i i i . . .) for some label
i ∈ {0, . . . , q}. However the latter sequence may fail to be compatible: in
such a case we choose ρ to be a periodic sequence of period a, which exists
because of the mixing property of T . Below we suppose, for simplicity, that
ρ = (. . . i i i . . .) for some label i ∈ {0, . . . , q} is a compatible sequence.
From corollary (6.1.2) and (5.1.1), (5.1.17), it follows that there exists an
ergodic distribution m on {1, . . . , q}ZT which maximizes the complexity with
weight {UN}∞N=1 because by (6.2.5) and (6.2.12)

∣∣∣UN(σ)−
∑

R⊂[0,...,N ]

ΦR(σR)
∣∣∣ ≤ C′′′ for all N, (6.2.13)e6.2.13

cf. remark to lemma (6.2.1). Therefore from the general theory of Gibbs dis-
tributions, see proposition (5.2.1), it follows that m ∈ Mt

e({1, . . . , q}ZT , τ).
Let now µ′ be the distribution isomorphic mod 0, via the isomorphism
X , to a given distribution m′ arbitrarily chosen in Mt

e({1, . . . , q}ZT , τ) (cf.
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proposition (4.1.1) and (4.1.9)). Then µ′ ∈ Mt
e(Ω, S) and furthermore

s(µ′) = s(m′), since entropy is invariant under isomorphisms mod 0, and

µ′(f − f(X(ρ))) = lim
N→∞

µ′
(
N−1

N−1∑

j=0

[f(Sj(·))− f(X(ρ))]
)
=

= lim
N→∞

m′
(
N−1

N−1∑

j=0

[f(X(τ j ·))− f(X(ρ))]
)
= (6.2.14)

e6.2.14

= lim
N→∞

m′
(
N−1

N−1∑

j=0

AΦ(τ
j ·)
)
= m′(AΦ),

and therefore, for all µ′ ∈ Mt
e({1, . . . , q}ZT , τ),

s(µ′)− µ′(f) = −f(X(ρ)) + s(m′)−m′(AΦ), (6.2.15)e6.2.15

so that the functional onMt
e(Ω, S) in the l.h.s. of (6.2.15) has a maximum

which is reached, by the variational principle in corollary (6.1.1), on the X–
image of the Gibbs distribution m ∈ Ge(Φ). Item (ii) is thus also proved.

It is convenient to remark that lemma (6.2.1), or better its proof, also yields
an explicit method to study the distributions µ that maximize s(µ)− µ(f):
indeed in deriving (6.2.10) we have shown that such distributions can be
considered as Gibbs distributions with a suitable potential Φf which satisfies
the hypotheses of problems [5.3.15] and [5.3.7], (i.e. exponential decay), if
f ∈ Cα(Ω). This implies the following result.

(6.2.1) Corollary:C6.2.1 (Variational principle for pressure of smooth func-
tions)
If f ∈ Cα(Ω) there exists a unique distribution that maximizes s(µ)− µ(f)
over µ ∈ Mt

e(Ω). Such a distribution µf is mixing and

µf (FS
kG) =

∫
µf (dx)F (x)G(S

kx)−−−→
k→∞ µf (F )µf (G), (6.2.16)e6.2.16

with exponential rate, for k →∞, if F , G are Hölder continuous functions
on Ω.

Proof: We only have to check the exponential decay, which, however, follows
by the same argument seen in (5.4.22).

An interesting “intrinsic” method to compute p(f) and µ from the stability
properties of the periodic points is given by the following proposition.

(6.2.1) Proposition:P6.2.1 (Periodic orbits expansion)
(i) The quantity

p(f) = max
µ∈Mt

e(Ω,S)
(s(µ)− µ(f)), (6.2.17)e6.2.17
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with f ∈ Cα(Ω), can be computed as

p(f) = lim
N→∞

N−1 log
∑

x∈Ω, SNx=x

e
−
∑N−1

j=0
f(Sjx)

. (6.2.18)e6.2.18

(ii) If µf is the point where the maximum in (6.2.17) is reached, µf can be
computed as a weak limit as N →∞ of the distributions on Ω

µN (dy) =

∑
SNx=x

(
exp

(
−
N−1∑
j=0

f(Sjx)
))
δx(dy)

∑
SNx=x

(
exp

(
−∑N−1

j=0 f(Sjx)
)) , (6.2.19)e6.2.19

where δx is the Dirac measure on x.

Proof: Let Q be a Markovian pavement: we shall denote by πN ≡ πN (Ω, S)
the set of the points of Ω periodic with period N and by π̂N ≡ π̂N (Ω, S)
the set of the points of {1, . . . , q}ZT periodic with period N . Then

X(π̂N ) ⊆ πN , (6.2.20)e6.2.20

and to every x ∈ πN there can correspond at most d elements σ ∈ π̂N such
that X(σ) = x, if d is the multiplicity M of the code, cf. definition (4.1.3).
But there could exist elements of π̂N that are not symbolic representations
of elements of πN because the compatible histories of a point of period N
might have a period multiple of N (as a consequence of the ambiguity of the
coding of points that are on the boundaries of the elements of the Markovian
pavement). Hence we can write the inequality

∑

x∈πN
e
−
∑

N−1

j=0
f(Sjx) ≥ d−1

∑

σ∈π̂N

e
−
∑

N−1

j=0
f(X(τ jσ))

, (6.2.21)
e6.2.21

which, by (6.2.12), implies

∑

x∈πN
e
−
∑

N1

j=0
f(Sjx) ≥ d−1

∑

σ∈π̂N

e
−C′′−Nf(X(ρ))−

∑
N−1

j=0
AΦ(τ jσ)

. (6.2.22)e6.2.22

This is a useful information because we can check that

lim
N→∞

N−1 log
∑

σ∈π̂N

exp
(
−
N−1∑

j=0

AΦ(τ
jσ)
)
= P (Φ); (6.2.23)e6.2.23

indeed such a limit is certainly ≤ P (Φ) by virtue of (6.1.2) and of (5.1.12),
(5.1.14) and (5.1.16), and because it is possible to establish, in an obvious
way, a one-to-one correspondence between π̂N and a subset of {1, . . . , q}NT .
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On the other hand, since T is a mixing matrix with mixing time a, every
configuration of {1, . . . , q}N−a

T can be continued into a sequence in π̂N ,
according to a prefixed rule to determine the interpolating strings ϑ. If σ′

is any compatible string of length N − a, σ′ = (σ′
0, . . . , σ

′
N−a−1) we simply

extend it to the right by the string ϑ(σ′
N−a−1, σ

′
0) so that the string σ′ ◦ ϑ

thus constructed has length N and can be indefinitely repeated to form a
period N infinite sequence σ̃′. Thus one sees that, with the notations of
Section §6.1, see beginning of the proof of (6.1.2), there is a constant Ĉ > 0
such that

∣∣UΦ
[0,1,...,N−a−1](σ

′)−
N−1∑

j=0

AΦ(τ
j σ̃′)

∣∣ ≤ Ĉ, (6.2.24)e6.2.24

so that

∑

σ′∈{1,...,n}N−a

e−U
Φ
[0,1,...,N−a−1](σ

′) ≤
∑

σ′∈π̂N

e
Ĉ−
∑N−1

j=0
AΦ(τ jσ′)

, (6.2.25)e6.2.25

which gives, together with (6.1.1), the inverse inequality necessary to deduce
(6.2.23).
Having established (6.2.23), we note that (6.2.22), (6.2.23) and (6.1.29)
imply, if m ∈ G(Φ) and µ is its image via X ,

lim
N→∞

N−1 log
∑

x∈πN
e
−
∑

N−1

j=0
f(Sjx) ≥

≥ −f(X(ρ)) + s(m)−m(AΦ) = s(µ)− µ(f),
(6.2.26)e6.2.26

having also used the general relation (6.2.15) involving a distribution m′ ∈
Mt

e ({1, . . . , q}ZT , τ) and its X–image µ′.
To find the inequality opposite to (6.2.26) we proceed in an analogous way.
Assuming for simplicity that N is even we associate with every x ∈ πN
several elements σ ∈ π̂N+2a such that

d(X(σ), x) ≤ Ce−αN , (6.2.27)e6.2.27

for suitable C, α > 0. The rule that allows us to construct this correspon-
dence is the following. Let σ̂ be one of the (up to d) elements in {1, . . . , q}ZT
such that X(σ) = x. Set

σi = σ̂i ∀|i| ≤ N/2, (6.2.28)e6.2.28

and define σN/2+1, . . . , σN/2+a, σ−N/2−1, . . . , σ−N/2−a so that

σ±(N/2+a) = 0,

N/2+a−1∏

j=N/2

Tσjσj+1Tσ−jσ−j−1 = 1. (6.2.29)e6.2.29
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This is possible by the mixing property of T and in up to q2a different ways.
The sequence σ, defined in this way for i ∈ [−N/2 − a, N/2 + a] is then
periodically extended into a periodic sequence with period N + 2a: note
that this is now possible because σ−N/2−a = σN/2+a by (6.2.29).
The construction shows that with every x ∈ πN we can associate (up to
q2a) elements σ ∈ π̂2N/2+2a and, furthermore, such classes of elements are
pairwise disjoint (i.e. to different x necessarily there correspond different
sequences σ).
Furthermore (6.2.28) implies (6.2.27) by the Hölder continuity of the code,
and (6.2.27) in turn means that if σ is associated with an x by the preceding

construction there is a constant C
′
> 0 such that

∣∣∣
N−1∑

j=0

f(Sjx)−
N−1∑

j=0

f(X(τ jσ))
∣∣∣ ≤ C

′
, (6.2.30)e6.2.30

because f is Hölder continuous and, by (6.2.27), there exists C
′′
> 0 such

that
N−1∑

j=0

d(Sjx, SjX(σ))α ≤ C
′′

(6.2.31)e6.2.31

(note that the distance between Sjx and SjX(σ) begins to grow substan-
tially only when |j| is close to N/2, by the construction of σ′). Hence by
(6.2.30) ∑

σ∈π̂N+2a

e
−
∑N+2a−1

j=0
f(SjX(σ)) ≥

≥ e−C
′−2a‖f‖∞ ·

∑

x∈πN
e
−
∑N−1

j=0
f(Sjx)

.

(6.2.32)e6.2.32

This inequality implies, by (6.2.23), the validity of the inequality opposite
to (6.2.26), and (6.2.18) is proved. This shows that the limit (6.2.18) exists
and equals P (Φ) − f(X(ρ)): in particular the latter expression does not
depend on the Markovian pavement Q used, in spite of the fact that both
Φ and the code X do depend on Q.
To show the validity of item (ii) call µ a weak limit of the sequence of
distributions in (6.2.19). Since the distributions µN in (6.2.19) are invari-
ant,1 the limit of any convergent subsequence of µN will be S–invariant andN6.2.1

hence µ will be S–invariant.
To check that µ = µ it will suffice to show that µ is absolutely continuous
with respect to µ: then the ergodicity of µ will imply µ = µ. The absolute
continuity will follow (since µ and µ are regular Borel measures) from an
inequality of the type µ(|F |) ≤ Kµ(|F |), for F that varies in a set which
spans densely in C(Ω). For example for every Hölder continuous F .

1 Observe that if F (x) =
∑N−1

j=0
f(x) and SNx = x then F (Sx) = F (x). Moreover the

set of points of period N is clearly S-invariant.
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Hence we shall fix 1 > β > 0 and show the existence of K > 0 such that
µ(F ) ≤ Kµ(F ) for all F ≥ 0, F ∈ Cβ(Ω). We have

µN (F ) =

∑
x∈πN e

−
∑

N−1

j=0
f(Sjx)

F (x)

∑
x′∈πN e

−
∑N−1

j=0
f(Sjx′)

≤ by (6.2.22) ≤

≤ d eC′′

∑
x∈πN e

−
∑

N−1

j=0
f(Sjx)

F (x)

∑
σ∈π̂N e

−Nf(X(ρ))−
∑N−1

j=0
AΦ(τ jσ)

≤ (6.2.33)e6.2.33

≤ by (6.2.27), (6.2.30), (6.2.32) ≤ deC′′+C
′
+2a‖f‖∞ ·

·
∑
σ∈π̂N+2a

e
−
∑

N+2a−1

j=0
f(X(τ jσ))

(F (X(σ)) + Ce− αN
)

∑
σ∈π̂N e

Nf(X(ρ))−
∑

N−1

j=0
AΦ(τ jσ)

,

having also used the Hölder continuity of F to define naturally C and α.
By (6.2.12), the (6.2.33) can be further bounded above by

µN (F ) ≤ de2C′′+C
′
+2a‖f‖∞

∑

σ∈π̂N+2a

e−(N+2a)f(X(ρ))·

· e
−
∑

N+2a−1

j=0
AΦ(τ jσ)

(F (X(σ)) + Ce− αN )
∑

σ∈π̂N e
−N f(X(ρ)−

∑
N−1

j=0
AΦ(τ jσ))

,

(6.2.34)e6.2.34

and, in the limit as N →∞, we get

µ(F ) ≤ de2C′′+C
′
+4a‖f‖∞ lim

N→∞
∑

σ∈π̂N+2a−1
e
−
∑

N+2a−1

j=0
AΦ(τ jσ)

(F (X(σ)) + Ce−αN )

∑
σ∈π̂N e

−
∑

N−1

j=0
AΦ(τ jσ)

.
(6.2.35)e6.2.35

However as a consequence of the finiteness of ‖Φ‖1, for all p ≥ 0 there exists
a constant Bp <∞ such that

B−1
p ≤

∑
σ∈π̂N e

−
∑N−1

j=0
AΦ(τ jσ)

∑
σ∈π̂N+p

e
−
∑N−1

j=0
AΦ(τ jσ)

≤ Bp, (6.2.36)e6.2.36

because this ratio can be estimated by the same procedure followed to solve
problem [5.3.1] (we leave this to the reader).
Then the limit in (6.2.35) is not larger than B2aµ(F ), for all F ∈ Cα(Ω),
F ≥ 0, and this implies existence of K > 0 such that µ(F ) ≤ Kµ(F ), for
all F ∈ Cα(Ω), F ≥ 0; and the proof is complete.
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Bibliographical note to §6.2
This section illustrates some aspects of Sinai’s theory, [Si72]; see the bibli-
ographical note to §4.1.

§6.3 Periodic orbits, invariant probability distributions and en-
tropy

An interesting and in a certain sense surprising corollary of the results of
the preceding section is the following proposition.

(6.3.1) Proposition:P6.3.1 (Topological entropy)
Let (Ω, S) be an Anosov system and let Nm(S) = {number of periodic points
of period m contained in Ω}.
(i) The limit

s0 = lim
m→∞

m−1 logNm(S) (6.3.1)e6.3.1

exists and has value s0 = s(µ), where µ is a probability distribution which
maximizes the entropy function s(·) in Mt

e(Ω, S).
(ii) If Q is a Markovian pavement of Ω with compatibility matrix T and if
λT is the largest eigenvalue of T (simple by Perron–Frobenius’ theorem, cf.
problems [2.3.7], [2.3.10] and [2.3.12]), one has

s0 = P (0) = logλT > 0. (6.3.2)e6.3.2

(iii) The closure of the set of periodic points coincides with Ω.

Proof: Property (iii) is true for the subshift ({1, . . . , q}ZT , τ) because T is
transitive (see proposition (4.2.4)) and therefore it holds for (Ω, S) because
the symbolic code X is continuous and surjective. A proof not based on
symbolic dynamics is perhaps more instructive, see problem [4.2.13].
Property (i) holds because the probability distribution µ that maximizes
s(µ′) on Mt

e(Ω) is such that s0 = s(µ) by (6.2.18), while, by proposition
(6.2.1), it is the image of the Gibbs distribution on {1, . . . , q}ZT with potential
Φ = 0 (cf. proof of lemma (6.2.1), in particular (6.2.7) and (6.2.10)). Then

P (0) = lim
N→∞

N−1 log
∑

σ∈{1,...,q}N
T

1 =

= lim
N→∞

N−1 log
∑

σ1,...,σN

Tσ1σ2Tσ2σ3 . . . TσN−1σN = (6.3.3)e6.3.3

= lim
N→∞

N−1 log
∑

σ,σ′

(TN−1)σσ′ = logλT ,

by Perron–Frobenius’ theorem, since T is mixing. Hence also (ii) follows.

The problem of the counting of periodic points can be further refined: for
instance the following proposition holds (Manning–Ruelle).
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(6.3.2) Proposition:P6.3.2 (Zeta function)
Let (Ω, S) be an Anosov system.
(i) The function

ζ(s, f) = exp
[ ∞∑

n=1

(e−ns
n

∑

Tnx =x

e
−
∑

N−1

j=0
f(Sjx)

)]
(6.3.4)

e6.3.4

is holomorphic in the complex plane in the variable s for Re s > p(f), if
f ∈ Cα(Ω), α > 0. Such a function can furthermore be extended to a
holomorphic function in the half plane Re s > p(f) − ε(f), with ε(f) > 0
suitable, deprived of the point s = p(f), where a simple pole is present .
(ii) The function s → ζ(s, 0) extends to a meromorphic function in the
complex plane s.

We shall not enter into the details of the proof of this proposition that
requires an accurate analysis of the multiplicity of the code X associated
with a Markovian pavement on Ω of the type of those built in Section §4.2,
at least for what concerns the periodic points x ∈ Ω ∩ ∂Q, [Ma71].

Another question, implicitly solved in the previous sections, is the existence
of invariant probability distributions which are absolutely continuous with
respect to the volume measure on Ω: we shall only formulate the results in
the case in which Ω is two–dimensional, in order to make use of the analysis
in Section §4.3. It is however true that both the results of Section §4.3 and
those that follow can be extended to Anosov systems with dimension larger
than 2.

(6.3.3) Proposition:P6.3.3 (SRB distribution)
Under the hypotheses of lemma (6.2.1) there exist two probability distribu-
tions µ+, µ− ∈Mt

e(Ω, τ) such that for every F ∈ Cα(Ω), α > 0,

lim
N→∞

N−1
N−1∑

j=0

F (S±jx) =
∫
µ±(dζ)F (ζ) (6.3.5)e6.3.5

almost everywhere in x with respect to the volume measure µ0 on Ω.
The dynamical system (Ω, S) admits an ergodic topological probability dis-
tribution µ absolutely continuous with respect to the volume measure if and
only if µ+ = µ−. In such a case µ0 = µ+ = µ−.

Remarks: (1) The above theorem is due to Sinai, Ruelle, and Bowen,
[Si68], [Si72], [Si77], [Ru76], [Ru78], [Ru95], [Ru99] and [Bo70]. The differ-
ence between this theorem and Birkhoff’s theorem, see proposition (2.2.2),
is striking. Here the distribution with which the initial data x are sampled
is not invariant, i.e. x is chosen almost everywhere with respect to µ0 rather
than with respect to an invariant probability distribution.
(2) The above proposition says that the statistical properties of motions
whose initial data are chosen randomly with a distribution proportional
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to the volume measure on phase space exist and are independent from the
choice of the data. Such a property is often taken for granted in Statisti-
cal Mechanics problems and it is formally called the 0-th law of statistical
mechanics and µ± are called the statistics of the motions generated by the
dynamical system; this attributes a philosophical primacy to the random
choices based on distributions with density with respect to the volume of
phase space.
(3) Note that in general the statistics “toward the future” (µ+) and the
statistics “toward the past” (µ−) are different.
(4) A system (Ω, S) is called reversible if there exists an isometry I : Ω→ Ω
such that

IS = S−1I, I2 = 1. (6.3.6)e6.3.6

This symmetry, which ought not be confused with invertibility which is just
the existence of S−1, exists in many concrete applications and it often coin-
cides with the velocity reversal of the constituents of a mechanical system.
What might be perhaps surprising is that even in systems in which time
reversal symmetry holds one has, in general, µ+ 6= µ−.

Proof: From proposition (4.3.2) it follows that the probability distribution
m0, image via the code X associated with the Markovian pavement Q, of
the volume measure µ0 on Ω, is a probability distribution with conditional
probabilities given by (4.3.11). The restriction m+

0 of m0 to the σ-algebra
B(Z+

) has instead conditional probabilities given by (4.3.12).
Let mu be the Gibbs distribution on {1, . . . , q}ZT with potential Φu de-
scribed, according to the notations of (4.3.13), by ΦuX = 0 unless X is a set
translated of {0, . . . , 2n+ 1} for some n, and define

Φu2n+1(σ0, . . . , σ2n+1) ≡ Φu(0,...,2n+1)(σ0, . . . , σ2n+1). (6.3.7)e6.3.7

Such a probability distribution exists and is unique, ergodic, mixing with
exponential rate on the cylinders (because Φu verifies (4.3.14) and, there-
fore, the bound (5.4.19) and its consequence (5.4.22), for the same reason
discussed there).
We apply again the methods and ideas employed to study Gibbs distribu-
tions in Section §5.2, see in particular the proof of proposition (5.2.1).
The probability distributionm+

u , restriction ofmu to the σ–algebra B(Z+
),

and the probability distribution m+
0 , restriction to B(Z+) of the probability

distributionm0 image viaX of the volume measure µ0, are absolutely equiv-
alent. This can be verified by using (4.3.12), (4.3.13), (4.3.14) and (5.2.5)
(which is, with the obvious modifications, applicable also to the conditional
probability, (4.3.11), of m0): in fact one has

m+
0 (C

0...N
σ0...σN )

m+
u (C0...N

σ0...σN )
=

∫
m0(σ0 . . . σN |σ̃N+1 . . . , σ̃−1 . . .)m0(dσ̃)∫
mu(σ0 . . . σN |σ̃N+1 . . . , σ̃−1 . . .)mu(dσ̃)

≤ (6.3.8)e6.3.8

≤ (qa exp(8‖Φu‖1))2∆
∫
m0(σ0 . . . σN |σ̂N+1 . . . , σ̃−1 . . .)m0(dσ̃)∫
mu(σ0 . . . σN |σ̂N+1 . . . , σ̃−1 . . .)mu(dσ̃)

,
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where a is the mixing time of T and1 ∆ = maxσ,σ′

∣∣ sinϕ(X(σ))
sinϕ(X(σ′))

∣∣ ≤
N6.3.1

1
min
x∈Ω

| sinϕ(x)| and σ̂ is a reference configuration arbitrarily chosen among

those that continue . . . σ̃−1 σ0 . . . σN into a configuration . . . σ̃−1 σ0 . . . σN
σ̂N+1 . . .: the σ̂ is chosen so that it depends exclusively on σN and not, in
particular, on σ̃, see the beginning of the proof of lemma (6.2.1). In (6.3.8)
all integrals must be understood to be extended to regions such that the
configurations that appear in the conditional probabilities are in {1, . . . , q}ZT .
Since the sequence σ̂ is fixed the integrals in (6.3.8) can be immediately
performed and (6.3.8) becomes

m+
0 (C

0...N
σ0...σN )

m+
u (C0...N

σ0...σN )
≤ K1

m+
0 (σ0 . . . σN |σ̂N+1 . . .)

m+
u (σ0 . . . σN |σ̂N+1 . . .)

, (6.3.9)e6.3.9

for a suitable constant K1. The probability distribution m0 can be treated
as the probability distribution m of Section §5.2 and we can prove for it
propositions analogous to propositions (5.3.1), (5.3.2) and corollary (5.3.1)
for which the probability distribution m+

0 turns out to be equivalent (with a
bound for the Radon–Nykodim derivative similar to (5.3.10)) to the proba-
bility distribution m̃+

u , a Gibbs distribution on Z
+ with potential Φu. Since

also m+
u is, by corollary (5.3.1), absolutely continuous with respect to m̃+

u

and (5.3.10) holds, the r.h.s. of (6.3.9) can be bounded by a constant K2.
By what said above one deduces that we can choose

K2 = e8‖Φ
u‖1+4a‖Φu‖∆ q2aK1, (6.3.10)e6.3.10

and, in conclusion,

m+
0 (C

0...N
σ0...σN )

m+
u (C0...N

σ0...σN )
≤ K2 and, likewise, ≥ K−1

2 . (6.3.11)e6.3.11

Hence m+
0 is absolutely continuous and equivalent to m+

u and πu
def
=

dm+
0

dm+
u

is a B(Z+
)–measurable function such that K−1

2 ≤ πu(σ) ≤ K2, m
+
0 –almost

everywhere. In fact with a little extra effort and by using the ideas of
Section §5.2 and of the proof of proposition (5.3.2) in particular, it is possible

to show that πu can be chosen to be Hölder continuous on {1, . . . , q}Z+

T

(i.e. |πu(σ) − πu(σ′)| ≤ C d(σ, σ′)α for all σ,σ′ ∈ {1, . . . , q}Z+

T , , with C,
α > 0): we leave this derivation to the reader.

If σ → F̂ (σ) is a B(Z+)–measurable function on {1, . . . , q}ZT we shall
have m+

u –almost everywhere and, therefore, m+
0 –almost everywhere and

1 Note that in the course of the proof of proposition (4.3.2) we deduced an explicit expres-
sion for the function f that appears in (4.3.12), i.e. f(σ) = sinϕ(X(σ)), where ϕ(X(σ))
denotes the angle between the direction of the manifold stable and that of the unstable
manifold at the point x = X(σ). Such an expression is here used to get the bound
(6.3.8).
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m0–almost everywhere

N−1
N−1∑

j=0

F̂ (τ jσ)−−−−→
N→∞

∫
F̂ (σ′)m+

u (dσ
′) =

∫
F̂ (σ′)mu(dσ

′), (6.3.12)e6.3.12

by Birkhoff theorem and by the ergodicity of mu.
Hence, by a density argument, the limit (6.3.12) is valid for all F ∈
C({1, . . . , q}ZT ).2N6.3.2

If F ∈ Cα(Ω), α > 0, and µ+ is the image (isomorphic mod 0 to mu)

via the code X , we shall have that the function F̂ (σ) = F (X(σ)) is in
C({1, . . . , q}ZT ) and, by (6.3.12), if x = X(σ)

N−1
N−1∑

j=0

F (Sjx) = N−1
N−1∑

j=0

F̂ (τ jσ)−−−−→
N→∞

−−−−→
N→∞

∫
F̂ (σ′)mu(dσ

′) =
∫
F (x′)µ+(dx′)

(6.3.13)e6.3.13

µ0–almost everywhere.
Similar arguments can be given for the averages in the past and lead to
the probability distribution µ−.
The second part of the proposition is a consequence of the first part.

Note that in the preceding proof we obtained something more.
Let indeed F̂ , Ĝ be a pair of bounded and B(Z+

)–measurable functions;
then, for all j ≥ 0, obviously

∫
F̂ (τ jσ)Ĝ(σ)m0(dσ) =

∫
F̂ (τ jσ)Ĝ(σ)m+

0 (dσ) =

=

∫
F̂ (τ jσ)Ĝ(σ)πu(σ)m

+
u (dσ) =

∫
F̂ (τ jσ)Ĝ(σ)πu(σ)mu(dσ),

(6.3.14)e6.3.14

where πu is the function, Hölder continuous on {1, . . . , q}Z+

T , defined after
the (6.3.11). Since mu is mixing we obtain

lim
j→∞

m0(Ĝτ
j F̂ ) = mu(πuĜ)mu(F̂ ) = m0(Ĝ)mu(F̂ ), (6.3.15)e6.3.15

and such a limit is reached at exponential rate if F̂ and Ĝ are also Hölder
continuous. All this follows easily from (5.4.22) which holds formu as noted

after (6.3.7). By density this remains true for every F̂ , Ĝ which are Hölder
continuous and B(Z)–measurable.

2 Note that the assumption for F̂ to be B(Z+)-measurable can be obviously weakened
into B([k,+∞))-measurable, for some k ∈ Z, and such continuous functions are dense

in C({1, . . . , q}ZT ).
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Therefore if F , G ∈ Cα(Ω) and if we set F̂ (σ) = F (X(σ)), Ĝ(σ) = G(X(σ))
we see that this gives the following.

(6.3.1) Corollary:C6.3.1 (Mixing of the non invariant volume distributions)
If F , G ∈ Cα(Ω), α > 0, one has

lim
j→±∞

µ0(GS
jF ) = µ0(G)µ±(F ) (6.3.16)e6.3.16

and the limits are attained with exponential rate.

Finally the following proposition is remarkable.

(6.3.4) Proposition:P6.3.4 (Pesin formula)
Let (Ω, S) be an Anosov system. With the usual notations of definition
(4.3.1) we have

s(µ+)− µ+(logλu) = s(µ−) + µ−(logλs) = 0 (6.3.17)e6.3.17

Furthermore µ+ and µ− maximize inMt
e(Ω, S), respectively, the functionals

s(µ)− µ(logλu) and s(µ) + µ(logλs).

Proof (hint): The second statement follows immediately because µ+ and
µ− are X–images of Gibbs distributions with potentials Φu and Φs defined
via (4.3.5), as shown by proposition (4.3.2) (cf. (4.3.15)) and by the proof
of proposition (6.3.3): this statement is then reduced to the variational
principle for Gibbs distributions, discussed in the previous sections.

To check (6.3.17) note that, by (6.3.11), if P 0...N
σ0...σN =

N∩
j=0

S−jQσj ,

K−1
2 ≤ m+

u (C
0...N
σ0...σN )

µ0(P 0...N
σ0...σN )

≤ K2, (6.3.18)e6.3.18

and, therefore, to compute the value of s(mu) = s(µ+) we can make use of
Shannon-McMillan’s theorem and, by (6.3.18), we deduce that

s(µ+) = s(mu) = − lim
N→∞

N−1 logµ0(C
0...N
σ0...σN ), (6.3.19)e6.3.19

where the convergence of fN (σ) = −N−1 logµ0(C
0...N
σ0...σN ) to s(µ+) takes

place in L1(mu); see lemma (3.2.1).
Let σ ∈ {1, . . . , q}ZT and x = X(σ). It is possible to see, following the
methods used to obtain the estimates of Section §4.3 that there exists K ′

such that

(K ′)−1 ≤ µ0(P
0...N
σ0...σN )

N−1∏
j=0

λ−1
u (SjX(σ))

≤ K ′ (6.3.20)e6.3.20

(this is first heuristically shown by interpreting it geometrically with the
help of a drawing like Fig. (4.3.1) and Fig. (4.3.4)).
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Equation (6.3.20) implies immediately, by Shannon–McMillan’s and
Birkhoff’s theorems, by proposition (6.3.3) and by considering the logarithm
divided by N of both sides of (6.3.20), that the entropy s(µ+) = s(mu) is

s(µ+) = s(mu) = lim
N→∞

−N−1 logµ0(P
0...N
σ0...σN ) = (6.3.21)e6.3.21

= lim
N→∞

−N−1
N−1∑

j=0

logλ−1
u (Sjx) =

∫
µ+(dx) log λ−1

u (x),

so that (6.3.17) follows.

We have therefore proved also the following corollary.

(6.3.2) Corollary:C6.3.2 Let (Ω, S) be an Anosov system. Suppose the the map
S preserves the volume measure µ0 on Ω then

s(µ0) = −
∫
µ0(dx) log λu(x), (6.3.22)e6.3.22

i.e. “the entropy of an absolutely continuous invariant distribution is the
average value of the logarithm of the contraction coefficient”.

Remarks: (1) Note the relation between this theorem and the theorem of
Kouchnirenko of Section §3.4.
(2) Hence the dynamical system on T

2 defined by the map S

(
ϕ1

ϕ2

)
=

(
1 1
1 2

)(
ϕ1

ϕ2

)
mod 2π is such that the entropy of the Lebesgue measure

µ0 is
s = log(3 +

√
5)/2 = logλ. (6.3.23)e6.3.23

(3) Furthermore µ0 is the probability distribution that maximizes the func-
tional s(µ′)− µ′(logλ) in the space of the ergodic probability distributions
on T

2
. This means that it makes maximal the entropy, since λ is constant.

(4) The number of the S–periodic points is (cf. proposition (6.3.1))

Nm(s) = esm+o(m) =
(3 +

√
5

2

)m+o(m)

. (6.3.24)e6.3.24

(5) This means that every Markovian pavement of (T2, S) has a compati-

bility matrix T with the largest eigenvalue equal to 3+
√
5

2 > 2. See also the
problems below.
(6) Hence a Markovian pavement for the system (T2, S) consisting of only
two S–rectangles cannot exist.

A representation of the SRB distribution similar to the one for the volume
measure discussed in corollary (4.3.1) follows from the argument leading
to (4.3.23) and from the analysis of Sections 6.2, 6.3 and the following
proposition will be useful.
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(6.3.3) Corollary:C6.3.3 (Fubini’s theorem for the SRB distribution)
Let (M,S) be a two-dimensional Anosov map. Given x0 ∈ M consider the
rectangle R = W s

δ (x0) ×Wu
δ (x0) where δ is small enough so that the point

[x, y] is uniquely defined (cf. Fig.(4.2.1)). Then the SRB probability µ(E)
of a subset E ⊂ R is given by

µ(E) =

∫

Wu
δ
(x0)

dσx

∫

W s
δ
(x0)

ν(dσy)·

·
∞∏

i=1

λ−1
u (S−i[y, x])

λ−1
u (S−ix)

χE([y, x])

(6.3.25)e6.3.25

where dσx is the area measure on Wu
δ (x0) and ν(dσy) is a measure on

W s
δ (x0).

The measure ν will in general not be absolutely continuous with respect
to the arc length dσy. This result in fact is general and it holds in any
dimension.

Problems for §6.3

[6.3.1]:Q6.3.1 Let (Ω, S) be an Anosov system and let Q be a pavement of Ω with S–rectangles

(cf. definition (4.2.2)) which have the Markov property (4.2.12). If Q is generating then
we could conclude that the compatibility matrix, see Section §4.1, defined by Tσσ′ = 1
if int(SQσ)∩ int(Qσ′) 6= ∅ and Tσσ′ = 0 otherwise, has the logarithm of the largest
eigenvalue equal to the topological entropy by proposition (6.3.1). Suppose that Q is
non-generating: show that the logarithm of the largest eigenvalue is less than (or equal
to) the topological entropy. However it cannot differ from the topological entropy by
more than the logarithm of the maximum number of connected components of the sets
int(Qσ)∩ int(Qσ′). (Hint: If Q is non-generating but it is not trivial then the correspon-
dence between compatible symbolic sequences and points whose trajectories never fall on
the boundaries will not be one-to-one but it will have multiplicity.)

[6.3.2]:Q6.3.2 Show that corollary (6.3.2) implies that the matrix S0 =

(
1 1
1 0

)
and the matrix

of problem [4.3.7] have the same largest eigenvalue, i.e. (1 +
√
5)/2, cf. Fig.(4.3.4).

[6.3.3]:Q6.3.3 Check that the matrix S0 and the matrix of problem [4.3.7] have the same
largest eigenvalue by directly computing it.

Bibliographical note to §6.3
This section illustrates some aspects of Sinai’s theory, [Si72], [Si77]; see the
bibliographical notes to §4.1.

§6.4 Equivalent potentials. Gibbs distributions with transitive
vacuum

Let B be the space of potentials for {0, . . . , n}ZT , where T is a mixing
compatibility matrix (cf. definitions (4.1.1)) and (5.1.1).
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A natural question is whether it is possible that two potentials Φ and Ψ
generate the same Gibbs states and, in the affirmative case, which is the
relation between Φ and Ψ.
A fully satisfactory answer does not seem to exist, partly because the space
B is not a “natural” space of potentials. It is just a family of conveniently
restricted potentials large enough to give rise to a theory endowed of a
remarkable variety of phenomena and singularities.
Nevertheless the following propositions will give an idea of what it means
that Φ and Ψ produce the same Gibbs states: if this happens we say that
the potential Φ and Ψ are equivalent potentials.

(6.4.1) Proposition:P6.4.1 (Equivalent potentials)

Let Bhs = ∪κ>sB(κ), where s ≥ 0, and B(κ) ⊂ B is the space of the potentials
Φ ∈ B such that

‖Φ‖(κ) =
∑

X∋0

eκ diam(X)‖ΦX‖ < +∞. (6.4.1)e6.4.1

The Bhs is called the space of the potentials that “decay exponentially” on a
scale shorter than s−1.1 ThenN6.4.1

(i) If, given Φ, Ψ ∈ Bh0 , there exists a constant C and a Hölder continuous
function F ∈ C({0, . . . , n}ZT ) such that

AΦ(σ) = AΨ(σ) + F (τσ)− F (σ) + C (6.4.2)
e6.4.2

holds then Φ and Ψ satisfy G(Φ) = G(Ψ).
(ii) Viceversa if Φ, Ψ ∈ Bh0 and G(Φ) = G(Ψ) then there exists a constant
C and a Hölder continuous function F ∈ C({0, . . . , n}ZT ) such that (6.4.2)
holds.

Proof: Since (6.4.2) implies that for all invariant probability distributions
µ ∈ M({0, . . . , n}ZT ) 2 one has s(µ) − µ(AΦ) = s(µ) − µ(AΨ) + C, item (i)N6.4.2

follows from the variational principle (corollary (6.1.1)).
To prove (ii) suppose that Φ, Ψ ∈ Bh0 and that there exists C ∈ R for
which

µ(AΦ) = µ(AΨ) + C for allµ ∈M({0, . . . , n}ZT ), (6.4.3)e6.4.3

We first prove that, under the assumption (6.4.3) there exists F ∈
C({0, . . . , n}ZT ), Hölder continuous, for which (6.4.2) holds.
In fact note that the function g = AΦ−Ψ−C has zero integral with respect
to an arbitrary µ ∈M({0, . . . , n}ZT ) and hence, in particular,

N−1∑

j=0

g(τ jσ) = 0 (6.4.4)e6.4.4

1 Note that one has Bh0 ⊂ B; the superscript h refers to the fact that the function AΦ(σ)

corresponding to any Φ ∈ Bhs , with s ≥ 0, is Hölder-continuous.
2 See remark to proposition (2.3.1) for notations.
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for every σ that belongs to the set of the periodic points with period N in
{0, . . . , n}ZT .3N6.4.3

Furthermore the hypothesis of mixing on T guarantees the existence of σ0

such that ∪∞j=0{τ jσ0} is dense in {0, . . . , n}ZT (cf. problem [4.1.19]).
We can then set

F (σ0) = 0, F (τσ0) = g(σ0), F (τ
2σ0) = g(σ0) + g(τσ0),

. . . , F (τhσ0) =

h−1∑

j=0

g(τ jσ0), . . .
(6.4.5)e6.4.5

We now show that the function F thus defined on ∪∞j=0{τ jσ0} is in fact uni-
formly Hölder continuous on this set (i.e. the Hölder constant and the ex-
ponent can be chosen independently the point in ∪∞j=0{τ jσ0}) and therefore

it extends to a continuous function on all {0, . . . , n}ZT that, by construction,
verifies g(σ) = F (τσ)− F (σ), and this implies (6.4.2).
To see the uniform Hölder continuity we remark that one has AΦ−Ψ(σ) =∑
X∋0

ΦX (σ
X
)−ΨX(σ

X
)

|X| and recall that the definition of distance d(σ, σ′) be-

tween two sequences σ, σ′ is d(σ, σ′) = e−ν if σj = σ′
j , for all |j| ≤ ν and

σ±(ν+1) 6= σ′
±(ν+1) (see definition (4.1.3)). If σ and σ′ are close then (6.4.1)

implies existence of two constants κ′ > 0 and C > 0 such that

|g(σ)− g(σ′)| ≤ C d(σ, σ′)κ
′

. (6.4.6)e6.4.6

Then if τkσ0 and τhσ0 happen to be very close, i.e. if (τkσ0)i = (τhσ0)i
for all |i| ≤ ν, and if p = k − h ≥ 0 we set σ1 = τhσ0 and note that

|F (τkσ0)− F (τhσ0)| =
∣∣∣
p−1∑

j=0

g(τ jσ1)
∣∣∣. (6.4.7)e6.4.7

The definitions imply that (σ1)i = (σ1)i+p, for all |i| ≤ ν, and hence there

exists a configuration σ̂1 ∈ {0, . . . , n}ZT which is periodic with period p and
such that

(σ̂1)j = (σ1)j − ν ≤ j ≤ ν, (6.4.8)e6.4.8

(this is σ̂1j = σ1j for −ν ≤ j < −ν+p and then σ̂ is continued periodically).
So that, by (6.4.4) and (6.4.7),

|F (τkσ0)− F (τhσ0)| ≤
p−1∑

j=0

|g(τ jσ1)− g(τ j σ̂1)| ≤
2Cκ′e−κ

′ν

1− e−κ′ . (6.4.9)e6.4.9

Therefore F is uniformly Hölder continuous on ∪∞j=0{τ jσ0} and (6.4.2) is
proved under the assumption in (6.4.3).

3 The measure µ = N−1
∑N−1

j=0
δτjσ is in M({0, . . . , n}ZT )!
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To prove the statement in item (ii) we must show that (6.4.3) follows from
the assumptions that Φ,Ψ ∈ Bh0 and that G(Φ) = G(Ψ). This means that
the tangent planes to the graph of the pressure P (Φ) in Φ and in Ψ (which
are unique, cf. propositions (5.2.1), (6.1.2)) coincide. Since P (Φ) is convex
this means that they are also tangent to P at the points P (Φ+ t(Ψ−Φ)) for
t ∈ [0, 1]: hence for all t real, because the DLR relations are real analytic
in the potentials. Let C = µ(Ψ−Φ): the variational principle (cf. corollary
(6.1.1)) then tells us that

max
ν∈M({0,...,n}Z

T
)

(
s(ν)− ν(AΦ+t (Ψ−Φ))

)
=

= s(µ)− µ(AΦ+t (Ψ−Φ)) = P (Φ)− Ct
(6.4.10)

e6.4.10

Noting that s(ν)− ν(AΦ+t (Ψ−Φ)) ≡ s(ν)− ν(AΦ)− tν(AΨ−Φ) ≤ P (Φ)−Ct
for all t real and for all ν ∈M({0, . . . , n}ZT ) can only be if ν(AΨ−Φ) ≡ C we
get AΦ−AΨ = C +G with ν(G) ≡ 0 for all ν ∈M({0, . . . , n}ZT ). Hence we
see that (6.4.3) holds.

Remark: We can define on Bh0 an equivalence relation setting Φ ≈ Ψ if
there exist F ∈ C({0, . . . , n}ZT ) and a constant C ∈ R for which (6.4.2)
holds. A norm on the equivalence classes defined by this relation is given
by

‖Φ‖ = inf
C,F

sup
σ
|AΦ(σ) + C + F (τσ)− F (σ)|, (6.4.11)e6.4.11

It would be natural to call “space of the potentials” the space obtained by
taking the closure B′ of the classes of Bh0 with respect to the norm (6.4.11).

But this new space B′ of (equivalence classes of) potentials is difficult to
study and it is not clear not only whether Φ 6= Ψ implies G(Φ) 6= G(Ψ)
for Φ, Ψ ∈ B′, but even whether we could extend the notion of Gibbs
distribution to the elements Φ of the completion of the classes of Bh0 .

Nevertheless the idea of choosing one representative for every class of equiv-
alent potentials can, in several important cases, be realized. For example
we consider the following case.

(6.4.1) Corollary:C6.4.1 (Potentials in systems with transitive vacuum)
If T0σ = Tσ0 = 1 for all σ = 0, . . . , n, (“transitivity of T on the vac-
uum”) then every Ψ ∈ Bhlog 2 is equivalent to a potential Φ ∈ Bh0 such that
ΦX(σX) = 0 if σj = 0 for some j ∈ X; such a potential is simply defined by

ΦX(σX) = 0 if σj = 0 for some j ∈ X,
ΦX(σX) =

∑

Y⊃X
ΨY (σX0), (6.4.12)e6.4.12

where (σX0)j = 0 if j ∈ Y/X and (σX0)j = σj (6= 0) if j ∈ X.4N6.4.4

4 The notation we are using here is the same used in Section §5.1.
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Remark: In this context the symbol 0 is called here “vacuum”: however
its only property is that transitions from σ = 0 to any σ′ and vice versa are
possible. Therefore if another symbol enjoys this property we could equally
well take it as a reference symbol, call it “vacuum”, and draw analogous
conclusions.

Proof: It is immediate to check that if Ψ ∈ Bhlog 2 then Φ ∈ Bh0 , by using
the definition in (6.4.12).
Taking into account proposition (5.1.6), (5.1.11) and (5.1.16) one finds for
all µ ∈M({0, . . . , n}ZT )

µ(AΨ) = lim
N→∞

N−1µ
(N−1∑

j=0

AΨ(τ
jσ)
)
= lim

N→∞
N−1µ

( ∑

X⊂[0,...,N ]

ΨX(σX)
)
=

= lim
N→∞

N−1µ
( ∑

X⊂[0,...,N ]

ΦX(σX) +N
∑

X∋0

ΨX(0)

|X |
)
=

= lim
N→∞

N−1µ
(N−1∑

j=0

AΦ(τ
jσ) +N

∑

X∋0

ΨX(0)

|X |
)
= (6.4.13)e6.4.13

= µ(AΦ) +
∑

X∋0

ΨX(0)

|X | ,

hence we are in the situation of item (i) of proposition (6.4.1).

It is then convenient to set the following definition.

(6.4.1) Definition:D6.4.1 (Gibbs states with transitive vacuum, particle poten-
tials)
Let T be a mixing compatibility matrix with labels in {0, . . . , n} which is
transitive on the vacuum, i.e. such that T0σ = Tσ0 = 1 for all σ = 0, . . . , n.
Denote by B̃ ⊂ B the space of the potentials for {0, . . . , n}ZT such that

ΦX(σX) = 0 if σj = 0 for some j ∈ X. (6.4.14)e6.4.14

We shall say that {0, . . . , n}ZT is the space of the configurations of n species
of particles, denoted by the label σ = 1, . . . , n, on Z subjected to a hard
core condition described by T (i.e. we interpret every 0 of the matrix T as a
condition of incompatibility between two particles, that forbids the possibility
of configurations in which they appear as nearest neighbours).

The potentials Φ ∈ B̃ will be said particle potentials for n species of par-
ticles and a vacuum and the Gibbs states on {0, . . . , n}ZT associated with

potentials Φ ∈ B̃ will be said Gibbs states for n species of particles and a
vacuum.

Remarks: The wording in the preceding definition is useful because it
allows us to give a suggestive physical interpretation to the Gibbs states
on {0, . . . , n}ZT with T transitive on the vacuum. The configuration σ = 0,
with σi ≡ 0, is called, for obvious reasons, the vacuum.
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208 §6.4: Equivalent potentials. Gibbs distributions with transitive vacuum

The following proposition holds (Griffiths–Ruelle), [GR71].

(6.4.2) Proposition:P6.4.2 (Different particle potentials generate different
Gibbs states)
If {0, . . . , n}ZT is defined by a mixing matrix T which is transitive on the

vacuum and if B̃ is the set of the particles potentials on {0, . . . , n}ZT , then
Φ, Ψ ∈ B̃ and Φ 6= Ψ imply G(Φ) ∩G(Ψ) = ∅.
Remark: If we consider the graph of Φ → P (Φ) for Φ ∈ B̃ we see that
the above proposition, combined with the results of propositions (6.1.1)

and (6.1.2), means that the graph of P (Φ) on B̃ is strictly convex, i.e. it is
convex and in every point it has a different tangent plane (one checks that
the propositions (6.1.1) and (6.1.2) and the remark following proposition
(6.1.2) remain valid if, under the present hypotheses on T , we replace B

with B̃ ⊂ B).

Proof: Let Λ0 ⊂ Z be a fixed finite region and let ΛN = [−N,N ] ⊃ Λ0.
The DLR equations, see (5.1.9), imply that if µ ∈ G(Φ) one has

µ(CΛN
σ
Λ0

0) =

∫
e
−
∑

X⊂Λ0
ΦX (σ

X
)−W (σ

Λ0
0|σ

Λc
N
)

ZΛN (Φ;σΛc
N
)

µ(dσΛc
N
), (6.4.15)e6.4.15

where µ(dσΛc
N
) denotes the restriction to B(ΛcN) of the measure µ, the

configuration (σΛ0
0) ∈ {0, . . . , n}ΛNT is defined to be σ′

j = 0 if j /∈ Λ0 and
σ′
j = σj if j ∈ Λ0,

W (σ′
ΛN |σΛc

N
) =

∑

R∩ΛN 6=∅

R∩Λc
N

6=∅

ΦR(σ
′
R), (6.4.16)e6.4.16

with σ′ = ((σΛ0
0)σΛc

N
) and

ZΛN (Φ;σΛc
N
) =

∑

σ
ΛN

e

−
∑

X⊂ΛN

ΦX (σ
X
)−W (σ

ΛN
|σ

Λc
N
)

, (6.4.17)e6.4.17

according to the notations of Section §6.1.
The condition ‖Φ‖ < +∞ shows that if Λ0 is fixed

lim
N→∞

W (σΛ0
0|σΛc

N
) = 0, (6.4.18)e6.4.18

uniformly in σΛ0
, σΛc and hence

µ(CΛN
σ
Λ0

0)

µ(CΛN
0 )

−−−−→
N→∞ e

−
∑

X⊂Λ0
ΦX (σ

X
)
. (6.4.19)e6.4.19
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This means that µ ∈ G(Φ) determines uniquely UΛ0(σΛ0
) =

∑
X⊂Λ0

ΦX(σX)

for all σΛ0 ∈ {0, . . . , n}Λ0

T .5 In turn UΛ0 determines Φ recursively asN6.4.5

ΦX(σX) =
∑

R⊂X
(−1)|R| UR(σR), (6.4.20)e6.4.20

therefore µ ∈ G(Φ) determines Φ uniquely if Φ ∈ B̃.

We conclude this section by discussing an interesting property related to
the exponential mixing properties of the SRB distributions. If (Ω, S) is an
Anosov system with a SRB distribution µ and f is a Hölder continuous func-
tion the limit asN →∞ of the dispersion of the variableN− 1

2

∑N−1
k=0 f(Skx)

will be finite if f has zero SRB average. It will be given by the exponentially
rapidly converging series D =

∑∞
k=−∞〈f(Sk·)f(·)〉µ where 〈·〉µ denotes av-

erage with respect to µ. Clearly D ≥ 0 and a natural question is whether
this can vanish. The following proposition gives a necessary and sufficient
condition (Livsic–Sinai).

(6.4.3) Proposition:P6.4.3 (A vanishing dispersion condition)
Let (Ω, S) be an Anosov system and let f be a Hölder continuous function
with vanishing SRB average,

∫
fdµ = 0, and with vanishing dispersion,

D
def
=

∑∞
k=−∞〈f(Sk·)f(·)〉µ = 0. Let A(x) be the energy function for the

SRB distribution µ, i.e. the energy function A, see definition (5.1.1), asso-
ciated with the potential Φ for the SRB distribution. Then
(i) A and A+ f are equivalent energy functions, i.e. the same Gibbs distri-
bution µ maximizes s(µ′)−µ′(A) and s(µ′)−µ′(A+f) over µ′ ∈Mt

e(Ω, S),
cf. corollary (6.2.1).
(ii) f(x) = F (x) − F (Sx) for a suitable F which is Hölder continuous on
Ω.
Property (ii) implies that a necessary and sufficient condition in order to
have D > 0 is that the average of f along a periodic orbit does not vanish.

See Appendix (6.4).

Appendix 6.4: Vanishing dispersion conditions

The following lemma shows that D = 0 has interesting implications and prepares the
proof of proposition (6.4.3)

(6.4.1) Lemma:L6.4.1 (Vanishing dispersion: a L2 condition)
Let (Ω, S) be an Anosov system. A necessary and sufficient condition in order that a

Hölder continuous function f with zero SRB average (
∫
dµf = 0) has a zero dispersion

D
def
=
∑∞

k=−∞
∫
f(Skx)f(x)µ(dx) in the SRB distribution µ for (Ω, S) is that there is

a function F (x) defined on a set V0 ⊂ Ω such that

f(x) = F (x)− F (Sx), for x ∈ V0 and µ(V0) = 1 (A6.4.1)eA6.4.1

and there exist constants C, a > 0 and V ⊂ Ω×Ω, µ× µ(V ) = 1 such that

5 With {0, . . . , n}Λ0
T

we mean (naturally) the set of the elements of {0, . . . , n}Λ0 that can

be extended in at least one way to an element of {0, . . . , n}ZT .
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|F (x)− F (y)| < C|x− y|α for all (x, y) ∈ V (A6.4.2)eA6.4.2

Hence F is bounded µ–almost everywhere.

Remark: From (A6.4.2) we cannot (yet) conclude that F is Hölder continuous because
V 6= Ω× Ω.

Proof: We discuss the case of 2–dimensional Anosov maps, for simplicity. Consider

the sum FN (x)
def
=
∑N−1

k=0
f(Skx). If D = 0 one finds that

∫
dµ (
∑N−1

k=0
f(Skx))2 is

bounded uniformly in N . Therefore the sequence
∑N−1

k=0
f(Skx) is bounded in L2(µ).

Furthermore for all g smooth limN→∞
∫ ∑N−1

j=0
f(Sjx)g(x)µ(dx) exists (by mixing) so

that the limit F (x) = limN→∞
∑∞

k=0
f(Skx) exists weakly in L2(µ) and (therefore)

f(x) = F (x) − F (Sx) µ–almost everywhere. The difficulty is in the proof of the weak
kind of Hölder continuity of F claimed in (A6.4.2).
The same arguments as above can be made for time tending to −∞: thus we can define

a function F−(x) =
∑−∞

k=−1
f(Skx). The function F−(x) + F (x) is however invariant:

and therefore it must be constant. The constant must be 0 because f has zero average.
Let ξ0 ∈ Ω and let R = Wu

γ (ξ0)×W s
γ (ξ0) be an S–rectangle, in the sense of definition

(4.2.2), with center ξ0 and pair of axes C =Wu
γ (ξ0) and D =W s

γ (ξ0) with the notation

of Section §4.2, cf. Fig.(4.2.1). The generic point in R has the form [ϕ,ϕ′] with ϕ ∈
C,ϕ′ ∈ D, where [ϕ,ϕ′] = W s

γ (ϕ)∩Wu
γ (ϕ

′) . We can represent, by corollary (6.3.3), the
integration of a function G on R as

∫

R

G(x)µ(dx) =

∫

C

dσϕ

∫

D

ν(dϕ′)ρ([ϕ, ϕ′])G([ϕ, ϕ′]) (A6.4.3)eA6.4.3

where dσϕ is the arc length on C and ν is a suitably defined finite measure on the

arc D and ρ(ϕ, ϕ′) =
∏∞
k=0

λ−1
u (Sk[ϕ,ϕ′])

λ−1
u (Skϕ)

; note that ρ(ϕ, ϕ′) is Hölder continuous in

(ϕ,ϕ′) ∈ C ×D and bounded away from 0,∞.
The key remark is that the function on V ×V defined by FN ([x, y]) is weakly convergent
to the limit F ([x, y]) in L2(µ). Indeed let Γ(x, y) be a bounded test function. Then 6

N6.4.6

∫

R

Γ(x, y)FN ([x, y])µ(dx)µ(dy) =

∫

C×C
dσϕ0dσϕ1

∫

D×D
ν(dϕ′

0)ν(dϕ
′
1)·

· ρ(ϕ0, ϕ
′
0)ρ(ϕ1, ϕ

′
1)Γ([ϕ0, ϕ

′
0], [ϕ1, ϕ

′
1])FN ([ϕ0, ϕ

′
1]), (A6.4.4)eA6.4.4

which, multiplying and dividing by ρ(ϕ0, ϕ′
1) can be written

∫
R
FN (z)Γ̃(z) µ(dz) where,

if z = [ϕ0, ϕ′
1],

Γ̃(z) =

∫

C×D
dσϕ1ν(dϕ

′
0)Γ([ϕ0, ϕ

′
0], [ϕ1, ϕ

′
1])
ρ(ϕ0, ϕ′

0)ρ(ϕ1, ϕ′
1)

ρ(ϕ0, ϕ′
1)

(A6.4.5)eA6.4.5

is a bounded function.
Therefore

∫
Γ(x, y)FN ([x, y])µ(dx)µ(dy)−−−−→

N→∞
∫
R
µ(dz)F (z)Γ̃(z) because FN con-

verges weakly to F in L2(µ). By going backwards this means that FN ([x, y]) is weakly
convergent to F ([x, y]) in L2(µ × µ).
The function

∑N−1

k=0
(f(Skx)− f(Sk [x, y])) is bounded by

∣∣∣
N−1∑

k=0

(f(Skx)− f(Sk [y, x]))
∣∣∣ ≤ C|x− y|α, (A6.4.6)eA6.4.6

6 We use that [x, y] = [ϕ0, ϕ′
1] if x = [ϕ0, ϕ′

0] and y = [ϕ1, ϕ′
1].
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if C is a suitable constant and α is the Holder continuity exponent of f times the logarithm
of the constant λ bounding the minimum expansion rate. This is so because the points x
and [x, y] are on the same stable manifold and therefore Skx and Sk[x, y] get closer and
closer exponentially fast with their distance bounded proportionally to λ−k. Hence for
a suitable C > 0

|F (x)− F [x, y]| ≤ C|x− y|α (A6.4.7)eA6.4.7

holds almost everywhere with respect to µ × µ. Likewise |F−(y) − F−([x, y])| ≤ C|x −
y|α almost everywhere with respect to µ × µ. Since F−(x) = −F (x) holds µ–almost
everywhere we get

|F (x)− F (y)| ≤ 21−αC|x− y|α for all (x, y) ∈ V (A6.4.8)eA6.4.8

where V is such that µ× µ(V ) = µ× µ(R) = 1.
Hence for µ–almost all x one has |F (x) − F (y)| ≤ 21−α C diam(R)α for µ-almost all
y: and for µ-almost all y one has |F (y)| ≤ 21−α C diam(R)α so that the function F is
bounded uniformly µ-almost everywhere.

If b is a µ-almost everywhere bound on |F (x)| the above lemma implies that

e−2bµ(dx) ≤ µN (dx) = µ(dx)e

∑N

j=−N
f(Sjx) ≤ e2bµ(dx) (A6.4.9)eA6.4.9

because
∑N

j=−N f(Sjx) = F (SNx)− F (S−Nx). On the other hand it follows also that

the limit as N →∞ of cNµN with cN being a normalization factor (e−2b ≤ cN ≤ e2b) is
the Gibbs distribution with energy function A(x) + f(x) if A(x) is the potential function
for µ, cf. (6.2.11). Indeed by proposition (5.2.1) we know that the Gibbs distributions
associated with A and with A+ f are ergodic: they coincide with µ and with the limit
as N → ∞ of µN , respectively, hence (A6.4.9) implies that the two distributions are
absolutely continuous with respect to each other hence they coincide. Therefore the
following result holds.

(6.4.2) Corollary:C6.4.2 Let (Ω, S) be an Anosov system and let f be a Hölder con-

tinuous function with vanishing SRB average,
∫
fdµ = 0, and vanishing dispersion

D =
∑∞

j=−∞ µ
(
f(Sj ·)f(·)

)
= 0. If A(x) is the potential function for µ then A(x)+f(x)

is also a potential function for µ.

The problem posed before Lemma (6.4.1) above is solved by the following proposition

Proof of proposition (6.4.3): The argument preceding corollary (6.4.2) shows that

|
∑N

j=−N f(Sjx)| < 2b everywhere (because f is continuous). Therefore by the same

argument one sees that given any Gibbs distribution µ0 with potential function A0

the potentials A0 and A0 + f are equivalent. Therefore we can apply (i) of propo-
sition (6.4.1) to conclude that there exists F continuous and a constant C such that

f(x) = F (x) − F (Sx) + C; in our case C = 0 because
∫
fdµ = 0 and (i) and (ii) are

checked. Item (iii) follows from (ii).

Problems for §6.4

[6.4.1]:Q6.4.1 Consider the potential on {0, 1}Z

ΦX(σX) = 0 |X| ≥ 2 , Φ{0}(σ) = hσ.

Find an element Φ′ of B equivalent to it (i.e. such that G(Φ) = G(Φ′)) but with potential
with non vanishing many-body components and which: (a) decay exponentially (Φ′ ∈
Bh0 ) (see proposition (6.4.1) and definition (6.4.1)), (b) is such that ‖Φ′‖1 = +∞, (c) does
not contain potentials with more than three bodies (here a, b, c are meant as mutually
excluding properties).

[6.4.2]:Q6.4.2 Does it exist Φ ∈ B that is not equivalent to some Φ′ ∈ B̃? (see proposition

(6.4.1)).
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212 §6.4: Equivalent potentials. Gibbs distributions with transitive vacuum

[6.4.3]:Q6.4.3 Check that in the theory of Gibbs measures the function AΦ =
∑
X∋0

ΦX (σ
X

)

|X| can

be replaced without substantial modifications by A′
Φ(σ) =

∑
X∋0,X≥0

ΦX(σX), (X ≥ 0

means X ⊂ Z
+).

[6.4.4]:Q6.4.4 Making use of the results in problem [6.4.3] show that the potential ΦX = 0

unless |X| = 3 and Φ{0,j,j+1}(σ0, σj , σj+1) = (σj − σj+1)Φj and zero otherwise, is

equivalent to zero if
∑

j
|Φj | < +∞.

[6.4.5]:Q6.4.5 Consider the group of the (n + 1)th roots of unity: r0, r1, . . . , rn. Show

that every potential for {0, . . . , n}Z, Φ ∈ Bhs , with s large enough, is equivalent to a

potential Φ̃ (spin potential) such that Φ̃X(σX) = ΦX · Re
(∏

j∈X rσj
)
with ΦX ∈ R

and
∑

X∋0
eκdiam(X)|ΦX | < +∞, with κ > 0 suitable.

Bibliographical note to §6.4
The contents of this section are based on [GR71], and on the interesting
proposition (6.4.3) (cf. p. 78, theorem 5.7 and the bibliographical note at
p. 96 in [Ru78]). This theorem can be extended to potentials more general
than those verifying (6.4.1) (it suffices to push the precision of the estimates,
giving up proving properties as strong as (6.4.6) or (6.4.9) but looking for
the minimal conditions sufficient to obtain continuity of F ). The vanishing
dispersion analysis is taken, at Ruelle’s suggestion, from [Ru78].
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CHAPTER VII

Analyticity, singularity and phase transitions

§7.1 Polymers

There are various instances in which the construction of the Gibbs dis-
tributions can be performed in great detail, almost completely explicitly,
allowing us to answer satisfactorily to questions concerning, for instance,
mixing rates of Gibbs states and smoothness of their dependence on the
potential.

The methods are based on series expansions and on the use of recurrence
relations to put bounds on their addends: they apply really quite gener-
ally for Gibbs states on one-dimensional lattices but they can be extended
to Gibbs states on lattices of dimension higher than 1 only at the cost of
severe restrictions. We devote the present chapter to a discussion of such
methods and to an attempt to present various results from the unified view-
point which is the polymer theory and the associated cluster expansion, a
more modern term to indicate a method based on equations well known in
Statistical Mechanics under the name of Kirkwood-Salsburg equations and
Mayer-Montroll equations, see [Ga00] and appendix to the following Section
§(7.2).
Let B be the space of the potentials Φ for {0, . . . , n}ZT , cf. definition (5.1.1)
and remark the change in notation: in this chapter we denote the space
of the potentials with script B’s with appropriate labels when necessary to
avoid confusion with the many constants B appearing in the bounds that we
discuss. It is natural to ask for regularity properties of the function P (Φ);
hence we set the following definition.
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214 §7.1: Polymers

(7.1.1) Definition:D7.1.1 (Smoothness and analyticity of Gibbs distributions)
Let B be the space of the potentials for symbolic dynamics of definition
(5.1.1) and let B̃ be a subspace in B large enough to contain the space B0 of
potentials vanishing for all sets X except for the translates of a single set
X0, cf. Section §6.1.
(i) We say that Φ → P (Φ) is Ck smooth near Φ ∈ B̃ on the subspace B̃ if
the pressure P (Φ) and the corresponding Gibbs distribution µΦ ∈ G(Φ) are

smooth of class Ck on B̃. This means that for all V ⊂ Z, σV ∈ {0, . . . , n}VT
and Ψ1, . . . ,Ψd ∈ B̃ the functions of λ1, . . . , λd

P (Φ +
d∑

j=1

λiΨi), µ
Φ+
∑

d

j=1
λiΨi

(CVσ
V
) (7.1.1)e7.1.1

are smooth of class Ck and, respectively, of class Ck−1 in the variables
λ1, . . . , λd in a neighborhood of the origin of Rd.
(ii) We say that Φ → P (Φ) is analytic near Φ on the subspace B̃ if the
functions in (7.1.1) are analytic near the origin.

Remarks: (1) To clarify the above settings we note that in applications

relevant for us B̃ will be a subspace consisting of potentials verifying some
extra condition besides that of being in B: for instance that some other
norm is also finite or small (see the examples in Section §(7.2)) besides the
stability condition expressed by the finiteness of the norm in (5.1.5).
(2) The space B0 was used in Section §6.1 in the course of the proof that
knowledge of the λ–derivatives of P (Φ + λΨ) at λ = 0 yields the trans-
lation invariant Gibbs distribution µΦ at least when the latter is unique,
cf. (6.1.14), (6.1.33) and proposition (6.1.2). Furthermore existence of the
derivative for all Ψ ∈ B0 implies uniqueness of the translation invariant
Gibbs distribution; and continuity in Φ of the derivatives implies continuity
of the probabilities µΦ(C

J
σJ ), hence of the Gibbs distribution as a function

of Φ.

We shall discuss here a few rather general propositions about smooth or
analytic Φ-dependence of µΦ which will also be useful for applications to
dynamical systems. We have in mind providing an example of the construc-
tion of an SRB distribution and of the analysis of its regularity (analyticity)
in nontrivial case exhibiting what is called spatio–temporal chaos. For this
purpose it will be eventually necessary to consider symbolic dynamics on
lattices Zd+1 with d ≥ 0 (where the first d coordinates represent space and
the last time). We follow the custom of calling the symbols σ of symbolic
dynamics spins: if the number of values that the symbols can assume is

n+1, say σ ∈ {0, 1, . . . , n}, we shall call the space Ω = {0, 1, . . . , n}Zd+1

the
configurations space of a n

2 spin system on a (d + 1)–dimensional (square)
lattice. Hence the following definition will be useful.

(7.1.2) Definition:D7.1.2 (Potentials for spin systems on Z
d)

A compatibility matrix for a d–dimensional lattice n
2 -spin system is a func-
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tion Tσ,{σ1,...,σ2d} = 0, 1 of 2d + 1 symbols (spins) in {0, . . . , n}: a se-

quence σ ∈ {0, . . . , n}Zd labeled by the points in Z
d is called T–compatible

if
∏
ξ∈Zd Tσξ,{σξi}2d

i=1
= 1, where the 2d nearest neighbors of ξ are labeled

by i = 1, . . . , 2d (so that one has |ξi − ξ| = 1 for i = 1, . . . , 2d). The

T–compatible sequences will be denoted {0, . . . , n}ZdT and {0, . . . , n}XT will
denote the possible restrictions to X of T–compatible sequences σ.
We shall say that T is transitive on the vacuum if T0,{σi}2d

i=1
= 1 for any

choice of the labels σ1, . . . , σ2d.
Let B be the space of the sequences Φ = {ΦX}X⊂Z

d parameterized by the

finite subsets of Z
d
, consisting in the functions ΦX : {0, . . . , n}XT → R such

that, having set ‖ΦX‖ = maxσ∈{0,...,n}X |ΦX(σ)|, one has 1

N7.1.1

‖Φ‖ ≡ sup
ξ∈Zd

∑

X∋ξ
‖ΦX‖ < +∞. (7.1.2)e7.1.2

We shall say that B is the space of the potentials on {0, . . . , n}ZdT ≡ Ω
and we can define AΦ via (5.1.6), and U0

Λ(σΛ) via (5.1.11), with the new
meaning of X,Λ,Φ, σ. We say that the interaction is a particle potential if
T is transitive on the vacuum and ΦX(σX) = 0 if σj = 0 for some j ∈ X.
We say that a probability distribution µ on Ω is a Gibbs distribution for
the potential Φ ∈ B if for all finite Λ ⊂ Z

d the conditional probabilities
for finding σΛ in Λ given σΛc in the complement of Λ verifies the DLR
equations (5.1.9).
If Φ is invariant under translations the pressure P (Φ) can be defined by
the limit in (6.1.1) and it can be checked to verify proposition (6.1.1) by
adapting its proof to the new context.

Remark: The values of the symbols σ have no a priori meaning and
they will occasionally be different from 0, . . . , n (e.g. 1, . . . , n or other non-
numerical symbols).

The analysis of the regularity of P (Φ) and of the Gibbs distributions µΦ for

spin systems in Z
d, when they are uniquely defined, will be done gradually.

In the cases d > 1, unlike what we saw for d = 1, cf. proposition (5.2.1), we
shall have to impose rather strong conditions on Φ. We begin by studying
general representations of sums of the form

ZΦ(Λ) =
∑

σ∈{0,1,...,n}Λ

e
−
∑

Y⊂Λ
ΦY (σ

Y
)
, (7.1.3)e7.1.3

where the potentials Φ are not even supposed to be translation invariant and
Λ denotes a finite subset of arbitrary shape contained in a d–dimensional
lattice Z

d
. The following definition will be used below.

1 Note that the norm defined in (7.1.2) is not the same as in (5.1.5).
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(7.1.3) Definition:D7.1.3 (Tree length of a set)

Given a finite subset X ⊂ Z
d
consider the trees 2 that have all the pointsN7.1.2

of X as nodes. We call such trees spanning trees for X. The length of a
tree ϑ will be the sum δϑ(X) of the lengths of its branches. The minimum
value of δϑ(X) will be called the tree length of X or the tree distance of the
points of X, and it will be denoted by δ(X).

Remarks: (1) If d = 1 one has δ(X) = diam(X) and if X is an interval
δ(X) = |X | − 1.
(2) The number of different trees is of the order of |X |! if |X | is the number
of points of X ; see problems at the end of the section.

Consider a function γ → ζ(γ) defined on the finite sets ∅ 6= γ ⊂ Λ: we call
the sets γ polymers and ζ(γ) their activities. The following key restriction
will be assumed

|ζ(γ)| ≤ b20ν2|γ|0 e−2κ0δ(γ) def= z(γ)2, (7.1.4)
e7.1.4

where ν0, b0, κ0 > 0 and δ(γ) is the tree length of the set γ. The length scale
κ−1
0 > 0 can be considered, as we shall see below, to be an estimate of the

size of the polymers. The quantity |γ| denotes the number of points in γ.
The 2 in the exponents is there for esthetic reasons (i.e. to obtain (7.1.30)
below) while the subscript 0 is for easier reference in what follows.

If k(d, κ0)
def
= 2 e

∑
06=ξ∈Zd e

−κ0|ξ| and B0
def
= 2b0 then (7.1.4) implies (see

also problem [7.1.1])

sup
ξ∈Zd

∑

γ∋ξ,δ(γ)≥r
|ζ(γ)|1/2 ≤ B0ν0e

−κ0
2 r if ν0 k(d,

κ0

2 ) < 1. (7.1.5)e7.1.5

Note that k(d, κ0) = O(κ−d0 ) for κ0 small and k(d, κ0) = O(e−κ0) for κ0
large.

(A) Remarkable algebraic identities.

A natural adaptation, see [GK70], of an original method of proof of smooth-
ness of the functions in (7.1.1), [Ru69], led to the following algebraic ap-
proach, which has become widely known as cluster expansion after having
been rediscovered several times in the span of a decade or two.

Consider the set of finite polymer configurations Γ = {γ1, . . . , γn} in which
the polymers γi are allowed to overlap and even to coincide. Formally one
such configuration is (therefore) a function γ → Γ(γ) with non negative
integer values such that

∑
γ Γ(γ) ≡ N(Γ) < ∞. The number Γ(γ) will be

called the multiplicity of γ in Γ. The just introduced configurations can be

2 Given a set of points ξ1, . . . , ξn we call tree on ξ1, . . . , ξn a graph without loops con-
necting all the points. The points are called the nodes (or vertices) of the tree, while
the lines connecting the nodes are sometimes called branches. The number of lines is
n− 1. A connected set of lines is called a path: given any two nodes of the tree there is
only one path connecting them.
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added by setting (Γ1 + Γ2)(γ)
def
= Γ1(γ) + Γ2(γ) and, if Γ1(γ) ≥ Γ2(γ), they

can also be subtracted.
Given a polymer configurations Γ we denote

Γ̃ the set of polymers γ such that Γ(γ) > 0, (7.1.6)e7.1.6

hence Γ̃ is the support of Γ and it consists of the polymers that are in Γ,
each counted without taking multiplicity into account. If all polymers γ ∈ Γ̃
are contained in a set Λ we say that Γ is contained in Λ and write Γ ⊂ Λ. If
Γ(γ) = 0, 1 we say that Γ is a polymer configuration without multiplicities

and we write also (improperly) Γ = Γ̃. The case Γ(γ) ≡ 0 for all γ will also
be allowed and it will be called the vacuum or the empty configuration (and
it will be denoted with ∅).
Let F be the space of real valued functions Ψ of the polymer configurations
Γ → Ψ(Γ) such that supN(Γ)=n |Ψ(Γ)| < ∞ for all n ≥ 0. Let F0,F1 be
the subspaces of F consisting in the functions Ψ such that Ψ(∅) = 0 or
Ψ(∅) = 1, respectively.
Given Ψ1,Ψ2 ∈ F we define the convolution product Ψ1 ∗Ψ2 by

Ψ1 ∗Ψ2(Γ) =
∑

Γ1+Γ2=Γ

Ψ1(Γ1)Ψ2(Γ2), (7.1.7)e7.1.7

which is always a sum over finitely many addends. Note that if we define
1(Γ) = 1 if Γ = ∅ and 1(Γ) = 0 otherwise the function 1 so defined is in F1

and 1 ∗ Ψ ≡ Ψ ∗ 1 ≡ Ψ for all Ψ ∈ F , i.e. 1 is the identity for the product
in (7.1.7).
The functions in F1 have the form Ψ(Γ) = 1(Γ) + Ψ0(Γ) with Ψ0 ∈ F0. If
Ψ ∈ F0 (i.e. Ψ(∅) = 0) we define the exponential

(ExpΨ)(Γ) =
∑

n≥0

1

n!
Ψn(Γ) =

= 1(Γ) +
∑

n≥1

1

n!

∑

Γ1+...+Γn=Γ

Ψ(Γ1) . . .Ψ(Γn),

(7.1.8)
e7.1.8

where the power Ψn is intended in the sense of the product in (7.1.7) and

we set Ψ0(Γ)
def
= 1(Γ). For each Γ the sum in the r.h.s. of (7.1.8) involves

only a finite sum.
The logarithm can also be defined on F1: if Ψ ∈ F1 and Ψ = 1+ Ψ0 with
Ψ0 ∈ F0 then we set

(LogΨ)(Γ) =
∑

n≥1

(−1)n+1

n
Ψn0 (Γ) =

=
∑

n≥1

(−1)n+1

n

∑

Γ1+...+Γn=Γ

Ψ0(Γ1) . . .Ψ0(Γn),

(7.1.9)e7.1.9
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where the sum is finite and LogΨ ∈ F0; one has also LogExpΨ0 ≡ Ψ0 for
all Ψ0 ∈ F0 and ExpLogΨ = Ψ for all Ψ ∈ F1. Furthermore Exp(Ψ1 +
Ψ2) ≡ Exp(Ψ1) ∗ Exp(Ψ2) if Ψ1,Ψ2 ∈ F0.
Let χ(Γ) be a multiplicative function i.e. a function such that χ(Γ1+Γ2) =
χ(Γ1)χ(Γ2). A notable example is the function χV (Γ) = 1 if all γ ∈ Γ are
contained in V (i.e. if Γ ⊂ V ) and 0 otherwise. The following properties
are, as we shall see, the main reason for introducing the above convolution
property:

∑

Γ

(Ψ1 ∗Ψ2)(Γ)χ(Γ) =
(∑

Γ

Ψ1(Γ)χ(Γ)
)(∑

Γ

Ψ2(Γ)χ(Γ)
)
,

∑

Γ

(ExpΨ)(Γ)χ(Γ) = e
∑

Γ
Ψ(Γ)χ(Γ) for all Ψ ∈ F0,

(7.1.10)e7.1.10

provided
∑

Γ |Ψi(Γ)| <∞ and χ is multiplicative and bounded.

(B) An application: converting a sum of exponentials into an exponential of
a sum.

Given a polymer configuration Γ we define its total activity ζ(Γ) simply as
the product of the activities of the polymers in Γ each counted according
to its multiplicity Γ(γ), i.e.

ζ(Γ) =
∏

γ∈Γ̃

ζ(γ)Γ(γ). (7.1.11)e7.1.11

The function ζ(Γ) is in F1 and

ζ(Γ1 + Γ2) ≡ ζ(Γ1)ζ(Γ2), (7.1.12)e7.1.12

so that it is a multiplicative function.
Therefore we can define the partition function Z(Λ) for the configurations
Γ = {γ1, . . . , γq} of nonoverlapping polymers in Λ as

Z(Λ)
def
=

∑

Γ⊂Λ
Γ={γ1,...,γq}, γi∩γj=∅

ζ(Γ), (7.1.13)e7.1.13

where the case q = 0 represents the contribution arising from the empty
configuration and it is, by definition, a term in the sum equal to 1.
We shall say that a polymer configuration Γ = {γ1, . . . , γn} is compatible
if no overlapping occurs, i.e. if γi ∩ γj = ∅ for all i 6= j. Hence (7.1.13) is a
sum over compatible polymer configurations.
The partition function Z(Λ) can be written by considering the func-
tion ϕ(Γ) = 1 if Γ contains no pairs of overlapping polymers or if
Γ = ∅ and ϕ(Γ) = 0 otherwise, which is also a function in F1. Calling

ϕT (Γ)
def
= (Logϕ)(Γ) we get

Z(Λ) =
∑

Γ

ϕ(Γ)ζ(Γ)χΛ(Γ) = e
∑

Γ
ϕT (Γ)ζ(Γ)χΛ(Γ), (7.1.14)e7.1.14
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if
∑

Γ⊆Λ |ϕT (Γ)||ζ(Γ)| < ∞, cf. (7.1.10), because the functions ζ(Γ) and
χ(Γ) are multiplicative.

Remarks: (1) It is interesting to see what the above formulae mean in the
simple case in which Λ consists of a single point. In this case there is only

one polymer ξ and we can call its activity ζ(ξ)
def
= z. The polymer can be

repeated several times in a polymer configuration Γ and we can denote by
nξ the polymer Γ consisting of ξ repeated n times. Then (7.1.14) becomes
the elementary relation Z(ξ) = (1 + z) = elog(1+z), hence

ϕT (nξ) =
(−1)n+1

n
. (7.1.15)e7.1.15

Therefore (7.1.14) is a natural generalization of this elementary formula and
it achieves the feat of expressing a sum as the exponential of a sum (i.e. it
is an algorithm to evaluate a logarithm).
(2) Note that ϕT is a purely combinatorial function (see equation (7.1.22)
for a more explicit expression), while ζ(γ) verifies the bounds (7.1.5) if ν0,
see (7.1.4), is small enough.

(C) An example of cluster expansion.

The following proposition holds.

(7.1.1) Proposition:P7.1.1 (Polymers and cluster expansion)

Let Λ ⊂ Z
d be a finite set and let γ → ζ(γ) be a polymer activity, for

polymers γ ⊂ Λ, verifying, cf. (7.1.4),

|ζ(γ)| ≤ b20ν2|γ|0 e−2κ0δ(γ) def= z(γ)2, (7.1.16)e7.1.16

for some b0, ν0, κ0 > 0. Suppose that one has (cf. (7.1.5))

(
(1 +B0)e

B0ν0 + k(d, κ0/2)
)
ν0 < 1, (7.1.17)e7.1.17

with B0 = 2b0. Then the sum Z(Λ) in (7.1.13) can be expressed as

Z(Λ) = exp
∑

Γ⊂Λ

ϕT (Γ)ζ(Γ), (7.1.18)e7.1.18

where Γ is a polymer configuration (not necessarily such that Γ̃ ≡ Γ). And
the functions ϕT (Γ) satisfy

sup
ξ∈Λ

∑

Γ∋ξ,δ(Γ)≥r
|ϕT (Γ)||ζ(Γ)| < B0 ν0 e

−κ0
2 r. (7.1.19)e7.1.19

Proof: Define the differentiation operation as

(DΓΨ)(H)
def
= Ψ(Γ +H)

(Γ +H)!

H !
(7.1.20)e7.1.20
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with Γ! =
∏
γ∈Γ̃

Γ(γ)!. The name is attributed because of the validity of

the following rules3N7.1.3

Dγ(Ψ1 ∗Ψ2) = (DγΨ1) ∗Ψ2 +Ψ1 ∗ (DγΨ2),

DΓ(Ψ1 ∗Ψ2)

Γ!
=

∑

Γ1+Γ2=Γ

(DΓ1Ψ1

Γ1!

)
∗
(DΓ2Ψ2

Γ2!

)
,

DγExpΨ = DγΨ ∗ ExpΨ,
DΓ ExpΨ

Γ!
=
∑

n≥1

1

n!

∑
∑n

i=1
Γi=Γ

(∏

i

DΓiΨ

Γi!

)
∗ (ExpΨ).

(7.1.21)e7.1.21

The second relation above, Leibniz rule, follows from the combinatorial iden-
tity

∑
p1+p2=n

(
q1
p1

)(
q2
p2

)
=
(
q1+q2
n

)
for all n, q1, q2 with n ≤ q1 + q2.

The above definitions allow us to derive an expression for ϕT (Γ) which is
quite explicit and which has the merit of implying immediately that ϕT (Γ)
vanishes for nonconnected Γ’s.4N7.1.4

Given Γ = {γ1, . . . , γn} consider the graph G visiting all points 1, . . . , n
(i.e. with nodes 1, . . . , n) and with edges connecting all pairs i, j such that
γi, γj overlap. Then (see problem [7.1.6]) one has ϕT (γ) = 1 and for n > 1:

ϕT (Γ) =
1

Γ!

∑

C⊆G
(−1)number of edges in C , (7.1.22)e7.1.22

where the sum runs over all connected subgraphs C of G which visit all the
n points 1, . . . , n. This expression, Mayer’s coefficients formula, immedi-
ately implies that ϕT (Γ) = 0 unless Γ is connected. Note that if we define

ϕ(Γ)
def
= ζ(Γ)ϕ(Γ) and ϕT = Logϕ then ϕT (∅) = 1 and (of course)

ϕT (Γ) = ζ(Γ)ϕT (Γ). (7.1.23)e7.1.23

There are important cancellations between the various terms in (7.1.22):
the cancellations are essential to show that the sum in (7.1.22) adds up to a
quantity that is much smaller than the number of terms in the sum (which

if of the order of 2n
2/2 if Γ consists of n polymers).

Existence of cancellations can be proved in several ways: for instance,
following a method introduced by Ruelle who called it algebraic method,
[Ru69], by taking advantage of recursive relations well known in the theory

3 One should realize that the check of the above relations, which is left to the reader,
can be reduced to the case in which Γ = nγ, i.e. to the case in which there is only one
polymer species γ; in the case of the first relation it is useful to consider the generating
function F (z) =

∑∞
n=0

znDγ(Ψ1∗Ψ2)(nγ) ≡
∑

n
(n+1)zn(Ψ1∗Ψ2)((n+1)γ) and verify

that the relation becomes the ordinary differentiation rule for a product of functions of
z.

4 Here we say that Γ is connected if given any pair γ, γ′ ∈ Γ there is a sequence γ1 =
γ, γ2, . . . , γk = γ′ such that Γ(γi) > 0 and γi intersects γi+1.
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of the Kirkwood-Salsburg equations in statistical mechanics, [Ga00]. Note

that if Ψ(∅) 6= 0 and Ψ(Γ) = 0 for Γ! 6= 1 (i.e. Γ 6= Γ̃) then one can define
a unique Ψ−1 such that Ψ−1 ∗Ψ = 1. Then we can consider the quantity

∆Γ(H) = (ϕ−1 ∗DΓ ϕ)(H) =
∑

H1+H2=H

ϕ−1(H1)ϕ(Γ +H2), (7.1.24)e7.1.24

where ϕ = ζϕ and ϕ is defined before (7.1.14). It is important to note that
DΓ ϕ(H2) = ϕ(Γ + H2) because ϕ(Γ + H2) vanishes if (Γ + H2)! > 1, so
that (Γ +H2)!/H2! ≡ 1 when ϕ(Γ +H2) 6= 0 Therefore ∆Γ(H) = 0 if Γ is
not compatible (while H needs not be compatible because Γ ∪H2 and H1

could be compatible even though H is not).
Since ϕ(γ1, . . . , γn) =

∏
i<j(1 + g(γi, γj)) with g(γ, γ

′) = −1 if γ ∩ γ′ 6= ∅
and g(γ, γ′) = 0 otherwise, we can write

ϕ(γ + Γ+H2) = ζ(γ)ϕ(Γ +H2)
∏

γ′∈H2

(1 + g(γ, γ′)) =

= ζ(γ)ϕ(Γ +H2)
∑∗

S⊆H2

(−1)N(S), (7.1.25)e7.1.25

if H2 is without multiplicities and γ is compatible with Γ; the ∗ on the last
sum means that it is a sum over the sets S of polymers all of which are
incompatible with γ. Setting H2 = S +H3 we get

∆γ+Γ(H) = ζ(γ)
∑∗

S⊆H
(−1)N(S)

∑

H1+H3=H−S
ϕ−1(H1)ϕ(Γ + S +H3) =

= ζ(γ)
∑∗

S⊆H
(−1)N(S)∆S+Γ(H − S), (7.1.26)e7.1.26

if γ is compatible with Γ.
In the sum the term with S = ∅ must be included and ∆∅(H) = 1(H) is
the correct interpretation of the symbols arising in this case.
Equation (7.1.26) determines ∆Γ(H) with N(Γ)+N(H) = m+1 in terms
of ∆Γ(H) with N(Γ) + N(H) = m for m = 1, 2, . . ., making the following
useful estimate possible. Let

Im ≡ sup
γ1,...,γq
m≥q≥1

∑

H:N(H)=m−q
|∆{γ1,...,γq}(H)|

q∏

i=1

z(γi)
−1. (7.1.27)e7.1.27

Summing (7.1.26) over H we see, if p denotes a point in the lattice, that
Im+1 is the supremum of

∑

H :N(Γ)+N(H)=m

|∆γ+Γ(H)| z(γ + Γ)−1 ≤
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≤
∑

H :N(Γ)+N(H)=m

∑∗

S⊆H
|∆Γ+S(H − S)|z(γ + Γ)−1|ζ(γ)| ≤ (7.1.28)e7.1.28

≤ z(γ)
∑∗

S :N(S)≤m−N(Γ)

Im z(S) ≤ z(γ) Im
∑

n≥0

1

n!

( ∑

γ′∩γ 6=∅
z(γ′)

)n
≤

≤ z(γ) Im exp(
∑

p∈γ

∑

γ′∋p
z(γ′)) ≤ z(γ) Im exp

(
|γ|max

p

∑

γ′∋p
z(γ′)

)
≤ z1(γ)Im,

with (see (7.1.4) and (7.1.5))

z1(γ) =b0ν
|γ|
0 e−κ0δ(γ)e

|γ|maxp
∑

γ′∋p
z(γ′)

≤b0ν|γ|0 e−κ0δ(γ)eB0ν0|γ| = z(γ)eB0ν0|γ|,
(7.1.29)e7.1.29

if k(d, κ0

2 )ν0 < 1 and B0 = 2b0.
If q = 1 the polymer configuration H must contain at least one polymer so
that ∆∅(H) = 1(H) = 0: this allows us to estimate Im inductively starting
from I1. Indeed if ν0e

B0ν0 < 1 and 2b0ν0e
B0ν < 1, as assumed in (7.1.17),

one has (since ∆∅(H) = 1(H) = 0 for H 6= ∅) z1(γ) ≤ 1
2 and I1 ≤ 1

2 . Hence

Im ≤ 2−m for all m ≥ 1. (7.1.30)e7.1.30

The bound allows us to estimate ϕT because the third in (7.1.21) implies

∆γ(Γ) = (ϕ−1 ∗Dγ ϕ)(Γ) = Dγ ϕ
T (Γ) = ϕT (γ + Γ)

(γ + Γ)!

Γ!
, (7.1.31)e7.1.31

hence, making use of the above bound (7.1.30), we get

∑

Γ

|ϕT (γ + Γ)| ≤
∑

m≥1
Γ :N(Γ)=m−1

|∆γ(Γ)| ≤ z(γ)
∑

m≥1

Im. (7.1.32)e7.1.32

Likewise we can bound, by (7.1.5),

∑

Γ∋p
|ϕT (Γ)| ≤

∑

γ∋p

∑

Γ

|ϕT (γ + Γ)| ≤ B0ν0. (7.1.33)e7.1.33

Finally a bound that is useful in studying the mixing properties of the Gibbs
distribution µΦ is a bound on the sum

∑
Γ∋p : Γ∩Q6=∅ |ϕT (Γ)|, where Q is any

set in Z
d. Let r be the distance between p and the set Q: proceeding in an

analogous way we find, cf. (7.1.5),

∑

Γ∋p : Γ∩Q6=∅
|ϕT (Γ)| ≤ B0ν0 e

−κ0r/2. (7.1.34)e7.1.34

Taking as Q in (7.1.34) the set of point ξ such that |ξ − p| > r we obtain
(7.1.19). This completes the check of proposition (7.1.1).
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An immediate corollary to the above proposition is the following result.

(7.1.1) Corollary:C7.1.1 (Smoothness and polymer expansion)
Under the assumptions of proposition (7.1.1) suppose that the polymer activ-
ity depends on a parameter α and that its α-derivative ∂αζ(γ) is continuous
and verifies a bound

|∂αζ(γ)| < b′0ν
a|γ|
0 e−aκ0δ(γ), (7.1.35)e7.1.35

with b′0, a > 0 and |γ| equal to the number of points in the polymer γ.
Then for ν0 small enough |Λ|−1 logZ(Λ) is continuously differentiable in α
uniformly in Λ and if ζ(γ) is translation invariant the limit as Λ → ∞ of
|Λ|−1 logZ(Λ) is given by

P = lim
Λ→∞

|Λ|−1 logZ(Λ) =
∑

Γ∋0

ϕT (Γ)ζ(Γ)

|n(Γ)| . (7.1.36)
e7.1.36

where n(Γ) is the number of distinct lattice points in the polymers of Γ.
Likewise if ζ(γ) is analytic in the parameter α and for α in a complex
domain the inequality

|ζ(γ)| ≤ b0νa|γ|0 e−aκ0δ(γ) (7.1.37)e7.1.37

holds then |Λ|−1 logZ(Λ) is analytic in α in the same complex domain for
all Λ and, in the translation invariant case, P is also analytic.

Remarks: (1) In the bounds (7.1.35) and (7.1.37) it is important that

there is a factor ν
a|γ|
0 for some a > 0: a will in general be a < 2 if ζ verifies

the bound in (7.1.4). In fact one imagines that “part” of the constants in
(7.1.4) is used up in order to check bounds like (7.1.35) and (7.1.37): the
derivative ∂kαζ(γ) can be often bounded proportionally to |γ|k|ζ(γ)|, so that
the smaller exponent a accounts for the necessity of bounding the extra |γ|k
that may arise in attempting to differentiate with respect to parameters.
For instance this happens if in the examples studied in Section §(7.2) one
replaces the potential Φ with βΦ with β a parameter. A paradigmatic ex-
ample, not discussed here, has been a case in which the polymers γ are the
vertices of closed contours, joining points on the lattice Z

2, of length |γ|
and ζ(γ) = e−β|γ|: the latter problem arises in the Ising model theory as
developed in [MS67], see [Ga00] and [GMM73].

(2) Likewise in (7.1.37) the initial exponential decay ν
2|γ|
0 may be partially

used to bound the k-th derivative of ζ dimensionally (i.e. by Cauchy’s the-
orem).

In the following section we apply the above propositions and corollary to
derive some notable results on the theory of Gibbs states.

Problems for §7.1

[7.1.1]:Q7.1.1 (Tree length properties)

Let γ be a set in Z
d and let δ(γ) be the tree length of γ. Given κ > 0 estimate the sum
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∑

γ∋0
ν|γ|e−κδ(γ)

def
= B for ν small enough and determine the dependence of B on κ, d.

(Hint: The sum over γ can be written as the sum over q ≥ 0 of q!−1 times the sum over

the ordered q–ples (ξ1, . . . , ξq) of points in Z
d and e−κδ(γ) can be bounded by the sum

over the trees ϑ with q +1 nodes labeled 0, ξ1, . . . , ξq of e−κδϑ(0,ξ1,...,ξq), where δϑ(γ) is
the tree length of γ measured on the particular tree ϑ, hence δϑ(γ) ≥ δ(γ). The sums over
ξi can be performed one by one starting with the external nodes of the tree. Exploit the
fact that the number of trees with n nodes is bounded by enn!: a more precise estimate
is derived in the following problems.)

[7.1.2]:Q7.1.2 (Taylor formula)

For u real let us set uΓ ≡
∏
γ∈Γ̃

uΓ(γ). If Ψ ∈ F , with
∑

Γ
|Ψ(Γ)| < ∞, define, for v

real, Ψv =
∑

Γ
vΓ

Γ!
DΓΨ; check that one has Ψv+u(H) ≡

∑
Γ
uΓ

Γ!
DΓΨv(H).

[7.1.3]:Q7.1.3 (Counting rooted trees)
Given n unit oriented segments labeled 1, 2, . . . , n, call origin v of a segment the starting
point of the segment (in the order established by its orientation); the other extreme will
be called the endpoint of the segment. Fix a priori one of the segments (called root
branch) and put it on the plane with its endpoint at the origin of the plane. Proceed by
putting down on the plane one after the other in all possible ways the remaining n − 1
segments attaching their endpoints to the origins of the segments that have already been
put down. The resulting graph will be called a rooted tree. The starting points of the
segments will be called nodes v of the tree, and dv −1, dv ≥ 1, will denote the number of
segments that enter the node v (dv is the branching number of v). Show that the number
of distinct rooted trees that can be formed with the given segments is bounded by cnn!,
for some constant c (e.g. c = 4 would be a possible choice; more refined estimates are in
the following problems).

[7.1.4]:Q7.1.4 (Counting spanning trees)
Given a set Γ of points on the plane, labeled 1, 2, . . . , n, consider the set of spanning trees
ϑ for Γ, i.e. the set of graphs without loops connecting the points. The points represent
the nodes of the trees ϑ; for each node v of the tree we denote with dv the number of
branches that are incident with the node v; one has dv ≥ 1 and

∑
v
dv = 2(n − 1).

The numbers dv will be called branching numbers of the tree. Show that the number of
distinct trees that can be formed with fixed branching numbers {dv} is

(n− 2)!∏
v
(dv − 1)!

.

(Hint: Each branch connecting two nodes v and v′ can be considered as a contraction
of a line coming out from the node v (exiting line) with a line entering into the node v′

(entering line). There must be always a node, say v0, with branching number dv0 = 1,
so that we can orient all the lines in such a way that they point toward such a node v0:
then we can imagine a tree as obtained by contracting n − 1 exiting lines with n − 1
entering lines. If ev and cv denote the number of lines entering and, respectively, coming
out from the node v, one has ev0 = 1 and cv0 = 0, while all the other nodes have at least
one exiting line, so that ∀v 6= v0 one has cv = 1 and ev ≥ 0; one has dv = ev+cv. Call C
the set of exiting lines and E the set of entering lines, and call E′ the set obtained from
E by neglecting the line entering the node v0; one has |E| = |E′|+ 1 =

∑
v
ev = n− 1

and |C| =
∑

v
cv = n−1. Then a tree ϑ can be obtained as follows. Consider the subset

C1 of C formed by the lines coming out from the nodes v with ev = 0: choose a line in
C1 and contract it with any line in E′, then choose another line in C1 and contract it
with another line in E′, and so on until we exhaust all lines in C1. Then consider the
subset C2 of C formed by the lines coming out from the nodes with ev ≥ 1 such that all
the entering lines have been already contracted: choose a line in C2 and contract it with
any uncontracted line in E′, and so on until all lines in C2 have been contracted. Then
define C3 as the subset of C formed by the lines coming out from the nodes with ev ≥ 1
such that all the entering lines have been contracted along one of the previous steps, and
so on: we iterate the construction until there will be left only one uncontracted line in
C: such a line will necessarily have to be contracted with the line entering v0. In this
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way we would have obtained (n − 2)! trees (as n − 2 is the number of elements in E′),
but we have still to divide such a number by 1/

∏
v 6=v0

ev! = 1/
∏
v
(dv − 1)! to avoid

overcounting and obtain the right counting of distinct trees, as contraction of a line in C
with any line in E entering the same node produce the same tree.)

[7.1.5]:Q7.1.5 (Cayley’s formula)

Count the total number of rooted trees with n branches showing that it is given by nn−2.
(Hint: Use the multinomial formula

∑

n1,...,np≥0

n1+...+np=n

n!

n1! . . . np!
xn1
1 . . . x

np
np = (x1 + . . .+ xp)

n ,

and the result of the previous problem.)

[7.1.6]:Q7.1.6 (Mayer coefficients)

Let Γ = {γ1, . . . , γq} be a polymer configuration. Regard the Γ(γ) copies of each polymer
contained in Γ as distinct by adding to each γ ∈ Γ an extra label 1, 2, . . . ,Γ(γ). Define
gij = −1 if the polymer γi is incompatible with the polymer γj and gij = 0 otherwise.

Consider the function ϕ(Γ) =
∏
i<j

(1+gij) and prove that ϕ(Γ) ≡ ϕ(Γ)
Γ!

= (ExpϕT )(Γ),

where ϕT is defined by the r.h.s. of the first relation in (7.1.22), i.e. ϕT = Logϕ. (Hint:
Note that by using (7.1.22) as a definition of ϕT

ϕ(Γ) =
∏

i<j

(1 + gij) =
∑

k

∑

C1,...,Ck unordered

C1+...+Ck=Γ

∏

j

(Cj !ϕ
T (Cj)) =

=
∑

k

1

k!

∑

C1,...,Ck ordered

C1+...+Ck=Γ

Γ!∏
j
Cj !

∏

j

(Cj !ϕ
T (Cj)) = Γ! (ExpϕT )(Γ),

if one collects together terms which are different because of the artificial distinction of
the multiply repeated polymers.)

Bibliographical note for §7.1
The algebraic method followed in this section to obtain the considered
estimates is due to Ruelle (see p. 86 in [Ru69]).
The notion of tree distance of the points of a set Γ has been introduced as
a concept relevant for the theory of Gibbs distributions in the [DJS73].
The cluster expansion based on polymer expansions, introduced in [GK69],
has been applied to several problems for instance the infinite volume limit
(infrared problem) in the scalar field theories ϕ4

d in dimension d = 2, 3,
see [GJS73], [MS76], [OS73] and the remarkable lectures [Ec75]. Another
example is the proof of the area law for the Wilson loop in a simple lattice
gauge theory [GGM78]. One can also mention the microscopic theory of
phase coexistence, see [MS67], [GMM73], [Ga72a] and developed in great
detail later, see for instance [Mi95]. Problems on large deviations in the
theory of Gibbs states can also be solved quite easily by the method, see
[GMM78], [GLM02].
Here we have adopted the method of [GK78] following in detail the version
used in [GMM73].
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§7.2 Cluster expansions

A first answer to the question raised at the beginning of Section §7.1 is
obtained in the case d = 1, i.e. of one-dimensional systems, in which T is a
(n+1)× (n+1) compatibility matrix which is mixing and transitive on the
vacuum (i.e. T0σ = Tσ0 = 1 for all σ = 0, . . . , n, see definition (6.4.1)) and

Φ ∈ B̃, where B̃ is the space of translation invariant particles potentials on
{0, . . . , n}ZT (cf. definition (6.4.1)). We recall that, in particular, this means
that ΦX(σX) ≡ 0 if σx = 0 for some x ∈ X , thus allowing us to interpret
σx = 0 as the vacuum at site x while σx 6= 0 will be interpreted as indicating
that the site x is occupied by a particle of species σx.
More generally we shall consider Gibbs distributions on lattices of dimen-
sion d > 1, cf. definition (7.1.2).

Before proceeding it is convenient to adopt the notation (h, Φ) to denote

a potential Φ ∈ B̃ with

h(σ) = Φξ(σ) and Φξ(σ) = 0,

ΦX(σX) ≡ ΦX(σX) for all |X | > 1,
(7.2.1)e7.2.1

i.e. we wish to distinguish between the single-body component h of Φ and
its many-body part Φ.
Furthermore, we shall denote by B̃complex the space of the translationally
invariant particle potentials which are complex (i.e. such that the compo-
nents of Φ and h can assume complex values) with the natural norm

‖Φ‖ = ‖h‖+ ‖Φ‖,
‖h‖ ≡ max

σ
|hξ(σ)|, ‖Φ‖ ≡

∑

X∋ξ, |X|≥2

max
σ
X

|ΦX(σX)|, (7.2.2)e7.2.2

i.e. “B̃ is the real part of B̃complex”. Sometimes we shall write B̃complex(Zd)

instead of B̃complex to stress that the potential Φ is an interaction potential
for a d–dimensional spin system.
In the following discussion we shall often allow also single-body components
Φξ(σ) = hξ(σ) which are not translationally invariant (i.e. hξ may depend
on ξ) and even not translationally invariant many spins potentials ΦX(σ) 6=
ΦX+ξ(σ) for ξ ∈ Z

d. In such cases ‖h‖ and ‖Φ‖ will be defined as in (7.2.2)
with a supξ added on the r.h.s.

The following proposition is remarkable and, historically, it has been the
first to be proved among many similar ones. It is not really relevant for our
intended applications to dynamical systems. We perform for completeness
its analysis in Appendix (7.2).
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(7.2.1) Proposition:P7.2.1 (Mayer expansion at small activity)

With the just introduced notations let B̃complex(Z
d
) be the space of the po-

tentials Φ = (h, Φ) for a d–dimensional n
2 –spin system with a transitive

vacuum (corresponding to σ = 0) and, possibly, a hard core interaction.1N7.2.1

Define

z
def
=
∑

σ>0

e−h(σ), z
def
=
∑

σ>0

e−Reh(σ), (7.2.3)e7.2.3

where z is such that |z| ≤ z and will be called activity. Given c > 0 let

Σ
def
=
{
Φ|Φ = (h, Φ) ∈ B̃complex, z e‖Φ‖(1 + (e‖Φ‖ − 1) c) < 1

}
. (7.2.4)e7.2.4

(i) There is a constant c, depending only on the matrix T describing the

hard cores, such that the function Φ → P (Φ), defined for Φ ∈ B̃, can be

analytically extended from Σ ∩ B̃ to Σ.2N7.2.2

(ii) In absence of hard cores and for Φ ∈ B̃ real analyticity of Φ → P (Φ)
holds under the condition

z e‖Φ‖
(

1

1 + ze‖Φ‖
+ c e‖Φ‖(e‖Φ‖ − 1)

)
< 1, (7.2.5)e7.2.5

where one can take c = 2n if the spin takes n+1 values. Note that the l.h.s.
of (7.2.5) tend to z/(1 + z) < 1 as ‖Φ‖ → 0.

Remarks: (1) On Σ ∩ B̃ we shall have that the function Φ → P (Φ) is
analytic in the sense of definition (7.1.1).
(2) The proof goes back to Groeneveld, Penrose and Ruelle who treated
the pair potential case, i.e. the case ΦX = 0 if |X | > 2. This is a classical
result among the deepest in the theory of Gibbs distributions: it bears many
other consequences that we shall not need and which, therefore, we do not
comment.
(3) The method of proof is generalizable or adaptable to a wide variety of
cases and it is the foundation of most of the really constructive results that
are known in the theory of Gibbs distributions, particularly in the case of
lattice systems in more than one dimension. For this reason we have stated
the above theorem without restricting ourselves to the case of one dimen-
sional spin systems. However condition (7.2.4) is an extremely restrictive
condition which physically means that a sequence σ which is typical for
the Gibbs distribution will mostly consist of the symbol 0, i.e. it will be
close to the vacuum. Therefore we shall also be interested in weakening the
restriction, when possible.

1 Cf. definition (7.1.1).
2 This means that there exists a function Φ→ P (Φ) that coincides on the set of real valued

potentials Σ∩B̃ with P (Φ) = lim
Λ→∞

|Λ|−1 logZΛ(Φ) and which is analytic in every point

Φ of Σ, i.e. the function (λ1, . . . , λd)→ P (Φ+ λ1Ψ1 + . . .+ λdΨd) is analytic near the

origin, for all Ψ1, . . . ,Ψd ∈ B̃complex. See definition (7.1.1).
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(4) If Φ becomes small and if there are no hard cores in the interactions one
expects that the system, i.e. the distribution µΦ, approaches the “free” one,
in which the variables σx are independently distributed and e−h(σ)/(1+z) is
the probability that σx has value σ. Whether this is true or not may depend
on what we mean by “small” Φ. The last statement in the proposition
shows that this is the case if the size of Φ is measured by ‖Φ‖ (cf. (7.2.2)):
for this reason the definition of ‖Φ‖ is natural and it repeatedly arises
when one tries to control the properties of the distribution µΦ. Below we
develop the theory in a different direction obtaining results of this type
but under more stringent conditions on the size of Φ, i.e. we study cases
which can be immediately reduced to the general analysis in Section §7.1.
For completeness the main elements of the classical proof of (7.2.5) are in
Appendix (7.2) below.

A proposition similar to proposition (7.2.1) but somewhat weaker is an
immediate consequence of the polymer theory analysis of Section §7.1. Re-
calling that δ(X) denotes the tree length of the set X , i.e. the minimal value
of the sum of the lengths of the branches of a tree that spans the set X (cf.
definition (7.1.3)), it can be formulated as follows.

(7.2.2) Proposition:
P7.2.2

(Cluster expansion in systems without hard cores
and small activity)

Let B̃complex be the space of the particle potentials Φ = (h, Φ) for a lattice
spin system with spin σ = 0, . . . , n and without hard cores (cf. definition
(6.4.1)). Given κ > 0 define

‖Φ‖κ def=
∑

X∋0

max
σX
|ΦX(σX)| eκδ(X), (7.2.6)e7.2.6

and z =
∑
σ>0 e

−Reh(σ).

If z is small enough, i.e. z e2(‖Φ‖κ+b)+1 < ε for a suitably small ε the Gibbs
distribution µΦ is analytic in Φ (cf. definition (7.1.1)).

Proof: Consider, for Λ = {1, . . . , N} and Φ ∈ B̃complex,

ZΦ(Λ) =
∑

σ∈{0,1,...,n}Λ

e
−
∑

Y⊂Λ
ΦY (σ

Y
)
=

=
∑

E⊂Λ

∑

σE∈{1,...,n}E

( ∏

ξ∈E
e−h(σξ)

)( ∏

Y⊂E
e−ΦY (σ

Y
)
)
,

(7.2.7)e7.2.7

because Φ ∈ B̃complex implies (by definition) ΦE(σE) = 0 if σj = 0 for
some j ∈ E. We must study the logarithm of ZΦ(Λ) and precisely the limit
P (Φ) = lim

Λ→∞
|Λ|−1 logZΦ(Λ): for this purpose we transform the sum (7.2.7)

into an exponential form. This can be done by adding and subtracting 1
in each of the factors of the last product in (7.2.7) turning each factor into
a binomial: then developing the binomial and collecting the “connected
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clusters”. The union X of the clusters is contained in E and if we keep it
fixed the same X may arise from any of the choices of E which contain X :
hence each X is counted 2|Λ|−|X| which is the source of various factors 2
below.
The partition function becomes ZΦ(Λ) = 2|Λ|∑

Γ ϕ(Γ)ζ(Γ), where Γ =
{γ1, . . . , γp} is a polymer configuration, ϕ(Γ) = 1 if the polymers in Γ
do not overlap (so that in particular Γ! = 1), ϕ(Γ) = 0 otherwise, and
ζ(Γ) =

∏
γ∈Γ ζ(γ) with ζ(∅) = 1 and

ζ(γ) =
z

2
if γ is a single point; otherwise:

ζ(γ) = 〈
∑∗

q, Y1,...,Yq
∪jYj=γ, |Yj |>1

∏

ξ∈γ
ei Imh(σξ)

q∏

j=1

(e−ΦYj (σYj ) − 1)〉
( z
2

)|γ| (7.2.8)e7.2.8

where z =
∑

σ>0 e
−h(σ), 〈•〉 is the average z−|γ|∑

σγ>0

∏
ξ∈γ e

−Reh(σξ)•,
the ∗ over the sum recalls that the sets Yi must contain chains connecting
any two points of γ and σγ > 0 means σξ > 0 for all ξ ∈ γ.
One obtains an expression for the partition function in terms of polymers
whose activity can be immediately estimated, cf. (7.2.6), by 3

N7.2.3

|ζ(γ)| ≤ (
z

2
e2‖Φ‖κ+1)|γ|(1 + ‖Φ‖κ)e−κδ(γ). (7.2.9)e7.2.9

which implies (7.1.4) with b20 = 1+ ‖Φ‖κ, ν20 = z
2 e

2‖Φ‖+1 and κ0 = κ/2: so
that by taking z small enough we fall under the conditions of applicability
of proposition (7.1.1).4N7.2.4

The probability µΦ(C
V
σ0
V

) of the cylinder CV
σ0
V

is the limit as Λ→∞ of

∑
σ
Λ
e−UΦ(σ

Λ
)χV,σ0

V
(σΛ)∑

σ
Λ
e−UΦ(σ

Λ
)

, (7.2.10)e7.2.10

where χV,σ0
V
(σΛ) =

∏
ξ∈ V χξ,σ0

ξ
(σξ) is the characteristic function of CV

σ0
V

.

The ratio can be written (after (7.1.18)) as

exp
( ∑

Γ={γ1,...,γq},γi∈Λ

ϕT (Γ)(ζV (Γ)− ζ(Γ))
)
, (7.2.11)e7.2.11

3 From |ex−1| ≤ e|x||x| we bound
∏q

j=1
(e

−ΦYj (σYj
)−1) by e|γ|‖Φ‖0

∏
j
(|ΦYj |eκδ(Yj))·

e−κδ(γ) (because
∑

j
δ(Yj ) ≥ δ(γ)): we use that

∑
q≥n x

q/q! ≤ exxn/n! and that

the sum is over q ≥ 1 which implies (7.2.9) after bounding e‖Φ‖κ |γ|‖Φ‖κ |γ| ≤
e(‖Φ‖κ+1)|γ|‖Φ‖κ (the addend 1 bounds the contribution from the one point polymer).

4 Note that (7.2.9) can be interpreted to hold even if z = 0 because h is here real valued.
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where ζV (Γ) =
∏
γ∈Γ ζV (γ) with ζV (γ) defined in a way similar to (7.2.8)

with the insertion inside the average of an extra factor
∏
ξ∈γ∪V χξ,σ0

ξ
(σξ),

when γ is not a single point; if γ = ξ is a single point ζV (γ) = 〈χξ,σ0
ξ
(σξ)〉 z

if ξ ∈ V and ζV (γ) = z otherwise. This implies

ζV (Γ) ≡ ζ(Γ) if V ∩ Γ̃ = ∅, and |ζV (Γ)| ≤ |ζ(Γ)|. (7.2.12)e7.2.12

Therefore we conclude that the limit as Λ → ∞ of (7.2.11) exists and is
simply given by

µΦ(C
V
σ0
V
) = exp

(∑

Γ

ϕT (Γ)(ζV (Γ)− ζ(Γ))
)
, (7.2.13)e7.2.13

which is convergent because of (7.2.12), (7.2.9), (7.1.4) and (7.1.19).
The translation invariance of ζ(Γ) implies, see (7.1.36), the existence of the
“thermodynamic limit” P (Φ) = limΛ→∞ |Λ|−1 logZΦ(Λ) and its identity

with the function P (Φ) =
∑

Γ∋0
ϕT (Γ)
n(Γ) ζ(Γ), where n(Γ) is the number of

lattice points contained in Γ, cf. (7.1.36). Analyticity in Φ follows from
corollary (7.1.1) to proposition (7.1.1).

Remarks: (1) The above proof leads to a result weaker than (ii) of propo-
sition (7.2.1) since it requires absence of hard cores, i.e. Tσ,{σ′} ≡ 1.
(2) In one dimension, however, the assumption of absence of hard core can
be eliminated as we shall discuss in Section §(7.3).
(3) Note that no condition had to be imposed on the imaginary part of
hξ(σ).

We now turn to the question of regularity of P (Φ) without particular as-
sumptions on the size of the activity z. In absence of hard cores the special
role of σ = 0 can be eliminated by means of another remarkable immedi-
ate corollary of the polymer cluster expansion which deals with a general
lattice potential, cf. definition (5.1.1). The assumption that a spin value
(i.e. σ = 0) is “privileged” (i.e. Φξ(σ), σ 6= 0, is large so that the activity z
of (7.2.3) is small) is replaced by the assumption that Φ is small. To achieve
this we can employ an expansion in which the trivial polymers, i.e. polymers
γ with |γ| = 1, are absent. The following proposition shows the possibility,
at least for real valued potentials, of an expansion without trivial polymers,
i.e. an expansion in terms of polymers γ with |γ| ≥ 2 whose activity de-
pends necessarily (unlike the trivial polymers cases) on the non-local part
Φ of the potential. And indeed corollaries will show how the results of the
proposition can be implemented in a useful way for this purpose.

(7.2.3) Proposition:P7.2.3 (Cluster expansion at any activity)

Consider a n
2 -spin system on a d–dimensional lattice Z

d and without hard
core interactions. Let Φ be a complex potential not necessarily translation
invariant and let ‖ΦX‖ = maxσX |ΦX(σX)| and set, for κ > 0,

‖Φ‖κ def= sup
ξ

∑

X∋ξ,|X|>1

‖ΦX‖ eκδ(X), b
def
= sup

ξ
|ImΦξ|, (7.2.14)e7.2.14
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where δ(X) denotes the tree length of X.
(i) Whether Φ is translation invariant or not, the partition function ZΦ(Λ)
defined as

∑
σ
Λ
e−UΦ(σ

Λ
) in (7.2.18) can be expressed formally as

ZΦ(Λ) =
( ∏

ξ∈Λ

Ξ1(ξ)
)
exp

( ∑

X⊂Λ

ϕT (X)ζ(X)
)
, (7.2.15)e7.2.15

where Ξ1(ξ) =
∑
σ e

−ReΦξ(σ), X = {γ1, . . . , γn} is a polymer configuration,
ϕT (X) are the combinatorial functions of X defined in (7.1.14), ζ(X) =∏
γ∈X ζ(γ) for suitably defined ζ(γ), which verify

|ζ(γ)| ≤ (e2‖Φ‖κ+2b+1)|γ|(‖Φ‖κ + b)ν(γ)e−κδ(γ), (7.2.16)e7.2.16

where ν(γ) is the minimum number of sets Y with ΦY 6≡ 0 and |Y | ≥ 2
or with |Y | = 1, Y = ξ and |ImΦξ| 6= 0, necessary to cover γ. Note that
|γ| = 1 implies ν(γ) = 1, so that in this case ν(γ) ≡ |γ|.
(ii) (7.2.15) becomes an identity if the series in the exponent is absolutely
convergent.
(iii) If ν(γ) > c|γ| for |γ| > 1 and a suitable 0 < c ≤ 1 there exist B, ε > 0,
independent of the size n of the spins, such that if ‖Φ‖κ + b < ε

sup
ξ∈Zd

∑

X̃∋ξ,δ(X)≥r

|ϕT (X)||ζ(X)| < B ε e−κr. (7.2.17)e7.2.17

(iv) Furthermore ζ(γ) are analytic as functions of Φ if Φ varies in the region
‖Φ‖κ + b < ε. In the translation invariant case the Gibbs distribution µΦ

is analytic in Φ.

Remarks: (1) For later developments we stress that the result (ii) holds for
potentials which are not necessarily translation invariant (but which must
admit the translation invariant bound (7.2.14)) and which are not necessar-
ily real. Furthermore the values of ε,B do not depend on the “spin size”
n: the latter remarkable property will be used extensively in the following.
The novelty in the expansion is that there is no special spin value corre-
sponding to the vacuum and therefore no condition of the type z small is
imposed. On the other hand the assumptions demand that all spin inter-
actions should be small with the possible exception of the real part of the
single spin interaction Φξ(σ).
(2) The property ν(γ) > c|γ| for |γ| > 1 can fail if there are sets X with
ΦX 6≡ 0 so large to cover large sets γ, i.e. requiring the existence of c is in
some sense a condition on the range of the potential. However in several
cases of interest the parameter κ in (7.2.14) can be adjusted: in such cases
the strong condition ν(γ) > c|γ| can be replaced by κ large enough and b
small enough, see also the comments after (7.1.5). This will be exploited in
one of the corollaries that follows.
(3) It is important to check, while looking at the coming proof, that the same
theorem holds if the spins that are located at each site ξ can take a number
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of values nξ which depends on ξ and is bounded by some N > 0: this can
be looked at as a on site hard core. This will be a necessary property in
Section §(7.3): in fact it is the key to understand hard core interactions in
one dimension.

Proof: We begin by restricting the sets that we shall call polymers (i.e. the
polymers which have a non-zero activity in the coming polymer expansion
associated with the potential considered): a polymer (with non-zero activ-
ity) will be a finite set γ with the following property.

(“Connectivity”) For all pairs ξ, η ∈ γ there is a connecting chain Y1, . . . , Ym
of subsets of γ such that ξ ∈ Y1, η ∈ Ym and Yi∩Yi+1 6= ∅ and, furthermore,
for each Yi there is at least one configuration σYi with ΦYi(σYi) 6= 0.

The polymer representation of partition functions stems from the identity

ZΦ(Λ) =
∑

σ∈{0,1,...,n}Λ

e
−
∑

Y⊂Λ
ΦY (σ

Y
)
= (7.2.18)e7.2.18

=
∑

σ∈{0,1,...,n}Λ

∏

ξ∈Λ

e−ReΦξ(σξ)
∏

Y⊂Λ

(
(e−ΦY (σ

Y
) − 1) + 1

)
,

where in the second product the factors with |Y | = 1 must be interpreted as
(e−iImΦξ(σξ) − 1), i.e. we treat differently the real part and the imaginary
parts of the single spin potential.

Developing the product as a binomial product we can collect the sets Y
into groups forming polymers; thus representing the sum as a sum over
collections of non-overlapping polymers γ1, . . . , γp:

ZΦ(Λ) =Ξ1(Λ)
∑@

γ1,...,γp⊂Λ

p∏

i=1

(
Ξ1(γi)

−1
∑

σ
γi

∏

ξ∈γi
e−ReΦξ(σξ) ·

·
(∑

qi

∑∗

Y
(i)
1

,...,Y
(i)
qi

⊂γi⋃
j
Y

(i)
j

≡γi

qi∏

j=1

(
e
−Φ

Y
(i)
j

(σ
Y

(i)
j

)

− 1
)))

, (7.2.19)e7.2.19

where Ξ1(V )
def
=
∏
ξ∈V (

∑
σ e

−ReΦξ(σ)) ≡ ∏ξ∈V Ξ1(ξ) for V ⊆ Λ; the sym-
bol @ over the first sum recalls that the polymers γi are nonoverlapping
and the ∗ over the fourth sum recalls the further restriction that the sets
Y

(i)
j must also contain chains connecting any two points of γi. Also in

this case the Y
(i)
j consisting of a single point ξ have to be interpreted as

(e−iImΦξ(σξ) − 1).

Introduce the activities of a polymer γ and of a polymers configuration X

20/novembre/2011; 22:18



§7.2: Cluster expansions 233

as

ζ(γ) = 〈
∑

q

∑∗

Y1,...,Yq⊂γ⋃
j
Yj=γ

q∏

j=1

(
e
−ΦYj (σYj

) − 1
)
〉,

ζ(X) =
∏

γ∈X̃
ζ(γ)X(γ), ζ(∅) ≡ 1,

(7.2.20)e7.2.20

where the 〈•〉 denotes the average Ξ1(γ)
−1
∑

σ
γ

∏
ξ∈γ e

−ReΦξ(σξ) •.
The key remark is that the function ζ(γ) verifies (7.1.4), from (7.2.20), by
repeating the argument used to derive (7.2.9) (see footnote 3), noting that∑
q≥n(xy)

q/q! ≤ eyxn if x < 1: in our case x = ‖Φ‖κ + b and y = |γ| if
|γ| > 1 while if |γ| = 1 we take, instead, x = b (because |eix − 1| < |x| for
real x).

Therefore, if ν(γ) > c|γ|, setting b0 = 1, ν20 = e2(‖Φ‖κ+b)+1(‖Φ‖κ +
b)c, κ0 = κ/2 the result is an immediate corollary of proposition (7.1.1)
and of its corollary (7.1.1).

Remark: It is interesting to note that the reason why we write an expansion
treating in a different way the real and imaginary parts of the single spin
potential is that we want to allow for an arbitrary real part of the single
spin potential. If we also require, rather than (7.2.15), that the single spin
potential be small, i.e. that

‖Φ‖κ = sup
ξ,σ
|hξ(σ)|+ ‖Φ‖κ (7.2.21)e7.2.21

be small, then we can treat the real and imaginary parts of Φξ in the same
way and, by the above proof, we obtain the same results of the proposition
under a smallness condition on ‖Φ‖κ. In the latter case the average in
(7.2.20) becomes the average with weight 1 over the spin values.

The proof of the above proposition leads easily to the result that we would
expect for Φ small (see remark (4) to proposition (7.2.1)) in the cases in
which the interaction Φ only involves “finitely many bodies” or has “finite
range”: notions that we introduce more formally as follows.

(7.2.1) Definition:
D7.2.1

(Finite range or finitely many bodies potentials)
A potential Φ is said an N–body or N–spin interaction if ΦX ≡ 0 if |X | >
N . If N = 2 it is called a pair interaction. A potential is said a R-range
potential if ΦY ≡ 0 for diam(Y ) > R. If, with the notation (7.2.21),
‖Φ‖κ <∞ for some κ > 0 we say that Φ is a short range potential.

The following result is in many respects weaker compared to the second
statement in proposition (7.2.1) (which we have not yet proved, see Ap-
pendix (7.2)), because it requires the potential to be a finitely many-spin
one, it is nevertheless a fairly immediate consequence of the techniques that
we are exploring and it is worth discussing as it is relevant for the theory
of dynamical systems.
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(7.2.1) Corollary:C7.2.1 (Any activity, finite range and small interactions)
Let Φ be a real R–range potential for a lattice spin system with spin σ =
0, . . . , n and without hard cores. Given κ > 0 if ‖Φ‖κ+ b < ε, see (7.2.14),
for a suitably small ε the Gibbs distribution µΦ is real analytic in Φ (cf.
definition (7.1.1)).

Proof: One simply remarks that if |ΦY | ≡ 0 for diam(Y ) > R then a
polymer that can be covered by q sets Yi, i = 1, . . . , q, with ΦYi 6≡ 0 is such
that q ≥ δ(γ)/R and δ(γ) ≥ |γ| − 1 ≥ 1

2 |γ|. We see that the assumption in
the third point of proposition (7.2.3) holds with c = 1/(2R).

In the same way one can prove the following similar statement.

(7.2.2) Corollary:C7.2.2 (Any activity, finitely many-body small interactions)
Let Φ be a real N–bodies potential for a lattice spin system with spin
σ = 0, . . . , n and without hard cores. If ‖Φ‖κ + b < ε, see (7.2.14), for
a suitably small ε, the Gibbs distribution µΦ is real analytic in Φ (cf. defi-
nition (7.1.1)).

Proof: One simply remarks that if |ΦY | ≡ 0 for |Y | > N then a polymer
which can be covered by q sets Yi, i = 1, . . . , q, with ΦYi 6≡ 0 is such that
q ≥ |γ|/N and one can take c = 1

N in proposition (7.2.3).

Remark: We see that in the case of either finite range or finitely many
bodies interactions h, Φ we obtain regularity (in fact analyticity) in h
and Φ under a condition of smallness of ||Φ||κ, for some κ > 0, and
of b = supξ,σ |Imhξ(σ)|, no matter how large is the real part of |h|. In
Physics applications potentials in Gibbs distributions appear in multiplied
by β = 1

kBT
where T is the temperature and kB is a constant (Boltzmann’s

constant). Therefore the smallness condition on β Φ is always achieved at
“high temperature”, i.e. at small β, and the same holds for the smallness
condition on the imaginary part of βh as long as we confine the values of
h to a fixed a priori given strip along the real axis, of course provided the
essential condition of absence of hard core interactions holds. High temper-
ature regularity in the cases of systems without hard cores and interacting
via particle potentials with only one species of particles besides the vacuum
(i.e. σ = 0, 1) can also be derived from part (ii) of proposition (7.2.1): the
interested reader will find the classical proof of proposition (7.2.1) in the
Appendix (7.2) below and the high temperature analyticity, for coreless po-
tentials that decay sufficiently rapidly at ∞, is derived as a consequence of
it in problems [7.2.7] and [7.2.9], [Do68b], [GMR68]: hence the difference
between the first part of proposition (7.2.1) and its second part or the above
corollaries is substantial.

It will be important to note the following corollary of the proof of the last
proposition which allows us to reach the same conclusions under somewhat
different assumptions which turn out to be also interesting for the theory
of dynamical systems.
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(7.2.3) Corollary:C7.2.3 (Short range case)
Consider a one-dimensional spin system without hard core interactions. Let
Φ be a real potential with ΦX(σX) different from 0 only if X is an interval.
With the notations (7.2.14), there is 0 < ε < 1, independent of the spin size
n, such that

b+ e2‖Φ‖κe−
1
4κ κ−1 ≤ ε (7.2.22)e7.2.22

implies, if ε is small enough, the conclusions of points (iii) and (iv) of
proposition (7.2.3) with (7.2.16) replaced by

|ζ(γ)| ≤ e−L0|γ|e−
1
2κδ(γ). (7.2.23)e7.2.23

with e−L0 ≡ ε c for a suitable constant c.

Remarks: (1) The peculiarity with respect to the proposition (7.2.3) is
that the dimension is d = 1 and that here we do not require existence of
the constant c > 0 such that ν(γ) ≥ c |γ|, hence we allow potentials with
exponentially decreasing strength. It is also important to remark that (as in
the above cases) there is no condition on the number n of values that the spin
σ can take. The proof below works because, by definition of tree distance, it
is always true that δ(γ) = |γ|−1 and therefore nontrivial polymers are such
that δ(γ) ≥ 1

2 |γ| while the trivial ones (with |γ| = 1) have small activity
which is bounded proportionally to b.
(2) The corollary (7.2.3) is interesting because the potentials that we have
shown to arise in the theory of Anosov systems will satisfy its assumptions
(see Section §(7.3)).
Proof: If one looks at the proof of proposition (7.2.3) one realizes that in
this case the polymers for which δ(γ) ≥ 1, hence δ(γ) ≥ 1

2 |γ|, satisfy the
estimate

|ζ(γ)| ≤ (e2(b+‖Φ‖κ)+1e−
1
2κ)|γ| e−

1
2κδ(γ) (7.2.24)e7.2.24

(see remark (2) following proposition (7.2.3)). For |γ| = 1 (hence δ(γ) = 0)

one has |ζ(γ)| ≤ b. Setting b20 = 1, ν20 = e2(‖Φ‖κ+b)+1− 1
2κ + b ≤ e−L0 ,

κ0 = 1
4κ the result again follows from proposition (7.1.1) under the condition

(
3eB0ν0 + k(1,

κ0
2
)
)
ν0 < 1, (7.2.25)

e7.2.25

with B0 = 2 and k(1, κ) = 2e
∑
ξ∈Z1,|ξ|≥1 e

−κ|ξ| ≤ 4e−κ(1 + κ−1) < 8 e
−κ

2

κ

(see (7.1.5)), i.e. if ‖Φ‖κ, κ and b verify

e−L0
def
= 82

[
e2(‖Φ‖κ+b)+1 e

− 1
4κ

κ
+ b

]
≤ c (b+ e2‖Φ‖κe−

1
4κ κ−1) (7.2.26)e7.2.26

with L0 large enough, which is implied by (7.2.22).

We conclude the section with a few general remarks.
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Remarks: (1) We stress again that the results of propositions (7.2.1),
(7.2.2) and (7.2.3) hold even when the spins are imagined located on a

d–dimensional lattice Z
d with d ≥ 1. This is interesting not only for the

study of spatio–temporal chaos (in Chapter X below), but also because the
same problems arise in Statistical Mechanics where the lattice points have
the interpretation of “space” points rather than of time variables.

(2) The assumptions in propositions (7.2.1), (7.2.2) and (7.2.3) are too
strong for one dimensional systems and for applications to dynamical sys-
tems. In fact transitivity of the vacuum (cf. proposition (7.2.1)) and the
smallness conditions in proposition (7.2.3) are typically not satisfied by the
potentials Φ that arise (for instance) in the description of the SRB distribu-
tions for Anosov systems. Furthermore the results of proposition (7.2.3) are
too strong to hold without the latter assumptions in dimension higher than
1 where, in general, the structure of the “multidimensional Gibbs states” is
much deeper and interesting.

(3) There is a remarkable case, however, in which a simple extension of
proposition (7.2.3) valid for arbitrary lattice dimension is possible even al-
lowing for hard core interaction and without excessive smallness conditions
on the potential. Namely if the potential ΦX(σX) is a potential of arbitrary
strength when X lies on a single line parallel to a given “time” direction,
e.g. the (d+1)-th coordinate axis, but it decreases exponentially in all direc-
tions and is sufficiently small for all X which are not on a single line parallel
to the time direction, see problems and Section §(7.3). The one-dimensional
cases as well as the latter case arise in the theory of Anosov systems as we
have seen so far (d = 1) while discussing the theory of Markov pavements
and symbolic dynamics and as we shall see in Chapter X in more involved
and interesting cases.

We shall devote the next section to the weakening of the vacuum transi-
tivity, i.e. to eliminate assumptions about hard cores in one dimension and
to the study of a multidimensional hard core cases of the kind considered in
remark (3) above). The simple idea underlying the possibility of the men-
tioned extensions can be mastered by studying the problems of the present
section which treat the particular cases from which the general results will
follow (as independently discussed in Section §(7.3)) with a few technical
additions.

Appendix 7.2: The classical expansion

Here we sketch the classical cluster expansion also known as the theory of
the Kirkwood-Salsburg equations (which are the relations (A7.2.3) below in
a somewhat improved form [Do68b], [GM68]). We describe it quickly and
without too many details although we have paid attention to not forgetting
any of the key steps.

The partial inversion of the equations that is discussed below ((A7.2.5)) is
the main tool that allows us to obtain the second statement in proposition
(7.2.1): the idea arose independently in [Do68b] and [GMR68].
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We consider a compatibility matrix T which is mixing and transitive on the
vacuum (T0σ = Tσ0 = 1 for all σ = 1, . . . , n) and a potential Φ ∈ B̃, where
B̃ is the space of the particles potentials on {0, . . . , n}ZT with ‖Φ‖ <∞. We
imagine the system enclosed in a finite region Λ which will be kept fixed
and whose size will be irrelevant for the discussion so that the results will
apply to finite as well as to infinite systems. We follow [GM68] (where the
case of spin σ = 0, 1 is discussed) and, to simplify the analysis, we shall also
consider only Φ real valued.

Let ρ(X, σX) be the probability in the Gibbs distribution that the spins
found at the sites of X ⊂ Λ are precisely σX . We suppose that σ = 0
describes the vacuum (i.e. ΦX(σX) ≡ 0 if for at least one x ∈ X one
has σx = 0). More generally it will be convenient to use the notation
ρ(X, σX |Y, σY | . . . |Z, σZ) to denote the probability that the spins in X are
σX , those in Y are σY , . . ., those in Z are σZ , if , Y, . . . , Z are disjoint sets:
clearly ρ(X, σX |Y, σY | . . . |Z, σZ) ≡ ρ(X ∪ Y ∪ . . . ∪ Z, σX∪Y ∪...∪Z).

Let x1 ∈ X be a point arbitrarily chosen among those of X (e.g. lexico-
graphically); define, for X ∩ V = ∅,

U1(X, σX)
def
=

∑

Y⊂X,Y ∋x1

ΦY (σY ),

W1(X, σX |V, τV )
def
=

∑

S⊂X,S∋x1

ΦS∪V (σS , τV ), (A7.2.1)eA7.2.1

U1(X, σX |V, τV )
def
=

∑

S⊂X,x1∈S,Y⊂V
ΦS∪Y (σS , τY ) =

∑

Y⊂V
W1(X, σX |Y, τY ),

e−U1(X,σX |V,τV ) = 1 +

∞∑

q=1

∑

T⊂V

∑

Y1∪...∪Yq=T

q∏

i=1

(
e
−W1(X,σX |Yi,τYi ) − 1

) def
=

def
=
∑

T⊂V
K(X, σX |T, τT ),

where the term with T = ∅ in the last line corresponds to 1.

Note that

|U1(X, σX)|, |W1(X, σX |V, τV )| ≤ ‖Φ‖,
∑

T,T∩X=∅
|W1(X, σX |T, τT )| ≤ ‖Φ‖, (A7.2.2)eA7.2.2

∑

T∩X=∅,T 6=∅
|K(X, σX |T, τT )| ≤ e‖Φ‖(e‖Φ‖ − 1)

def
= δ(Φ).

Setting X(1) def= X \ x1 one deduces from the definition of ρ(X, σX) the
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Kirkwood-Salsburg equations, [Ga00],

ρ(X, σX) = e−h(σx1)−U1(X,σX) ·
·
(
ρ(X(1), σX(1))−

∑

σ>0

ρ(x1, σ|X(1), σX(1))

+
∑

T∩X=∅,T 6=∅

∑

τ
T

K(X, σX |T, τT )·

·
(
ρ(X(1), σX(1) |T, τT )−

∑

σ>0

ρ(x1, σ|X(1), σX(1) |T, τT )
))
.

(A7.2.3)eA7.2.3

Introducing

ξ =
∑

σ>0

ρ(x1, σ|X(1), σX(1)), ζ =
∑

σ>0

e−h(σ)+U1(X,σX ), (A7.2.4)eA7.2.4

and summing both sides of the equations over σx1 > 0 we can derive an
expression for ξ

ξ =
ζ

1 + ζ
ρ(X(1), σX(1)) +

1

1 + ζ

(
e−h−U1 ,K(ρ′ − ξ′)

)
, (A7.2.5)eA7.2.5

where K(ρ′− ξ′) is a short hand for the last sum in (A7.2.3) and the scalar
product

(
e−h−U1 ,K(ρ′ − ξ′)

)
is

∑

σx1>0

e−h(σx1)−U1(X,σX) ·
∑

T∩X=∅,T 6=∅

∑

τT

K(X, σX |T, τT )·

·
(
ρ(X(1), σX(1) |T, τT )−

∑

σ>0

ρ(x1, σ|X(1), σX(1) |T, τT )
)
.

(A7.2.6)eA7.2.6

We imagine replacing the above expression for ξ in the equations (A7.2.3):
the latter can be regarded as equations for the quantities ρ(X, σX), with

X 6= ∅ and σx > 0 ∀x ∈ X . If we define α(X, σX) = e−h(σ)

1+ζ if |X | = 1, with
X = x and σ = σx, and 0 otherwise, the equations take the form

ρ = α+Kρ, (A7.2.7)eA7.2.7

where the operator Kρ(X, σX) is defined as

e−h(σx1)−U1(X,σX )

1 + ζ

(
ρ(X(1), σX(1))δ|X(1)|>0

)
+

− e−h(σx1)−U1(X,σX)

1 + ζ

(
e−h−U1 ,K(ρ′ − ξ′)

)
+

+ e−h(σx1)−U1(X,σX )
∑

T∩X=∅,T 6=∅

∑

τ
T

K(X, σX |T, τT )· (A7.2.8)eA7.2.8

·
(
ρ(X(1), σX(1) |T, τT )−

∑

σ>0

ρ(x1, σ|X(1), σX(1) |T, τT )
)
.
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Setting ‖ρ‖ = max |ρ(X, σX)| one checks that the operator K has the
property that

‖Kρ‖
‖ρ‖ ≤

ze‖Φ‖

1 + ze‖Φ‖
+

ze‖Φ‖

1 + ze‖Φ‖
ze‖Φ‖δ(Φ)n+ ze‖Φ‖δ(Φ)n ≤

≤ z e‖Φ‖

1 + ze‖Φ‖
+ 2zne2‖Φ‖(e‖Φ‖ − 1). (A7.2.9)eA7.2.9

where the reality assumption on Φ, hence on h and Φ has been used in an
essential way (e.g. in using the monotonicity of the function x→ x/(1+x)).

This shows that the equation ρ = α +Kρ can be solved by iteration and
proves regularity in the domain where the r.h.s. is < 1. A number of
consequences follow: they are most easily exhibited by pursuing the above

analysis to show that ‖Kρ‖
‖ρ‖ < 1 implies that, in spite of the apparently

different approach, one can define a suitable “polymers representation” of
the solutions to the equations (A7.2.8). See [GK69], [DIS73], [GM68]. We
do not discuss the matter further as we shall not need here the theory of
the classical expansion.

Problems for §7.2

[7.2.1]:Q7.2.1 (Hole–particle symmetry)

If n = 1 and Φ ∈ B̃ then ΦX(σX) 6= 0 only if σi = 1, for all i ∈ X; having set
Φ(X) = ΦX(1X) we shall identify Φ through the sequence {Φ(X)}X⊂Zd . One has

‖Φ‖ =
∑

X∋0
|Φ(X)| < +∞ and we shall denote Bhs the space of the exponentially

decaying potentials such that
∑

X∋0
exp(κdiam(X))|Φ(X)| < +∞ for some κ > s. We

shall denote Bf the space of the potentials for which Φ(X) = 0 if |X| is large enough
(called potentials with a finite number of bodies).
Consider the map L defined on Bf by

(LΦ)(X) = (−1)|X|
∑

Y⊃X

Φ(Y ),

and show that L2 = identity and that if CΦ =
∑

X∋0

Φ(X)
|X| the pressures of Φ and of

LΦ are related by
P (LΦ) = P (Φ) + CΦ ∀Φ ∈ Bf .

(Hint: Compare UΦ
Λ (σ) and ULΦ

Λ (σc) where σc is the configuration in {0, . . . , n}Λ com-

plementary of σ ∈ {0, . . . , n}Λ : σci = 1− σi, i ∈ Λ; deduce, from this relation, a relation
between ZLΦ(Λ) and ZΦ(Λ) etc., [GMR68].)

[7.2.2]:Q7.2.2 (Gibbs states transformations under hole–particle symmetry)

In the context of problem [7.2.1] find the relation between G(LΦ) and G(Φ) by provid-

ing the expression of the functions ρΦ,µ(X) = µ

(∏
i∈X σi

)
in terms of the analogous

functions relative to a Gibbs distribution for LΦ. (Hint: Use the relation between the
pressures found in problem [7.2.1] and the fact that the pressure is the generating func-
tional of the average values of the local observables, cf. proposition (6.1.2) and the related
remark.)

[7.2.3]:Q7.2.3 Find a condition that implies that Φ = LΦ if Φ is a two-body potential.
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[7.2.4]:Q7.2.4 (Spin potentials)

A potential Ψ for {0, 1}Z is called a spin potential if it can be written as ΨX(σX) =

J(X)
∏
i∈X(2σi − 1).

If Ψ is a spin potential and µΨ is a Gibbs state for it show, having set (L′Ψ)X =

(−1)|X|ΨX , that L′Ψ is a spin potential that admits among its Gibbs states the proba-

bility distribution µ such that µ(
∏
i∈X(2σi − 1)) = (−1)|X|µΨ(

∏
i∈X(2σi − 1)). (Hint:

Proceed as in the analysis of problem [7.2.1].)

[7.2.5]:Q7.2.5 Prove that the map defined in problem [7.2.4] between measures in G(L′Ψ) and

in G(Ψ) is one-to-one and invertible.

[7.2.6]:Q7.2.6 (Equivalence between spin systems and particle systems)

Which relation exists between L and L′? (Hint: Show that it is possible to establish
a correspondence between spin potentials with a finite number of bodies and particle
potentials with a finite number of bodies so that, via this correspondence, L is transformed
into L′).

[7.2.7]:Q7.2.7 Show that if n = 1, Tσσ′ = 1, condition (7.2.5) written for LΦ instead of Φ
leads to the determination of a new region of analyticity for µΦ via the relation between
G(Φ) and G(LΦ) derived in problem [7.2.2].

[7.2.8]:Q7.2.8 Estimate the mixing rate of µΦ in terms of the decay property at ∞ of Φ under
the hypotheses that the potential is a particle potential and that z is small enough. More
generally estimate the mixing rate for cylindrical functions. (Hint: Study first the case
of finite range Φ: in this case it follows from the definitions that the ϕT (ξ1 . . . ξp . . .) (cf.
(7.1.23)) are zero if the points ξ1 . . . ξp are not close enough; then by using the expressions
(7.2.14), (7.2.13) deduce an exponential bound for the mixing rate, etc.)

[7.2.9]:Q7.2.9 (High temperature analyticity in lattice systems of particles)

Making use of the method of problem [7.2.7] to further enlarge the region of analyticity

show that if (h, Φ) is a potential with finitely many bodies and if (h′,Φ′) = L(h, Φ)

then the region z‖Φ‖ < B or z′‖Φ′‖ < B contains a region having the form ‖Φ‖ < ε

with a suitable ε > 0 (independent of the value of z). Deduce that, given Φ, this proves

analyticity at high temperature (i.e. small Φ) for all values of h. The weaker form of
proposition (7.2.1) proved in proposition (7.2.2) suffices for such conclusion, [GMR68],
[Do69], see footnote 7 of [Ru69], p. 112.

[7.2.10]:Q7.2.10 (Analiticity for strong decay in Z
d
)

Consider a spin system on Z
d
without hard core interactions. Show that there is κ0 > 0

such that if ‖Φ‖κ + b ≤ ε for κ ≥ κ0 and ε small then the Gibbs distribution µΦ is
analytic in Φ.(Hint: Use remark (2) after proposition (7.2.3).)

[7.2.11]:Q7.2.11 (Decimation in d = 1)
Let T be a compatibility matrix which mixes over a time a and let h > a. Let σ be a
T–compatible sequence and define the sequence η(σ) = (. . . , η−1(σ)η0(σ), η1(σ), . . .) by

ηk(σ) = (σka+kh, . . . , σ(k+1)a−1+kh), k = 0,±1,±2, . . .

Check that all sequences η consisting of compatible strings of length a have the form

ηk(σ) for some σ which is T–compatible. In other words if one leaves a “gap” larger
than a between compatible strings of length τ > a no further compatibility condition is
required in order that the strings be part of an infinite compatible sequence. The strings
ηk regarded as new spins can be freely put down spaced by h, or more, giving rise to a
configuration of symbols that can be regarded as part of a T–compatible sequence σ.

[7.2.12]:Q7.2.12 (Reduction by decimation of hard core finite range systems to coreless systems

in d = 1)
In the context of problem [7.2.11] consider a short range real potential Φ ∈ B with range
r (i.e. ΦX ≡ 0 if the diameter of X exceeds r). Let τ = max(a, r) + 1 and h = mτ
with m large (to be determined later; see problem [7.2.14]). Write a spin configuration
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in the interval [1, N (τ + h) + τ ] as a sequence η
1
, σ1, η2, . . . , ηN , σN , ηN+1

where η
j
are

compatible strings of length τ and σ is a compatible string of length h. Consider the
matrixMη,η′ defined for η, η′ being T–compatible sequences of length τ , η = (η1, . . . , ητ )

and η′ = (η′1, . . . , η
′
τ ), and given by

Mη,η′ = 0, unless η′1 ≡ η2, . . . , η′τ−1 = ητ .

Show that the number Z0 of compatible strings of length N (τ + h) + τ with h = mτ is

Z0 =
∑

η
1
,...,η

N+1

N∏

j=1

〈 η
j
|Mh |η

j+1
〉 ,

where we use the notation 〈 η |M |η′ 〉 def= Mη,η′ .

Likewise let (η, η′) = (η1, . . . , ητ , η′1, . . . , ητ ) be a pair of compatible strings of length

τ (not necessarily such that the string (η, η′) of length 2τ obtained by merging the

two is compatible). Let σ = (σ1, . . . , στ+1)
def
= (η1, . . . , ητ , η′τ ) and define W (η, η′)

def
=∑∗

X
ΦX(σX) where the ∗ over the sum indicates that it runs over the subsets X of the

labels (1, . . . , τ +1) which contain the extra site τ +1. Define also U(η)
def
=
∑

X
ΦX(η

X
)

where the sum runs over the subsets of the labels (1, . . . , τ) and Mη,η′ = e
−W (η,η′)

Mη,η′ .

Check that the partition function Z for the system {0, . . . , n}Λ on Λ = [1, N(τ + h) + τ ]
is given by

∑

η
1
,...,η

N+1

e
−U(η

1
)
N∏

j=1

〈 η
j
| Mh |η

j+1
〉

[7.2.13]:Q7.2.13 (Decimation in d = 1 by transfer matrix)

In the context of problem [7.2.11] let Mη,η′ = λwηwη′ + ΛPη,η′ be the spectral de-

composition of the mixing matrix M (see definition in problem [2.3.12]) along the eigen-
vector with largest eigenvalue λ which is simple and with an eigenvector denoted wη

which has also positive components (by Perron–Frobenius theorem, see problems [2.3.10]

through [2.3.12] and [4.1.12]), while the eigenvalue of the transposed matrix of M is
denoted wη : they are chosen with (strictly) positive components and normalized so that∑

η
wηwη = 1) and P is a matrix with norm ‖P‖ = 1 and Λ < λ. Deduce from the

above remark on the structure of Z, setting ε = Λ/λ < 1, that Z is given by

λNh
∑

η
1
,...,η

N+1

e
−U(η

1
)
N∏

i=1

(
wη

i
wη

i+1
+

(
Λ

λ

)h
Pη

i
,η
i+1

)

and show that the sum can be written as a sum over η
1
, . . . , η

N+1
of

e
−U(η

1
)
wη

1
wη

N+1

N∏

j=2

wη
j
wη

j

N∏

j=1

e
log

(
1+(Λλ−1)hPη

j
,η
j+1

/(wη
j
wη
j+1

)

)

Show that this means that the decimated system of the spins η separated by mτ sites can

be regarded, in the thermodynamic limit (i.e. in the limit as N → ∞) as a spin system
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in which the spins are the compatible strings η of length τ and the interaction potential

is simply a single-site and nearest neighbor interactions given by

h(η) = − log(wηwη), Φ(η, η′) = − log

(
1 + (Λλ−1)h

Pη,η′

wηwη′

)
,

with suitably modified contributions for the sites 1 and N + 1.

[7.2.14]:Q7.2.14 (Cluster expansion with hard cores and finite range forces, d = 1)

Check that problem [7.2.13] implies the validity of proposition (7.2.3) when the transition
matrix is mixing and the interaction potential has finite range. (Hint: The above problems
reduce, by choosing h large enough, the case considered here to the case discussed in the
proof of proposition (7.2.3) of interaction without hard core ans with arbitrary one-body
potential h(η) and finite range interaction without hard core.)

Bibliographical note for §7.2
Among the most remarkable extensions are perhaps those in [GK78],
[Ku78], [Sy79], [Is76].
The classical theory of Appendix 7.2 is originally due to Groeneveld, Pen-
rose and Ruelle, [Gr62],[Pe63],[Ru63]. The above papers were preceded by
the work of Morrey, [Mo55], who also solved the same problem, by essen-
tially the same arguments, in an ambitious attempt to derive the equations
of fluidodynamics from microscopic classical dynamics: the importance of
this paper for the theory of the cluster expansion was realized only about
twenty years later.
The proliferation of alternative or independent and different proofs, or of
nontrivial extensions, shows that in reality the problem is a natural one and
that the methods to study it with the techniques of this section are also
natural although they are still considered by many as not elegant (and not
really natural), and they are avoided when possible or commented by saying
that “it must be possible to obtain the same result in a simpler way” (often
not followed by any actual work in this direction). An elegant and more
general analysis is in [Ca82].

§7.3 Renormalization by decimation in one-dimensional systems

The following definition is particularly relevant for the theory of dynamical
systems (see also problem [5.2.1]).

(7.3.1) Definition:D7.3.1 (Fisher potentials)
Consider a n

2 -spin system on the one-dimensional lattice Z and consider the
space BF of the potentials Φ with the property

ΦX ≡ 0 unless |X | = 1 + diam(X) = 1 + δ(X), (7.3.1)e7.3.1

i.e. ΦX vanishes unless X is an interval. We shall also call such potentials
extended nearest neighbor potentials. We shall split the potentials into their
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single spin part h and the many-spin part Φ and write Φ = (h, Φ), where
hξ(σx) = Φξ(σx) and Φξ ≡ 0.

The name of “Fisher potentials” is used in the Physics literature: such
potentials are quite interesting as they can be used to produce examples
and counterexamples to various phenomena concerning Gibbs states, [Fi67],
[Ga77]. Not least: the potentials that arise in the theory of Anosov systems
are in this class, cf. (4.3.15), and have short range.
The main step toward the results on smoothness of Gibbs distributions
relevant for dynamical systems concerns one-dimensional systems without
hard core and with an extended nearest neighbor potential (see definition
(7.3.1)).

(7.3.1) Proposition:P7.3.1 (Weakly Markovian chains)
Let BF be the space of the extended nearest neighbor real translation invari-
ant potentials Φ for a n

2 -spin one-dimensional system and define for κ > 0

‖Φ‖κ def=
∑

ξ∈C⊂Z , |C|≥1
C

sup
σ
C

|ΦC(σC)| eκ diam(C) ≡ ||h||0 + ||Φ||κ. (7.3.2)e7.3.2

The compatibility matrix is supposed to be Tσσ′ ≡ 1 (i.e. no hard core in-
teraction).
Then the correlation functions µΦ(C

V
σV ) are real analytic functions of Φ ∈ Σ,

where Σ ⊂ BF denotes the set of translation invariant Fisher potentials with
‖Φ‖κ < ∞ for some κ. Furthermore the Gibbs distribution µΦ is exponen-
tially mixing.

Remark: Note that ||h||κ ≡ ||h||0 because if |C| = 1 then diam (C) = 0.
We stress that no condition on the size ||Φ||κ is assumed here. The latter
quantity only affects the size of the complex analyticity domain.

Proof: The idea behind our discussion is simple and can be grasped by look-
ing at the problems following problem[7.2.11] which deal with the simpler
case in which ΦC ≡ 0 if the diameter diam(C) = δ(C) is large enough: how-
ever here we deal directly, and independently of the mentioned problems,
with the new case. We first study the case in which Φ is real.
Let Λ be a large interval and consider the strings σ ∈ {1, . . . , n}Λ.
Divide the interval Λ into a sequence of intervals of lengths alternating
between τ ≥ 1 (which means an interval consisting of at least a pair of
nearest neighbors) and h > τ , here h, τ are lengths to be chosen later. The
intervals will be denoted

B0, H0, B1, H1, . . . , Bℓ−1, Hℓ−1, Bℓ, (7.3.3)e7.3.3

and will be called of B–type and of H–type respectively. Of course this
means that we suppose that the number of points in Λ is |Λ| = ℓ(τ + h +
2) + τ + 1 (note that an interval of length h contains h+ 1 lattice points).
Correspondingly we imagine that a string σ ∈ {1, . . . , n}Λ is a sequence

σ = (β0, η0, β1, η1, . . . , βℓ−1, ηℓ−1, βℓ) (7.3.4)e7.3.4
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of shorter strings containing alternatively sets of τ + 1, h+1, τ + 1, . . . , τ +
1, h + 1, τ + 1 spins. The Gibbs state with potential Φ is unique, by the
analysis of Section §5.2 and it can be generated by taking the limit as Λ→∞
of the probability distribution

µΛ
Φ(σ) =

e−U
Λ
Φ (σ)

ZΦ(Λ)
(7.3.5)e7.3.5

over a sequence of intervals Λ of the above kind, i.e. of length ℓ(h+ τ+2)+
τ + 1.
The spins βi have size nτ+1, i.e. they can take nτ+1 different values, and
will be called block spins. They can be imagined to be located on the
points of a lattice whose sites are labeled B0, B1, . . . and which will be
called the decimated lattice or B–lattice: on the new lattice the distances
will be computed by thinking of it as having its sites spaced by 1. The
distances computed in this way, i.e. essentially in units of τ + h, will be
called “renormalized distances” when it will be necessary to avoid confusion
with the distances of points and sets in the original lattice.
The distribution µΛ

Φ generates, by summation over the variables η =

{ηj}ℓ−1
j=0, a probability distribution over the variables β = {βj}ℓj=0 (which is

a sequence of (τ + 1)–ples of spins)

µΛ
Φ(β) =

∑

η0,...,ηℓ−1

µΛ
Φ(σ), (7.3.6)e7.3.6

and our first task will be to check that the limit as Λ → ∞ of µΛ
Φ(β) is a

Gibbs distribution with an exponentially decreasing renormalized potential
Φren on the sequences β = {βj}j∈Z, with βj ∈ {1, . . . , n}τ+1, which has

a range κ−1
1 much shorter than κ−1 if τ is large (κ1−−−→τ→∞ ∞) and a size

‖Φren‖κ1

def
= ν1−−−→τ→∞ 0.

In other words on the new space of sequences β of symbols βj ∈
{1, . . . , n}τ+1 the distribution µ is still a Gibbs distribution with a new suit-
able potential that we shall call Φren verifying the property that ||Φren||κ1

is as small as wished and κ1 is as large as wished. This means that the
(possibly strong) initial interaction can be eliminated at the cost of dealing
with a spin system of somewhat larger spin, i.e. of size nτ+1 rather than n.
In this way we can derive the stated result as a special case of proposition
(7.2.3).

The energy UΛ
Φ (σ) can be expressed in terms of the energy of the part of

the potential Φτ obtained by cutting off from Φ the components ΦX(σX)
with δ(X) > τ (recall that τ ≥ 1 and, in the present one-dimensional case,
δ(X) denotes the diameter of X) plus the part of the potential containing
only the latter components. Thus we can write

UΛ
Φ (σ) =

ℓ∑

i=0

UBτ (βi) +

ℓ−1∑

i=0

UH(ηi) +

ℓ−1∑

i=0

(Wτ (βi, ηi) +Wτ (ηi, βi+1))+
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+
∑

X : δ(X)>τ
X 6⊂Hi

ΦX(σX). (7.3.7)e7.3.7

Here UBτ and UH denote the energies of the spins in the sets Bi and Hi,
respectively, due to the cut off potential Φτ and to the full potential Φ; the
termsWτ (βi, ηi) and Wτ (ηi, βi+1) yield the contribution to the energy from
the potentials ΦX with δ(X) ≤ τ and with the set X containing points
of Hi and either of Bi or of Bi+1 respectively. The last terms are the
contributions to the energy from potentials ΦX involving only sets X with
δ(X) > τ which do not lie entirely inside a set Hi. Therefore the partition
function can be written as

∑

β0,...,βℓ

∑

η0,...,ηℓ−1

( ℓ∏

i=0

e−U
B
τ (βi)

)
·

·
( ℓ−1∏

i=0

e−U
H(ηi)−Wτ (βi,ηi,βi+1)

)( ∏

X : δ(X)>τ
X 6⊂Hi

e−ΦX (σ
X
)
)
,

(7.3.8)e7.3.8

where Wτ (βi, ηi βi+1)
def
= Wτ (βi, ηi) +Wτ (ηi, βi+1). Setting

Zh(βi, βi+1) =
∑

η

e−U
H (η)e−Wτ (βi,η,βi+1), (7.3.9)e7.3.9

the partition function expression in (7.3.8) becomes

∑

β0,...,βℓ

( ℓ∏

i=0

e−U
B
τ (βi)

)( ℓ−1∏

i=0

Zh(βi, βi+1)
)
·

·
∑

η0,...,ηℓ−1

∏ℓ−1
i=0 e

−UH (ηi)−Wτ (βi,ηi,βi+1)e−
∑∗

X
ΦX (σX )

∏ℓ−1
i=0 Zh(βi, βi+1)

,

(7.3.10)e7.3.10

where the ∗ means that the sum is over the X such that δ(X) > τ and
X 6⊂ Hi for any set Hi.
It is possible to interpret the last ratio as a partition function of “large”
spins η0, . . . , ηℓ−1 (the word large refers to the fact that there are nh+1

different values that each η can take) interacting via a potential (suitably)
generated by the functions ΦX(σX) with δ(X) ≥ τ +1 (i.e. which does not
involve the components of Φ involving up to τ neighbors).
In attempting an application of corollary (7.2.3) we must note that we
can think of the sequence of “spins” η as a sequence of spins on a lattice
whose points are H0, . . . , Hℓ−1 and will be thought as spaced by τ : then the
potentials between the spins η0, . . . , ηℓ−1 at fixed β0, . . . , βℓ are many-body
potentials

Φ̃Hi,...,Hi+q (ηi, . . . , ηi+q) =
∑

X∩Hk=∅, k=i,...,i+q
ΦX(σX), (7.3.11)

e7.3.11
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which, by the assumption that ΦC 6≡ 0 only if C is an interval, are the
only nonvanishing potentials; in other words the potential Φ̃ is still a
(non-translation invariant and β–dependent) Fisher potential, cf. definition
(7.3.1).
To take advantage of corollary (7.2.3) we need, at fixed β0, . . . , βℓ, an esti-
mate of a quantity like

sup
H

∑

C∋H : |C|>1

sup
η
C

|Φ̃C1,...,Ck(ηC1 , . . . , ηCk)|e
1
2 (k−1)τκ, (7.3.12)e7.3.12

where C = (C1, . . . , Ck) is an “interval” on the lattice formed by H-type
intervals, and ηC = (ηC1 , . . . , ηCk). The case |C| = 2, i.e. k = 2, corresponds
to the interaction between nearest neighbors pairs of H-type intervals.
By (7.3.11) |Φ̃C1,...,Ck(ηC1

, . . . , η
Ck

)| ≤ ∑
X∩Ci 6=∅, ∀i |ΦX(σX)|; hence if

k ≥ 2 and H,H ′ are two different H-type intervals, we can bound (7.3.12)
by

sup
H,H′

∑

X∩H,X∩H′ 6=∅
δ(X)>τ

|ΦX(σX)|eκδ(X)e−
κ
2 δ(X) ≤ (7.3.13)e7.3.13

≤ ||Φ||κ
∞∑

p=τ+3

(p− (τ + 2)) e−
κ
2 (p−1) ≤ ||Φ||κe

−κ
2 τ

(1− e−κ/2)2 ≤ m ||Φ||κ e
−κ

2 τ ,

having taken into account that the sets X are, by assumption, intervals and
having defined m = (1− e−κ/2)−2.
We choose τ so that1 we can apply, if h is large enough, the corollary (7.2.3)N7.3.1

to proposition (7.2.3) with ‖Φ‖κ replaced by m ||Φ||κe−κτ/2 and L0 = 1
8κτ

(in (7.2.22) there is a factor e−κτ/4 and one can suppose that h, hence τ ,
is so large that one can take into account the presence of the other factors
simply by replacing 4 with 8 in the bound). This means that we can rewrite
the ratio in (7.3.10) as

exp
∑

Γ

ϕT (Γ)ζ(Γ), (7.3.14)e7.3.14

where Γ is a polymer configuration consisting of nontrivial (i.e. γ with more
than one point, |γ| > 1) polymers γ1, γ2, . . . which are intervals on the lattice
of the B’s; ϕT are the universal combinatorial coefficients whose existence
and properties are proved in proposition (7.1.1). Therefore Γ̃, i.e. the set
of points covered by the polymer configuration Γ, is also necessarily an
interval. The activities of the polymers verify an inequality like (7.2.23),
i.e. (for ||Φ||κ < 1)

|ζ(γ)| ≤ e− 1
8κτ |γ|e−

1
4κτδ(γ) ≤ e− 1

8κτ |γ|e−
1
8κτδ(γ), (7.3.15)e7.3.15

1 Actually we also want that τ + 1 divides h + 1. This can be assumed without loss of
generality.
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where the tree distance δ(γ) has to be measured on the “decimated lattice”
of the B’s, i.e. the δ(γ) of a polymer consisting of k successive B–intervals
(k ≥ 2) is k − 1 (while the actual distance between the extreme points of
the interval would be k(τ +1)+ (k− 1)(h+1): hence the unit of length has
to be regarded as essentially equal to τ + h+ 2). Therefore we can define

ΨBj ,...,Bj+p(βj , . . . , βj+p) =
∑

Γ∩Bi 6=∅,i=0,...,p

ϕT (Γ)ζ(Γ) (7.3.16)e7.3.16

and we find by (7.1.19) that

‖ΨBj ,...,Bj+p‖ ≤ A0e
−κτ

16 e−(p−1)κh16 (7.3.17)e7.3.17

where A0 depends only on κ (A0 = (1 +
∑
q>0 qe

−κτq
16 ), cf. (7.1.19)). The

exponent of (7.3.14) has therefore the form of a short range potential Ψ
between the spins β and

‖Ψ‖κτ/32 ≤ B0e
−κτ

32
def
= ε0, (7.3.18)e7.3.18

for B0 suitably chosen and Ψ is an exponentially decaying, (mildly) non-
translation invariant2, interaction between the β’s (here the tree distances

N7.3.2a
have to be measured in the above mentioned units of length for the dec-
imated lattice) with the property that ΨC 6= 0 only if C is an interval:
note that ‖Ψ‖κτ/32 includes bounds on the one-body and nearest neighbors
blocks. The range of Ψ is much shorter than the original κ because the
latter is now replaced by a quantity of the order of κτ .
The sum, i.e. the partition function, in (7.3.8) can be written as

∑

β

e
−
∑

X, |X|>1
ΨX(β

X
)
( ℓ∏

i=0

e−U
B
τ (βi)

)

( ℓ−1∏

i=0

Zh(βi, βi+1)
)( ℓ∏

i=0

e−Ψξi(βi)
)
,

(7.3.19)e7.3.19

where here and in the remaining part of the proof the sets X will denote
subsets of the decimated lattice, i.e. of the lattice of the B intervals.
We fix τ : and we see that we have to consider a spin chain of arbitrary
length with spins β interacting via a single spin potential aξ(β) and a nearest
neighbor pair potential a{ξ,ξ′}(β, β′) both of arbitrary size and translation
invariant plus a very weak, possibly non translation invariant, spin potential
aX(βX), |X | ≥ 2 which satisfies

|aX(β
X
)| ≤ εe−κhδ(X), (7.3.20)e7.3.20

2 Translation invariance violation comes only from the B blocks at the boundaries.
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with h prefixed arbitrarily, cf. (7.3.18). We call this potential A and refer
to this model as the “supplementary model”.
In our case β ∈ {1, . . . , n}τ and aξ(β) = Ψξ(β)+U

B
τ (β) and a{ξ,ξ′}(β, β′) =

− logZh(β, β
′) + Ψ{ξ,ξ′}(β, β′).

Therefore we see that the real problem is just to show that by taking h large
the pair potential between nearest neighbors generated above between the
blocks of β spins is the sum of a suitable one-spin potential plus a nearest
neighbor potential which is as small as we please. This means that we
have to show that the above supplementary model is such that its partition
function in a box Λ = {1, . . . , h} verifies

− logZh(β, β
′) = z(β) + z(β′) + e−κ0h∆(β, β′) (7.3.21)

e7.3.21

for a suitable z(β) and with ∆(β, β′) ≤ D for some D,κ0 > 0.
The latter is a well known property of exponentially decreasing interactions
in one-dimensional systems and we guide to its check in the hints to the
problems at the end of the section.

If V ⊂ Hi for some i and µΦ,β denotes the Gibbs distribution conditioned
to the spins β the above analysis implies, in fact, that the probabilities

µΦ(C
V
σ0
V

) of cylinders CV
σ0
V

can be written as

µΦ(C
V
σ0
V
) =

∫
µΦ(dβ)

∫
µΦ,β(dη)χCV

σ0
V

(η
V
), (7.3.22)

e7.3.22

The latter expression admits a polymer expansion of the type (7.2.11)
with the polymer activities ζ which are analytic and verify the appropriate
bounds like (7.2.12) together with their derivatives. The inclusion V ⊂ Hi

is not restrictive because of the arbitrariness of h; the details are left to the
reader.

Turning to the smoothness and analyticity statement we assume now

that Φ is complex and call ν
def
= ‖Im Φ‖κ + supσ |ImΦξ(σ)|. We then pro-

ceed through the algebra leading to (7.3.10). However we write (7.3.10)
by replacing UH(ηi),Wτ (βi, ηi, βi+1) with their real parts ReUH(ηi) and
ReWτ (βi, ηi, βi+1); the corresponding imaginary parts will be taken into
account by interpreting the

∑∗ in (7.3.10) as containing besides the terms
with |X | > τ also the imaginary parts of the ΦX which occur in UHτ (ηi)
and Wτ (βi, ηi, βi+1). As a consequence in (7.3.12) there will be terms with
|C| = 1 and (7.3.12) will receive contributions also from the imaginary parts
of the potentials ΦX with |X | ≤ τ . The factor m||Φ||κe−κτ/2 in the r.h.s.
of inequality (7.3.13) will be modified into m||Φ||κe−κτ/2+ νh. Hence if the
imaginary parts of ΦX are small enough (e.g. hν < m||Φ||κ e−κτ/2) (7.3.13)
is changed by replacing ||Φ||κ by 2||Φ||κ and we get (7.3.16).
The analysis continues in the same way as in the real Φ case because the
new Zh(β, β

′) only depends on the real part of the potential. The uniformity
of the bounds in the (tiny) complex strip ‖ImΦ‖κ + maxσ |ImΦξ(σ)| =
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O(e−κτ/2), with h chosen large enough, implies the analyticity statement.

Consider a general one-dimensional system with hard core interaction given
by a mixing compatibility matrix T for sequences of symbols σ ∈ {1, . . . , n}
and by a real Fisher potential Φ such that for some κ > 0 one has
‖Φ‖κ < ∞, cf. (7.3.2), (without smallness requirement). The new setting,
i.e. taking into account hard core interactions, extends considerably in the
one-dimensional lattice cases that of Section §7.2 and its analysis will be
directly applicable to the theory of SRB distributions, which as we have
seen in the preceding sections, are precisely Gibbs states with such kind of
interactions. Then the following proposition, [CO81], holds.

(7.3.2) Proposition:P7.3.2 (Decimation in one dimension)
The correlations µΦ(C

V
σV ) of a one-dimensional spin system are analytic

functions of Φ if the interaction is given by a mixing compatibility matrix
T for sequences of symbols σ ∈ {1, . . . , n} and by a translation invariant
extended nearest neighbor potential Φ (cf. definition (7.3.1)) satisfying the
condition that ||Φ||κ is < ∞. Furthermore the correlations between events
of the form CVσV , C

W
σW decay at exponential rate.

Proof: This is almost an immediate consequence of the proof of proposition
(7.3.1): we can proceed as in its proof. As soon as h > τ > a0 where a0 is
the mixing time of the compatibility matrix there will be no compatibility
to be fulfilled in fixing the configurations of distinct β-blocks; nor there will
be any compatibility to be fulfilled in fixing the configurations of distinct
η-blocks: of course there will be compatibility conditions between β and η
blocks.

Since no compatibility needs to be checked between the β–block configura-
tions we fix them arbitrarily and perform the summation over the η blocks
by using, as in proposition (7.3.1), that the interaction between such blocks
is small although not translation invariant. The configurations allowed to
the various blocks η are not the same in different blocks (because they must
be compatible with the adjacent β–blocks). This is however irrelevant by
the remark (3) to proposition (7.2.3). Therefore one gets exactly the same
bounds on the potential Ψ between the β–blocks as in (7.3.17),(7.3.18).

The only novelty arises in treating the transfer matrix Mσ,σ′ . However
mixing implies that Ma0 has all matrix elements positive. Therefore if h is
a multiple of τa0, which we can assume without loss of generality, we can
continue, replacing τ by a0τ . Since a0 is a fixed quantity we are back in the
situation studied in the previous proof if h is taken a large multiple of τa0,
rather than just of τ .

Remarks: The above method can be extended to several cases of (d+ 1)–
dimensional spin systems with d ≥ 1 verifying one among the following
properties.
(1) There is a privileged coordinate direction that we call time (e.g. the
(d + 1)–th dimension) and the potential can have a hard core in the time
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direction only, i.e. the spins σ, σ′ which are on nearest neighbor sites that lie
on the same line λ parallel to the privileged direction have to verify Tσσ′ = 1
∀σ, σ′ for a given mixing compatibility matrix.
(2) The potential is short ranged and small enough, i.e. for ν, κ−1 small
enough one has

sup
ξ∈Zd+1

∑

ξ∈X⊂Z
d+1 , |X|>1

sup
σX

ν−|X||ΦX(σX)| eκ δ(X) < 1. (7.3.23)e7.3.23

(3) The extension proceeds by considering a box Λ with sides of size L
and, assuming that the direction λ is the direction parallel to the axis
d + 1 of Z

d+1, cutting each of the Ld lines parallel to λ into intervals
B0, H0, . . . , Hℓ−1, Bℓ. One then imagines to fix all spins in the intervals of
B-type (which can be arbitrarily assigned among the T –compatible strings
β of length τ) and to sum over the spins in the H–type intervals. This is a
(d+1)–dimensional system of weakly coupled spins (as it follows by adapt-
ing the proof of the corresponding statement in the proof of proposition
(7.3.2) making use of proposition (7.2.2)). The resulting distribution for
the β spins is weakly coupled Gibbs state without hard core and proposition
(7.3.1) (as well as proposition (7.2.2)) applies to it. We discuss below a
result that can be obtained, along the above lines, in a special case of rele-
vance for our later applications to dynamical systems; it is however useful
to pose a formal definition

(7.3.2) Definition:D7.3.2 (Oriented hard core)
Consider the configurations σ of a n

2 -spin system on a (d+ 1)–dimensional

lattice Z
d+1. Consider a mixing matrix Tσσ′ and denote {1, . . . , n}Zd+1

T

the space of the configurations such that Tσxσ′
x′

= 1 if the pair of nearest

neighbor sites x, x′ lie in the direction of the (d + 1)–axis, i.e. if x = (ξ, t)

and x′ = (ξ′, t′) with |t − t′| = 1. We call {1, . . . , n}Zd+1

T the configuration
space of a spin system subject to an oriented or timelike hard core. We say
that the potential Φ has spatial and temporal ranges κ−1, κ−1

0 if

‖Φ‖κ,κ0

def
= sup

x∈Zd+1

∑

x∈X⊂Z
d , |X|>1

‖ΦX‖eκ δ⊥(X)+κ0 δ‖(X) <∞, (7.3.24)e7.3.24

where ‖ΦX‖ = supσX |ΦX(σX)| with the supremum taken over the σX which

are T–compatible; δ⊥(X) (spatial tree length of X) and δ‖(X) (temporal
tree length of X) are obtained by considering the sum of the lengths of the

projections on the plane Zd and, respectively, on the axis orthogonal to it in
Z
d+1 of the segments constituting the shortest tree linking the points of X.

Likewise we can define oriented Fisher potentials:

(7.3.3) Definition:D7.3.3 (Oriented Fisher potentials)
A oriented hard core potential Φ is a oriented Fisher potential if ΦX 6= 0
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only if the set X consists of a union of intervals located on pairwise distinct
time lines.

Remarks: (1) We call “time” the last direction in Z
d+1 and “timelike” any

line in Z
d+1 parallel to the last coordinate axis.

(2) A general oriented hard core potential Φ is often equivalent to a suitable

oriented Fisher potential Ψ. Indeed let a generic set X ⊂ Z
d+1 be the union

of vertical intervals ∪i,jJξij , with i = 1, . . . ,m and j = 1, . . . , nξi , lying on

distinct time lines ξ1, . . . , ξp ∈ Z
d and ordered so that Jξij < Jξij+1. Let

Iξ1 , . . . , Iξp be the smallest timelike intervals such that ∪jJξij ⊂ Iξi : we say
that the Jξij generate Iξi (in other words Iξi is the interval delimited by

the lowest point in Jξi1 and the highest point in Jξinξi
). Given a Y = ∪iIξi ,

with Iξi timelike intervals lying on distinct time lines, for each compatible
confguration σY we set

ΨY (σY ) =

∗∑
ΦX(σX) (7.3.25)e7.3.25

with the sum running over all set X = ∪i,jJξij such that Jξij generates Iξi .
Moreover we set ΨY = 0 for all sets Y which are not the union of timelike
intervals located on distinct timelike lines. We see that in this way we define
a oriented Fisher potential that is equivalent to Φ, provided ‖Ψ‖κ′,κ′

0
is finite

for some κ′, κ′0.
(3) A sufficient condition for the finiteness of (7.3.25) is that the oriented
potential verifies

‖Φ‖κ,κ0,κ1

def
= sup

ξ∈Zd

∑

ξ∈X⊂Z
d , |X|>1

‖ΦX‖eκδ⊥(X)+κ0 δ‖(X))e−κ1 n(X) <∞,

(7.3.26)e7.3.26
where n(X) is the number of distinct vertical intervals whose union is X
(i.e. n(X) =

∑
i nξi). In this case if κ1 is large enough we get ‖Ψ‖ 1

2κ,κ0
<

∞.

The following proposition says that if the spatial range is short enough the
system behaves as if it was one dimensional.

(7.3.3) Proposition:P7.3.3 (Cluster expansion for oriented hard core systems)
Consider a n

2 -spin system subjected to a Fisher oriented hard core potential

such that there are κ, κ0 > 0 for which ‖Φ‖κ,κ0 <∞. Then given κ0 there
are constants κ, b > 0 such that if κ > κ the correlation functions µΦ(C

V
σV )

are analytic functions of Φ in the region ‖Φ‖κ,κ0 < 1 and |ImΦξ(σ)| < b.
Furthermore the Gibbs distribution µΦ is exponentially mixing.

The proof follows closely the hint in remark (3) above and is made easier by
the fact that the length κ−1 characterizing the diameter decay in (7.3.24) is
very short for κ large. Hence the interaction is very small and short ranged
for κ large apart from the oriented hard core. See problems [7.3.10] and
[7.3.11] for details.

20/novembre/2011; 22:18



252 Problems for §7.3

More general cases in which the interaction is not supposed small in the
direction of the hard core orientation (i.e. in the case considered in remark
(2) above) have been studied in [BFG03].

Problems for §7.3

[7.3.1]:Q7.3.1 Show that if C = (C1, . . . , Ck) with δ(C) > 1 the estimate (7.3.13) can be
improved as

sup
H

∑

H∈C, δ(C)>1

sup
η
C

|Φ̃C1,...,Ck (ηC1
, . . . , ηCk )|e

1
2
(k−1)hk < m‖Φ‖κe−

κ
2
h.

(Hint: Note that the distance of the extreme points of the sets Ci, Cj is of the order of
(k − 2)h+ (k − 1)τ and k > 2 if δ(C) > 1.)

[7.3.2]:Q7.3.2 Let A be a Fisher potential for a spin s
2
system on a finite lattice Λ = {1, . . . , h}

with h sites. Call a(β) = aξ(β) and a(β, β′) = a{ξ,ξ′}(β, β′), respectively, the single-spin
and the nearest neighbor potentials supposed translationally invariant. Suppose that
there is also a potential aX (βX), possibly non translation invariant, satisfying

|aX(β
X
)| ≤ εe−κδ(X)

for some ε, κ > 0. Then the partition function Zh(β, β
′)
def
=
∑

β1,...,βh
e−U(β) with

β1 = β, βh = β′ can be written as

∑

β1,...,βh
β1=β,βh=β′

e−
1
2
a(β)
( h−1∏

j=1

Mβjβj+1

)
e−

1
2
a(β′)e

−
∑

X⊂Λ
aX(β

X
)
,

where Mββ′
def
= e−

1
2
a(β)e−a(β,β

′)e−
1
2
a(β′) and the last sum is over the intervals X ⊂ Λ

with δ(X) > 1.

[7.3.3]:Q7.3.3 (A transfer matrix approach to long range interactions)

In the context of problem [7.3.2] let Z0
h(β, β

′) be defined as Zh(β, β
′) in problem [7.3.2]

with aX (βX) ≡ 0. Check that

Z0
h(β, β

′) = λh−1e−
1
2
a(β)v(β)v(β′)e−

1
2
a(β′) exp

(
− e−κ0h∆(β, β′)

)
,

where κ0 is the logarithm of the ratio between the maximal eigenvalue λ of the matrix
M and the largest modulus of the others, |∆(β, β′)| ≤ D0 for some D0 > 0, end v(β) > 0
is the β component of the eigenvector with eigenvalue λ of M (cf. the Perron–Frobenius
theorem). (Hint: This is just one more application of the transfer matrix, see for instance
problem [7.2.13].)

[7.3.4]:Q7.3.4 (Toward polymerization of the problem of checking (7.3.21))

In the context of problems [7.3.2] and [7.3.3] check that Zh(β, β
′) can be written as

∑

β1,...,βh
β1=β,βh=β′

e−
1
2
a(β)
( h−1∏

j=1

Mβjβj+1

)
e−

1
2
a(β′)

∑

p≥0

∑

I1,...,Ip⊂Λ

p∏

j=1

ζ(Ij , βIj ),

where I1, . . . , Ip are p disjoint consecutive intervals. Find conditions on ε, κ such that
there are b, C > 0 for which

|ζ(I, βI)| ≤ εC e−bκ|I|.

20/novembre/2011; 22:18



Problems for §7.3 253

(Hint: Note that ζ(I, βI) =
∑

q≥1

∑∗
X1,...,Xq

∏
(e

−aXj (βXj
)
− 1), where the ∗ means

that the X1, . . . ,Xq are q pairwise distinct intervals with the interval I as union and
which are “chain connected” (i.e. for every pair of intervals there is a chain of pairwise
intersecting intervals among the X1, . . . ,Xq starting with the first interval and ending
with the last). Then apply the method used to obtain (7.2.9) or (7.2.16). If B =∑

0∈X∈Z
e−κδ(X) a sufficient condition will be for instance maxz∈ZBze

εBze−
1
4
κz ≤ C

for b = 1/16, say.)

[7.3.5]:Q7.3.5 In the context of the above problems let I1, . . . , Ip be p disjoint consec-
utive intervals in Λ. The intervals can be specified by the sequence of integers
r1, i1, r2, i2, . . . , rp, ip, rp+1 giving the “lengths” of the “empty” sites (rj) and of the

“occupied sites (ij ≡ |Ij |).3 Denote β−
j , β

+
j the spins located at the initial and final sites

N7.3.2

of Ij and let β+
0 = β, β−

p+1 = β′. Check that the function Zh(β, β
′)can be written as

∑

p,I1,...,Ip
βI1

,...,βIp

( p−1∏

j=1

Z0
rj+1(β

+
j , β

−
j+1) · Z0

ij−1(β
−
j , β

+
j )
)

Z0
r1
(β, β−

1 )Z0
rp+1

(β+
p , β

′)
( p∏

j=1

ζ(Ij , βIj )
∏
ξ,ξ+1∈Ij

Mβξ,βξ+1

Z0
ij−1(β

−
j , β

+
j )

)
,

with the natural interpretation of the extreme cases (e.g. p = 0 corresponds to no sum
over β’s and gives r1 = h and a term equal to Z0

h(β, β
′), etc). (Hint: This is read off the

first expression for Zh(β, β
′) in problem [7.3.4].)

[7.3.6]:Q7.3.6 In the context of the above problems and making use of the result of problem

[7.3.3] check that setting w(β) = e
1
2
a(β)v(β), cf. problem [7.3.3], Zh(β, β

′) is

Zh(β, β
′) = λh−1w(β)w(β′)

∑

p;{β
±
j

}
p+1
j=1

I1,...,Ip

( p∏

j=1

w(β+
j )2w(β−

j )2
)
·

·
( p+1∏

j=1

exp(−e−κ0rj∆(β+
j−1, β

−
j )
)( p∏

j=1

exp(−e−κ0|Ij |∆(β−
j , β

+
j ))
)
·

·
p∏

j=1

ζ(Ij , βIj )
∏
ξ,ξ+1∈Ij

Mβξ,βξ+1

Z0
i1−1(β

−, β+
j )

,

where r1, i1 = |I1|, . . . are the successive lengths of empty and filled lattice points (cf.
problem [7.3.5]). (Hint: This is simply a rewriting of the expression in problem [7.3.5]).

[7.3.7]:Q7.3.7 In the context of the above problems let L be such that e−κ0LD0 < ε. Given
a configuration of successive intervals I1, . . . , Iq in Λ we say that a subsequence of k + 1
consecutive intervals Ix, Ix+1, . . . , Ix+k is L–connected if the distance between consecu-
tive intervals is ≤ L and if it is maximal (given I1, . . . , Iq) with the latter property. Given
such a subsequence we call J the interval between the first point of Ix and the last point
of Ix+k enlarged by adding L/2 points to the right and to the left or (if there are not
enough such points) as many as possible. In other words J is the part of the union of
the intervals Ix+j enlarged to the right and to the left by L/2 which is inside Λ: we say
that Ix, Ix+1, . . . , Ix+k “generate” J . Define

3 One must have r2, . . . , rp > 0 while r1, rp+1 ≥ 0 and ij > 0 unless p = 0, in which case

r1 = h.
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ζ(J) =
∑

q;I1,...,Iq generate J

βI1
,...,βIq

q−1∏

i=1

exp(−e−κ0rj∆(β+
j , β

−j + 1))·

·
q∏

i=1

ζ(Ij , βIj )
∏
ξ,ξ+1∈Ij

Mβξ,βξ+1

Z0
i1−1(β

−, β+
j )

,

and check that for a suitable b1 > 0 one has

|ζ(J)| ≤ eβ1κ|J| εC

1− εCe 1
8
LL

def
= eβ1κ|J|C0ε

if εCe
1
8
LL < 1/2. (Hint: Proceed as in the hint to problem [7.3.4].)

[7.3.8]:Q7.3.8 In the context of the above problems show that if ε is small enough and k is

large enough proposition (7.1.1) can be applied to deduce that (with the notation of the
polymers of Section §7.1

Zh(β, β
′) = λh−1w(β)w(β′) exp

(∑

X

ϕT (X)ζ(X)

)
,

where X is a polymer configuration built with polymers J with activity ζ(J) defined in
problem [7.3.7]. Note that ζ(X) is, therefore, independent of β unless X contains the
first point of Λ and independent of β unless one of the polymers of X contains the last
point of Λ. (Hint: By problem [7.3.7] one has

Zh(β, β
′) = λh−1w(β)w(β′)

∑

s≥0

∑

J1,...,Js
Ji∩Jj=∅

s∏

j=1

ζ(Jj),

and ζ(J) verifies (7.1.16) with b0 = C0, ν0 = e−
1
2
b1κ, κ0 = 1

2
b1κ.)

[7.3.9]:Q7.3.9 Find a proof of the result in problem [7.3.8] simpler than performing the analysis

in problems [7.3.2] through [7.3.8]. (Hint: It should be possible.)

[7.3.10]:Q7.3.10 (Decimation in higher dimension. I )

Given κ0 > 0 and a potential Φ for a system of oriented hard cores (see definition (7.3.2))
such that ‖Φ‖κ,κ0 <∞ for some κ > 0. Let τ, h be two integers larger than the mixing

time of the compatibility matrix T . Let Λ = Q × I where Q ⊂ R
d
is a cube of side L

and I is the interval [0, (τ + h)n + τ ]: we regard the parallelepiped Λ as a “horizontal”
strip consisting of |Q| “vertical” intervals of size (τ + h)n + τ . Divide the space–time
region Λ = Q × I into (n + 1) “horizontal” strips made of |Q| “vertical” intervals of
size τ alternating with n “horizontal” strips made of |Q| vertical intervals of size h.
Call B1, B2, . . . , B|Q|(n+1) and H1, . . . ,H|Q|n the vertical intervals of length τ or h into
which each strip is divided; show that by holding fixed the block spin configurations β

Bj

the decimated energy Udec(β)
def
= log

∑
η
e−UΛ(β,η) can be studied via the technique of

the proof of proposition (7.3.1) (and proposition (7.2.3), corollary (7.2.3)). By choosing
τ, h suitably large (e−κ0τ < e−κ), one finds that Udec(β) is expressed as an interaction

without hard cores between the spins β which has the property that

sup
∑

B1,...,Bq
δ∗(B1,...,Bq)>1

|Φdec
B1,...,Bq

(β
B1
, . . . , β

Bq
)|e 1

2
κδ∗(B1,...,Bq) < 1,
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where δ∗(B1, . . . , Bq) denotes the tree distance of the centers of the sets B1, . . . , Bq with
the vertical components of the distances measured in units of (τ + h). (Hint: Note that
UΛ(β, η) can be written as a sum of β–only dependent terms

∑
i

∑
Xi⊂Bi

ΦXi(βXi
)

plus
∑

j1,...,jq
ΦXj1 ,...,Xjq

(β
Xj1

, . . . , β
Xjq

) plus

∑

i

∑

Xi⊂Hi

ΦXi(ηXi
) +

∗∑

q>1,Hi1
,...,Hiq

Xi⊂Hi

ΦXi1 ,...,Xiq
(η
Xi1

, . . . , η
Xiq

),

where the ∗ reminds that one has Xij ∩ Hij 6= ∅ for all j = 1, . . . , q. The sets Xij
possibly intersect also some of the B’s so that the last expression does depend also on
the β’s. The spins η

H
are “high spins” and their interaction is not translation invariant

(for instance because the β variables have non translation invariant values). Calling their

interaction Ψ we see that its size is such that

∑

q>1,H1,...,Hq

‖ΨH1,...,Hq‖e+
1
2
κδ∗(H1,...,Hq) < 1,

so that we can apply proposition (7.2.3), corollary (7.2.3) and the result of problem
[7.2.10] if κ is large enough.)

[7.3.11]:Q7.3.11 (Decimation in higher dimension. II )

In the context of problem [7.3.10] note that the potential Φdec has no hard core. Fur-
thermore the components with δ∗(B,B′) = 1 (hence q = 2) of the potential consist of a

contribution that can be bounded sup
∑

B1,B2,δ∗(B1,B2)=1
|ΦdecB1,B2

(β
B1
, β
B2

)|e 1
2
κ < 1

plus a component that can be quite large equal to logZh(βB1
, β
B2

) defined in (7.3.9).

The latter is representable as a sum of a nearest neighbor potential which can be made
as small as wished if h is large enough plus a one spin component, as studied following
(7.3.14). Hence we can apply corollary (7.2.3): show that this yields a proof of proposition
(7.3.2).)

Bibliographical note for §7.3
The analysis in this section is a technical extension of the simple problems
proposed in Section §7.2.
The renormalization by decimation method used to study one dimensional
Gibbs states with short range forces, and their analyticity, followed here
has been introduced in [CO81], where a new proof of Dobrushin’s optimal
analyticity result for interactions with polynomial decay has been obtained.

§7.4 Absence of phase transitions: more criteria

Availability of simple criteria for uniqueness of the Gibbs state associated
with a potential is often important. We have so far met several such criteria,
e.g. the general result for one dimensional systems in proposition (5.2.1)
and various criteria in propositions (7.2.1), (7.2.2), (7.2.3) and (7.3.1), and
corollaries (7.2.1) and (7.2.2).
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However there are applications of the theory, even to dynamical systems of
Anosov type, in which the mentioned criteria do not apply because their as-
sumptions are, or appear to be, too restrictive. We shall meet an important
example in problem [10.4.1] and here we mention a simple criterion which
turns out useful in its study.

(7.4.1) Proposition:P7.4.1 (Diameter decay of potential and no phase transi-
tions conditions)
Let Φ be a potential for a spin system without hard core on the d–dimensional
lattice Z

d. Assume that ΦX(σX) can be different from 0 only if X is con-
nected by nearest neighbors and define for κ > 0

‖Φ‖diamκ =
∑

0∈X
‖ΦX‖eκD(X), (7.4.1)e7.4.1

where D(X) = diam(X) is the diameter of X. Given κ > 0 if ‖Φ‖diamκ is
small enough the Gibbs distribution is unique, depends smoothly on Φ and
the correlations of local observables decay exponentially.

Proof: Suppose that the system is confined in a box Λ. Let F,G be two
local observables, FA(σ) = f(σA) and GB(σ) = g(σB), where A,B are two
finite sets in Λ. We can write the correlation µ(FAGB)− µ(FA)µ(GB) as

1

2

∑
σ,τ (f(σA)− f(τA))(g(σB)− g(τB))e

−
∑

X
( ΦX(σX)+ΦX (τX))

∑
σ,τ e

−
∑

X
( ΦX (σ

X
)+ΦX (τ

X
))

, (7.4.2)e7.4.2

where ΦX(σX)
def
= ΦX(σX) −maxσ

X
ΦX(σX) ≤ 0. The numerator can be

expanded “as usual” by writing

e−
∑

X
( ΦX(σ

X
)+ΦX(τ

X
)) =

∏

X

(
ρ(X, σX , τX) + 1

)
, (7.4.3)e7.4.3

where ρ(X, σX , τX)
def
=
(
e−(ΦX(σ

X
)+ΦX (τ

X
)) − 1) and

0 ≤ ρ(X, σX , τX) ≤ e2‖Φ‖diam
κ 2‖Φ‖diamκ e−κD(X). (7.4.4)e7.4.4

By using (7.4.3) we get for the numerator of (7.4.2)

1

2

∑

σ,τ

(f(σA)− f(τA))(g(σB)− g(τB))
∑

n,Y1,...,Yn

n∏

i=1

ρ(Yi, σYi , τYi). (7.4.5)e7.4.5

In the above sum we distinguish the n–ples Y1, . . . , Yn which do not contain
a chain C = (Y ∗

1 , . . . , Y
∗
p ) of sets such that Y ∗

k ∩Y ∗
k+1 6= ∅ for k = 1, . . . , n−1

and Y ∗
1 ∩A 6= ∅, Y ∗

n ∩B 6= ∅ and the others.
The total contribution of the first terms is 0 by their odd symmetry σ←→ τ :
exchanging the configurations σ, τ inside the union of the sets Y which are
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parts of chains Y ∗
1 , . . . , Y

∗
p intersecting A and not B changes the sign of

(7.4.5) (note that such an operation of partial interchange of σ and τ is
only possible in general if there are no hard cores). The contribution of the
other terms is bounded simply by summing over all chains C = (Y ∗

1 , . . . , Y
∗
p )

connecting A and B

4‖FA‖ ‖GB‖
∑

C

2pe2‖Φ‖diam
κ p(‖Φ‖diamκ )p

p∏

i=1

e−κD(Y ∗
i ) Z2

Λ, (7.4.6)e7.4.6

where (7.4.4) has been used together with the remark that the sum over the
other sets Y adds up at most to ZΛ.
Hence, if D(A,B) is the distance between A,B,

∑

C

2pe2‖Φ‖diam
κ p(‖Φ‖diamκ )p

p∏

i=1

e−κD(Y ∗
i ) ≤

≤ e− 1
3κD(A,B)

∑

C

(2e2‖Φ‖diam
κ ‖Φ‖diamκ )p

p∏

i=1

e−
2
3κD(Y ∗

i ). (7.4.7)e7.4.7

The sum over the sets Y which intersect a given set Y ′ of e−
1
3κD(Y ) ,

i.e.
∑
Y ∩Y ′ 6=∅ e

− 1
3κD(Y ), is bounded by D(Y ′)dC0 for some constant C0 (de-

pending only on κ). Therefore, if C1
def
= maxDD

de−
1
3κD,

Sp
def
=

∑

Y ∗
1 ,...,Y

∗
p

p∏

i=1

e−
2
3κD(Y ∗

i ) ≤ C0

∑

Y ∗
1 ,...,Y

∗
p−1

D(Y ∗
p−1)

de−
1
3κD(Y ∗

p−1)·

· e− 1
3κD(Y ∗

p−1)

p−2∏

i=1

e−
2
3κD(Y ∗

i ) ≤ Cp0Cp−1
1 ,

(7.4.8)e7.4.8
and from (7.4.7) we conclude that for some C > 0 one has

|µ(FAGB)− µ(FA)µ(GB)| ≤ C‖FA‖ ‖GB‖ ‖Φ‖diamκ e−
1
3κD(A,B), (7.4.9)e7.4.9

provided ‖Φ‖diamκ is small enough (the factor ZΛ in (7.4.6) is canceled out
by the denominator).
This also shows that the Gibbs distribution is differentiable at Φ because if
µΦ+λΨ,Λ denotes the finite volume Gibbs distribution with potential Φ+λΨ
then, if we chose Ψ ∈ B0,
∣∣∣∣
d

dλ
µΦ+λΨ,Λ(FA)

∣∣∣
λ=0

∣∣∣∣ =
∣∣∣∣∣
∑

X

(µΦ,Λ(FAΨX)− µΦ,Λ(FA)µΦ,Λ(ΨX))

∣∣∣∣∣ ≤

≤ C‖FA‖‖Ψ‖diamκ ‖Φ‖diamκ

∑

X

e−κ
(
D(X)+ 1

3D(A,X)
)
≤ E,

(7.4.10)e7.4.10
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where E is a Λ–independent constant and the sum is finite as Ψ ∈ B0. This
means that the tangent plane to PΛ(Φ) varies continuously with Φ uniformly
in Λ so that the Gibbs state is unique and it also follows that

d

dλ
µΦ+λΨ(FA)

∣∣∣∣
λ=0

=
∑

X

(µ(FAΨX)− µ(FA)µ(ΨX)), (7.4.11)e7.4.11

for ‖Ψ‖diamκ <∞.
Likewise one can express the second derivative (and the higher ones): the
above exponential decay can be used to check that also the second (and
higher) derivatives are uniformly bounded so that µ depends in an infinitely
smooth way on Φ as long as Φ varies keeping ‖Φ‖diamκ small enough, for
a given κ > 0. The check requires dividing the space into regions and
it is somewhat laborious. For instance in the case of the second deriva-
tive the regions to consider are D(A, Y ), D(X,Y ) > R, D(X,Y ) < R and
D(A, Y ) < R for R > 0 large compared to the diameters of X,Y,A. Hence
one first considers the sum over X,Y with diameter not exceeding R and
checks that the result is finite. Then one proceeds to relax the restriction
on the diameters by taking advantage of the exponential decay of ΨX ,ΨY
with the diameters. We omit further details.

Remarks: (1) The analysis requires absence of hard cores. Otherwise
exchanging the configurations σ, τ inside the sets of a chain that intersect
A but not B may lead to incompatible spin configuration thus ruining the
cancellation mechanism.
(2) Uniqueness implies that the tangent plane varies with continuity along
paths in the space of the potentials with the norm (7.4.1) small enough:
hence the Gibbs distribution is differentiable in this region.

An important uniqueness criterion is the following, see [Si93].

(7.4.2) Proposition:P7.4.2 (Dobrushin’s uniqueness criterion)

Let Φ be a potential for a spin system without hard cores in Z
d. If

‖Φ‖1 def=
∑

X∋0

(|X | − 1) ‖ΦX‖ def= α < 1, (7.4.12)e7.4.12

where ‖ΦX‖ = supσ
X
|ΦX(σX)|, then the Gibbs distribution with potential

Φ is unique.

Proof: Let η be a spin configuration and we denote η/i the spin configuration

over the sites of Zd which are different from i. In this way η/iσi will denote
the configuration obtained by replacing ηi with σi. Likewise we define η/X

the configuration η over the sites Z
d/X for any set X , and η/XσX will

denote the configuration obtained from η by replacing the spins of η with
σX in X .
We assume that the sites of Z

d
have been labeled i = 0, 1, 2 . . . in such a

way that the set Qn = ∪ni=0{i} eventually contains any prefixed cube K
centered at the origin; in particular we denote with i = 0 the origin.
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It is easy to compare the conditional probabilities m(σi|η/ijη′j) and
m(σi|η/ijη′j). In fact let D be

D =
∣∣∣
∑

σi

(m(σi|η/ijσ′)−m(σi|η/ijσ′′))f(σi)
∣∣∣ =

=
∣∣∣
∫ 1

0

dt
∑

σ

d

dt
mt(σ)f(σ)

∣∣∣,
(7.4.13)e7.4.13

where mt is the probability distribution

mt(σ) = Z−1
t e

−
∑

X∋i,j

(
ΦX (ση/ijσ

′)+t(ΦX (ση/ijσ
′′)−ΦX (ση/ijσ

′))
)
, (7.4.14)e7.4.14

with Zt being the normalization factor equal to the sum over σ of the
exponential in (7.4.14).

We call d(σ)
def
=
∑
X∋ij(ΦX(ση/ijσ

′′) − ΦX(ση/ijσ
′)) and denote with

〈·〉t the average with the probability mt. Then ‖d‖ ≡ maxσ |d(σ)| ≤
2
∑
X∋i,j ‖ΦX‖

def
= 2ρij ; note that we can define ρii ≡ 0, which is con-

sistent with the definition of d(σ). If ‖f‖ denotes the maximum of |f(σ)|
then one has

D ≤
∫ 1

0

dt(〈f d〉t − 〈f〉t〈d〉t) ≤
∫ 1

0

dt〈f (d− 〈d〉t)〉t ≤

≤ ‖f‖
∫ 1

0

dt〈(d − 〈d〉t)2〉
1
2
t ≤ ‖f‖ ‖d‖ ≤ 2‖f‖ρij.

(7.4.15)e7.4.15

Therefore by the arbitrariness of f one has
∑
σ |m(σ|η/ijσ′) −

m(σ|η/ijσ′′)| ≤ 2ρij . Define

(τjf)(η)
def
=
∑

σ

m(σ|η/j)f(σ), (7.4.16)e7.4.16

and note that the Gibbs distributions µ with potential Φ verify the DLR
equations, i.e. µ(τjf) ≡ µ(f). Of course (τjF )(η) depends only on η/j , as
the spin on the site j is summed over.
Let F be a cylindrical function depending only on the spins in a finite cube
K: then if n is such that Qn ⊃ K one has (τnF )(η) ≡ F (η). To estimate
the dependence of F on the spins with large label we introduce

δi(F ) = max
σ,σ′,η

|F (ση/i)− F (σ′η/i)|, ∆(F ) =

∞∑

i=0

δi(F ), (7.4.17)e7.4.17

and call δi(F ) and ∆(F ) the variation of F at site i and, respectively, the
variation of F . Then one has δi(τiF ) = 0, while, for i 6= j,

δi(τjF ) = max
σ′
i
,σ′′
i
,η
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∣∣∣
∑

σj

(
F (σjη/ijσ

′
i)m(σj |η/ijσ′

i)− F (σjη/ijσ′′
i )m(σj |η/ijσ′′

i )
)∣∣∣ ≤

≤ δi(F ) + max
σ′
i
,σ′′
i
,η

∣∣∣
∑

σj

[F (σjη/ijσ
′
i)] [m(σj |η/ijσ′

i)−m(σj |η/ijσ′′
i )]
∣∣∣ def=

def
= δi(F ) + max

∣∣∣
∑

σj

[G(σj)] [m(σj)]
∣∣∣, (7.4.18)e7.4.18

where m and G are the two functions in square brackets in the third line,
and

∑
σm(σ) = 0, while by (7.4.15) one has

∑
σ |m(σ)| ≤ 2ρij . On the

other hand
∑
σ G(σ)m(σ) ≡ ∑σ(G(σ) − a)m(σ) for all a so that choosing

a to be half way between the maximum and the minimum of G(σ) we see
that |∑σj

G(σj)m(σj)| ≤ δGρij , where δG is the width of the range of the

function G; since G varies because the spin σj varies one has δG ≤ δj(F )
and this implies

δi(τjF ) ≤ δi(F ) + ρijδj(F ). (7.4.19)e7.4.19

Therefore noting that (τjF )(η) is independent of ηj and setting

α
def
= supj

∑
i6=j ρij = ‖Φ‖1 we see that one has

∆(τ0 . . . τnF ) ≤
∞∑

i=1

δi(τ1 . . . τnF ) + α δ0(τ1 . . . τnF ) ≤

≤
∞∑

i=2

δi(τ2 . . . τnF ) +

∞∑

i=2

ρi1δ1(τ2 . . . τnF )+

+ α δ0(τ2 . . . τnF ) + αρ01δ1(τ2 . . . τnF ) ≤

≤
∞∑

i=2

δi(τ2 . . . τnF ) + α
1∑

i=0

δi(τ2 . . . τnF ) ≤

≤
∞∑

i=n+1

δi(F ) + α

n∑

i=0

δi(F )−−−−→n→∞ α∆(F ).

(7.4.20)e7.4.20

The limit as n → ∞ of τ0τ1 . . . τnF is defined for all functions F
which are cylindrical (note that if n is large τnF ≡ F ), hence, by den-

sity, for all continuous functions on {1, . . . , n}Zd : we shall denote it by

TF
def
= limn→∞ τ0τ1 . . . τnF . Then (7.4.20) proves that the variation of

TF is smaller by a factor of α = ‖Φ‖1 < 1 than the variation of F :
∆(TF ) ≤ α∆(F ) and ∆(T kF ) ≤ α k∆(F )−−−→

k→∞ 0. Hence T kF tends
to a constant which is µ(F ) if µ is a Gibbs distribution with potential Φ
(i.e. µ(τjF ) ≡ µ(F ), so that µ(T kF ) ≡ µ(F ) for all k). Hence the value
of µ(F ) is uniquely determined by the conditional probabilities associated
with the potential Φ, i.e. the Gibbs state is unique.

Remark: Convexity of the function P (Φ) and uniqueness of its tangent
plane imply that the tangent plane varies with continuity along paths in
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the region B1 of the potentials on which
∑

X∋0(|X | − 1) ‖ΦX‖ < 1: hence
the Gibbs distribution is differentiable in this region. In fact in [Gr81] it is
shown that, very remarkably, under the same conditions the pressure P (Φ)
is C2 (twice continuously differentiable for Φ ∈ B1) and one has an explicit
bound on the size of its second derivative. And under the same condition
‖Φ‖1 < 1 the further assumption that

∑
X∋0 |X |k−1 ‖ΦX‖ < ∞ implies

that P (Φ) is of class Ck in B1, [Pr83].
A review of many other criteria of uniqueness (and smoothness) that are
known can be found, together with the related proofs and many comments,
in [Si93].

Bibliographical note to §7.4
The above is only one more example of uniqueness criteria. A further
important uniqueness criterion (complete analyticity criterion and method
of cleanings) can be found in [DS87]; we do not discuss it here, in spite of
its originality and importance in Statistical Mechanics, because we shall not
have occasion to employ it in our dynamical systems studies. It is a criterion
which is closely related to the cluster expansion methods discussed so far, cf.
[Ol88]. On the probabilistic side the method of cleanings of [DS87] is related
to the method of shift of conditionings introduced in discussing Statistical
Mechanics aspects of field theory in [BCGNOPS78], [Ga80], [BGN80]. The
above presentation follows closely [Si93].

§7.5 Phase transitions

The cases in which G(Φ) consists of more than one point are very inter-
esting: such cases do not seem to arise in the theory of smooth dynamical
systems because smooth dynamical systems generate one-dimensional Gibbs
distributions with potential Φ which decays exponentially, as discussed in
the previous sections. The situation is somewhat different when one consid-
ers systems which are extended, like lattices of coupled maps: in this case
it is far less clear that the symbolic dynamics associated with such systems
does not correspond to a spin system with a potential which admits several
Gibbs distributions.

An example of an extended dynamical system that admits a symbolic dy-
namics with more that one Gibbs state was given in [GMK00]. The sys-
tem consists of a 2-dimensional lattice of coupled expansive maps on [0, 1],
like those studied in section §5.4. The key point is to use a coupling that
keeps invariant the Markov partition and allows an easy computation of the
corresponding potential Φ. In this way it is possible to build explicitly a
dynamical system whose potential Φ is among the classical examples known
to admit more than one Gibbs state. The problem with such examples with
respect to the theory presented in this book is that the resulting dynamical
systems are quite singular, indeed not even continuous. No example of such
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a phenomenon has been found for smooth dynamical system.

In this section we want to discuss some cases of potentials for one-
dimensional lattice spin systems which admit several Gibbs distributions. It
is in fact of interest to note that, in one-dimensional systems, if one considers
potentials that decay slowly at infinite distance then one gets potentials Φ
that admit several Gibbs distributions. Such potentials can, perhaps, arise
in systems which, although not hyperbolic, still admit a symbolic dynamic
description: one typically thinks to maps with a finite number of fixed or
periodic points of marginal stability, i.e. with a Lyapunov coefficient which
has modulus 1 (recall that the modulus of derivative of the map enters into
the description of the SRB distributions and it logarithm provides an esti-
mate of the decay of the potential in the symbolic dynamics description, cf.
Section §5.4), and this makes them interesting in dynamics.

To find such a Φ it is sufficient, by the analysis of Section §6.1 (cf. propo-
sition (6.1.2) and the remark following it) to find points Φ ∈ B, where B
is the space of the potentials on {0, . . . , n}Z, in which the tangent plane to
the graph of P is not unique, cf. definition (5.1.1).

Since P is convex, cf. proposition (6.1.1), it is clear that a way to find such
points is to consider lines, say straight lines, h→ Φ(h), h ∈ R, in B and to
find a value h0 of h in which the function h→ P (Φ(h)) is not differentiable:
in such a point Φ(h0) the plane tangent to the graph of P will not be unique
and hence there will be at least two Gibbs states, cf. Section §6.1.
A second method is to find a potential Φ ∈ B that admits a Gibbs state
that is not ergodic: it is clear from the ergodic decomposition theorem for
Gibbs states (cf. corollary (6.1.2)) that in such cases G(Φ) contains at least
two points or, as one says in Physics, two pure phases.

One of the interesting problems is studying Ge(Φ), as its elements have the
physical interpretation of pure phases, and characterizing in some way its
elements. This kind of problem is called the phase transitions problem for
Gibbs states.

The reason of the name “transition” lies in the fact that the Gibbs states
are studied, usually, as Φ varies on a one parameter curve h → Φ(h) or
on a two parameters surface (h, β) → Φ(h, β) (which are often just a line
or, respectively, a plane in B). In the interesting situations for Physics
the phase rule holds: for instance in the plane (h, β) the values of h and
β to which there corresponds a unique Gibbs state are simply all points
except those lying on certain regular curves where Ge(Φ) consists of two or
more elements. Moving along an arbitrary curve transversal to such curves
(coexistence curves) one finds a unique Gibbs state except when one crosses
one of the coexistence curves. The properties of the Gibbs states are, or
may be, very different to the right and to the left of such transition points
(for example

∫
σ0dµ = µ(σ0) might have different values on the two sides

of these lines).

At the transition point one has coexistence of states with different qual-
itative properties but which are simultaneously Gibbs states for the same
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potential.1N7.5.1

The problem of the phase transitions (or that of their absence) is rather
complex and largely open. A key result (Dyson, Lee–Yang, Ruelle) is the
following one.

(7.5.1) Proposition:P7.5.1 (Phase transitions in one dimension)

Let ε ∈ (0, 1), β > 0, h ∈ R and consider the potential for {0, 1}Z defined
by ΦX = 0 if |X | ≥ 3 and

Φ{i}(σ) = (2σ − 1)h , Φ{i,j}(σ, σ
′) = −β (2σ−1)(2σ′−1)

|i−j|1+ε , i 6= j, (7.5.1)e7.5.1

(i) If h 6= 0, Ge(Φ) contains a unique point.
(ii) If h = 0 and β is large enough Ge(Φ) contains at least two points.

Remark: The condition ε > 0 is required to apply proposition (6.1.1)
(i.e. so that the potential verifies (5.1.5). The condition ε < 1 is neces-
sary because if ε > 1 the uniqueness result of proposition (5.2.1) applies
excluding phase transitions.

Proof: We shall not discuss the proof of item (i) because it concerns the
problem of the absence of phase transitions: nevertheless the proof is very
interesting and it is based on a celebrated theorem of algebra due to Lee–
Yang, [LY52], later improved and extended by Asano, [As70] and by Ruelle,
[Ru71].
Part (ii) ([Dy69]) will be treated in detail. Let h = 0 and let µ a Gibbs
distribution for Φ obtained as weak limit of some sequence of approximate
probability distributions. The sequence will be built as follows.
Let ΛN = {−N, . . . , N}, let σ ∈ {0, 1}ΛN and let (0σ 0) ∈ {0, 1}Z be the
sequence obtained by continuing σ with 0 outside ΛN (i.e. (0 σ 0)i = σi for
i ∈ ΛN and (0σ 0)i = 0 for i /∈ ΛN ). Then we can repeat the argument used
in the proof of proposition (5.1.1) (cf. also problems [5.1.10] and [5.1.11]).
Defining the finite volume Gibbs state with 0 boundary conditions as the
distribution which attributes to the configuration 0σ 0 the probability 2

N7.5.2

µ̃N (σ) =
e−U

Φ
ΛN

(σ)

∑
σ′∈{0,1}ΛN e

−UΦ
ΛN

(σ′)
σ ∈ {0, 1}ΛN , (7.5.2)e7.5.2

we see that the limit for N → ∞ of (7.5.2) is a Gibbs state µ ∈ G(Φ),
provided it exists and is invariant under translation; here UΦ

ΛN
is given, (see

(7.5.1)), by

UΦ
ΛN (σ) = −β

∑

i,j∈ΛN
i6=j

1

|i− j|1+ε (2σi − 1)(2σj − 1). (7.5.3)e7.5.3

1 This phenomenon is connected with, but it should be considered different from, the
phenomenon of the possibility of coexistence of a gas with its liquid or its crystal like
vapor in presence of water. The phases that we consider here correspond, in the physical
interpretation of Gibbs states, to pure vapor or pure liquid (or pure crystal). The
states of physical coexistence usually correspond, instead, to Gibbs states which are not
invariant under translation.

2 We use the notations for UΦ introduced in (5.1.11) in definition (5.1.3).
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It is, however, necessary to show preliminarily the existence of the limit as
N →∞ of the µ̃N and its translation invariance. To show the existence of
the limit of (7.5.2) it is convenient to set

Si = (2σi − 1) if σi = 0, 1,

S∅ = 1 , SX =
∏

i∈X
Si if X 6= ∅, X ⊂ Z, |X | <∞, (7.5.4)e7.5.4

and note that the variables Si, SX assume the values +1 and −1. The
functions σ → SX on {0, 1}Z form a set that spans a linear manifold dense
in the space C({0, 1}Z) of the continuous functions on Z.
To see that the limit µ of the sequence of distributions in (7.5.2) exists (in
the sense that µN (f)−−−−→

N→∞ µ(f) for all f ∈ C({0, 1}Z),3 it will suffice to
N7.5.3

check, for all X ⊂ Z, existence of the limit

〈SX〉 = lim
N→∞

〈SX〉µ̃N = lim
N→∞

∫
µ̃N (dσ)SX = lim

N→∞
µ̃N (SX) (7.5.5)e7.5.5

(with obvious implicit definitions of the symbols). For this purpose note
that

µ̃N (SX) =

∑
σ∈{0,1}ΛN SXe

β
∑

i,j∈ΛN , i6=j
|i−j|−1−εSiSj

∑
σ∈{0,1}ΛN e

β
∑

i,j∈ΛN , i6=j
|i−j|−1−εSiSj

. (7.5.6)e7.5.6

Therefore (7.5.6) is a particular case of an expression of the type (if Λ ⊂ Z,
|Λ| < +∞)

〈SX〉J =

∑
S∈{−1,1}Λ SX e

∑
Y⊂Λ

J(Y )SY

∑
S∈{−1,1}Λ e

∑
Y⊂Λ

J(Y )SY
, (7.5.7)e7.5.7

with J(X) ≥ 0: equation (7.5.6) is obtained, indeed, from (7.5.7) by setting
Λ = ΛN ′ = {−N ′, . . . , N ′}, with N ′ arbitrarily chosen such that N ′ ≥ N ,
J(Y ) = 0 if |Y | ≥ 3, J(i) = 0, J(i, j) = β|i− j|−1−ε if i 6= j and i, j ∈ ΛN ,
while J(i, j) = 0 if i or j ∈ ΛN ′/ΛN and if i = j ∈ ΛN .
If in (7.5.6) we change the value of N , say from N to N ′ ≥ N , this is
equivalent to increasing in (7.5.7) some values of J(i, j) in the following way:
one interprets them as 0 for the pairs i, j which are not both in [−N,N ] and
then one raises their values from 0 to β|i−j|−1−ε. Therefore the existence of
the limit (7.5.5) will be guaranteed if we shall show that 〈SX〉J is monotonic
in J(Y ), for all Y , under the condition that all the values J(Y ) are ≥ 0.
This means, by an easy check, that we must verify the following inequality:
if for every Y one has J(Y ) ≥ 0 then for every X,Y

∂〈SX〉J
∂J(Y )

= 〈SXSY 〉J − 〈SX〉J〈SY 〉J ≥ 0. (7.5.8)e7.5.8

3 i.e. , more mathematically, in the weak C({0, 1}Z)–topology on M0({0, 1}Z) thought
of as the unit ball of the space of probability distributions on {0, 1}Z, dual space of
C({0, 1}Z).
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This is a very well known inequality (second Griffiths inequality), the first
of a family of astute inequalities that keeps proliferating. Its proof is sur-
prisingly simple, in the version due to Ginibre (the original proof was much
more involved), [Gi70]. Note, for this purpose, that

〈SX0SY0〉J − 〈SX0〉J 〈SY0〉J =

∑
S∈{−1,1}Λ SX0SY0e

∑
Y⊂Λ

J(Y )SY

∑
S∈{−1,1}Λ e

∑
Y⊂Λ

J(Y )SY
−

−
∑
S∈{−1,1}Λ SX0e

∑
Y⊂Λ

J(Y )SY

∑
S∈{−1,1}Λ e

∑
Y⊂Λ

J(Y )SY
·
∑

S′∈{−1,1}Λ S′
Y0
e
∑

Y⊂Λ
J(Y )S′

Y

∑
S′∈{−1,1}Λ e

∑
Y⊂Λ

J(Y )S′
Y

=

=

∑
S,S′∈{−1,1}Λ(SX0SY0 − SX0S

′
Y0
)e
∑

Y⊂Λ
J(Y )(SY +S′

Y )

(∑
S∈{−1,1}Λ e

∑
Y⊂Λ

J(Y )SY
)2 . (7.5.9)e7.5.9

The denominator of the r.h.s. of (7.5.9) is positive. The numerator can be
conveniently transformed by setting S′

i = SiTi, with Ti = ±1, and by trans-
forming the sum on S, S′ ∈ {−1, 1}Λ into the sum over S, T ∈ {−1, 1}Λ;
after the latter change the numerator of the r.h.s. of (7.5.9) becomes

∑

S,T∈{−1,1}Λ

(1− TY0)SX0SY0e
∑

Y⊂Λ
J(Y )(1+TY )SY =

=
∑

T∈{−1,1}Λ

(1− TY0)
( ∑

S∈{−1,1}Λ

SX0SY0e
∑

Y⊂Λ
J(Y )(1+TY )SY

)
,

(7.5.10)
e7.5.10

and since 1−TY0 ≥ 0 it will suffice to check, in order to obtain (7.5.8), that
the sum in parentheses in (7.5.10) is not negative. One has

∑

S∈{−1,1}Λ

SX0SY0 exp
( ∑

Y⊂Λ

J(Y )(1 + TY )SY

)
=

=
∞∑

k=0

1

k!

∑

S∈{−1,1}Λ

( ∑

Y⊂Λ

J(Y )(1 + TY )SY )
)k
SX0SY0 = (7.5.11)e7.5.11

=

∞∑

k=0

1

k!

∑

Y1,...,Yk⊂Λ

( k∏

i=1

(
J(Yi)(1 + TYi)

))( ∑

S∈{−1,1}Λ

SY1 . . . SYkSX0SY0

)
,

and, since J(Yi)(1 + TYi) ≥ 0, it suffices to show that the term in the last
parentheses is ≥ 0. A moment of reflection makes it manifest that such a
term has value either 2|Λ| or 0: hence (7.5.8) is proved.
Together with the (7.5.8) we obtain also, as already noted, the existence
of the limit in (7.5.5) for all X , and hence such a limit defines a probabil-
ity distribution µ ∈ G0(Φ). The same inequality (7.5.8) shows that µ is
invariant under translation. Consider indeed the set X and its translated
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τX ; by denoting here with 〈·〉Λ the average with respect to the probability
distribution (7.5.2), with Λ replacing ΛN , one has

〈SX〉ΛN ≡ 〈SX〉{−N,...,N} ≤ 〈SX〉{−N,...,N+2} ≡
≡ 〈SτX〉{−N−1,...,N+1} ≡ 〈SτX〉ΛN+1 ≤ (7.5.12)e7.5.12

≤ 〈SτX〉{−N−3,...,N+1} ≡ 〈SX〉{−N−2,...,N+2} ≡ 〈SX〉ΛN+2 ,

which implies, in the limit N → ∞, that µ(SX) = µ(SτX), for all X , and
therefore the invariance of µ.
It is also obvious, for symmetry reasons, that (7.5.6) implies

µ(Si) = µ̃N (Si) ≡ 〈Si〉ΛN = 0. (7.5.13)e7.5.13

Were µ ergodic we should have

µ
((
M−1

M−1∑

j=0

Sj
)2)−−−−→

M→∞ 0, (7.5.14)e7.5.14

because, by Birkhoff theorem, M−1
∑M−1
j=0 Sj would converge µ–almost ev-

erywhere to µ(Si) = 0 (staying uniformly bounded by 1).
Hence we shall proceed to show that the limit (7.5.14) is positive if β is
large enough. This will complete the proof of (ii) by the comment in the
sixth paragraph at the beginning of this section (it will imply, indeed, that
µ is not ergodic).
By the remarked monotonicity of 〈SX〉ΛN with respect to N it will suffice
to show that 4

N7.5.3a

µ̃M
((
M−1

M∑

j=1

Sj
)2) ≥ m2 > 0 (7.5.15)e7.5.15

for a divergent sequence of choices of M . Indeed

µ
((
M−1

M∑

j=1

Sj
)2) ≥ µ̃M

((
M−1

M∑

j=1

Sj
)2)

, (7.5.16)e7.5.16

as we see by developing the squares into monomials and by applying (7.5.8)
to each of them (i.e. µ(SX) ≥ µ̃M (SX) for all M and for all X ⊂ Z).
We shall choose the sequence M = 2N , N = 0, 1, . . . and set

f(N) = µ̃2N
((
2−N

2N∑

j=1

Sj
)2)

. (7.5.17)e7.5.17

4 Just for convenience we shall consider the sum in (7.5.14) running from 1 to M instead
that from 0 to M−1 (see also comments about Fig.(7.5.1) below): of course such a shift
of the summation label it is quite irrelevant.
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It is not easy to compute f(N): however we can estimate such a quantity
by still using (7.5.8) and thinking of µ̃2N (SX) as a sum of the type (7.5.7)
with the choice of the constant J indicated there. The idea is to set equal
to zero or to decrease some of the nonzero constants J in order to obtain
a controllable expression. Obviously it is necessary to make this without
making too much worse the bound of f(N). The choice of Dyson is to
define a lower bound of β|i − j|−1−ε via a “hierarchical” procedure.

For convenience in the following we shall imagine “translating” the set
ΛM in such a way that the first point is at 1. Divide the points of [1, 2N ]
into 2N−p blocks of 2p consecutive points each, for p = 0, 1, . . . , N ; see
Fig.(7.5.1).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Fig.(7.5.1)F7.5.1 Hierarchical grouping of the sites in [1, . . . , 2N ].

Such blocks (p–blocks) will be denoted with the symbol (p, k); the “k–th
block between the p–blocks”, p = 0, 1, . . . , N , k = 1, 2, . . . , 2N−p will be

(p, k) = {i | (k − 1)2p < i ≤ k2p}. (7.5.18)e7.5.18

Note that

β | i− j |−1−ε > β 2−p(i,j)(1+ε), (7.5.19)e7.5.19

if p(i, j) = {minimum value of p for which i and j are found in the same
p–block} (and it is clear that p(i, j) > log2 | i− j |).
Set, in (7.5.7), J(Y ) = 0 if |Y | ≥ 3 or |Y | = 1 and

J(i, j) = β2−p(i,j)(1+ε) if 0 < i, j ≤ 2N ,

J(i, j) = 0 otherwise,
(7.5.20)e7.5.20

We see that β | i − j |−1−ε > J(i, j) for all i, j ∈ {1, . . . , 2N}, with i 6= j.
Furthermore, for N ≥ 1,

∑

i,j∈{1,...,2N}
J(i, j)SiSj = β

N−1∑

p=0

2N−p−1∑

r=1

2−(p+1)(1+ε)S(p, 2r − 1)S(p, 2r)

if S(p, k) =

k2p∑

j=1+(k−1)2p

Sj (7.5.21)e7.5.21
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and S(p, k) is the sum of the variables of the (p, k)–block. Set then

W (S) = exp
(
β

N−1∑

p=0

2N−p−1∑

r=1

2−(p+1)(1+ε)S(p, 2r − 1)S(p, 2r)
)

(7.5.22)e7.5.22

and

f(N) =

∑
S∈{−1,1}2N W (S)

(∑2N

j=1 2
−NSj

)2
∑

S∈{−1,1}2N W (S)
. (7.5.23)e7.5.23

By (7.5.8) and the remark following (7.5.20), we get

f(N) ≥ f(N) for allN ≥ 1. (7.5.24)e7.5.24

Then (7.5.23) can be cast into a recursive form apt for a bound.

Let us call R the random variable R = 2−N
∑2N

j=1 Sj , distributed according
to the distribution induced by that of the variables S,

P (S) =
e
β
∑N−1

p=0

∑2N−p−1

r=1
2−(p+1)(1+ε)S(p,2r−1)S(p,2r)

∑
S′∈{−1,1}2N e

∑N−1

p=0

∑2N−p−1

r=1
2−(p+1)(1+ε)S′(p,2r−1)S(p,2r)

=
W (S)∑

S′∈{−1,1}2N W (S′)
, (7.5.25)e7.5.25

and let πN (R)dR be the distribution of the variable R (with a symbolic
notation because πN (R)dR is a sum of Dirac measures).
It is immediate, from the structure of (7.5.25), that there is a simple rela-
tion between πN and πN−1. In fact, for N ≥ 1,

πN (R) =CN

∫
δ
(R1 +R2

2
−R

)
dR1dR2·

· e β4 2N(1−ε)R1R2πN−1(R1)πN−1(R2),

(7.5.26)e7.5.26

where CN is a normalization constant (i.e. it is the inverse of the integral
over R of the remaining part of the r.h.s. of (7.5.26)). One has

f(N) =

∫
R2πN (R)dR, f(0) = 1,

π0(R) = 2−1(δ(R− 1) + δ(R+ 1)),

(7.5.27)e7.5.27

and therefore

f(N) = CN

∫ (R1 +R2

2

)2
e
β
4 2N(1−ε)R1R2πN−1(R1)πN−1(R2)dR1dR2 =

=
1

2
CN

∫
R2

1e
β
4 2N(1−ε)R1R2πN−1(R1)πN−1(R2)dR1dR2+ (7.5.28)e7.5.28

+
1

2
CN

∫
R1R2e

β
4 2N(1−ε)R1R2πN−1(R1)πN−1(R2)dR1dR2.
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The first of the last two integrals is
∑

S P (S)S(N−1, 1)2, which, by (7.5.8),

again, is bounded below by f(N − 1) (i.e. by the value that it takes setting
β = 0 in the exponential that appears explicitly in (7.5.28)). Hence

f(N) >
1

2
f(N − 1)+ (7.5.29)e7.5.29

+
1

2

∫
R1R2

[
e
β
4 2N(1−ε)R1R2

]
πN−1(R1)πN−1(R2)dR1dR2∫ [

e
β
4 2N(1−ε)R1R2

]
πN−1(R1)πN−1(R2)dR1dR2

.

For a lower bound on the second term we shall think of x = R1R2 as a
random variable with the distribution induced by the distribution of R1 and
R2 defined by πN−1(R1)πN−1(R2). Then the ratio that appears in (7.5.8)
can be written as

ϕ(a) =

∫
P (x)xeaxdx∫
P (x)eaxdx

with a =
β

4
2N(1−ε), (7.5.30)e7.5.30

if P (x) = distribution of x =
∫
πN−1(R1)πN−1(R2)δ(R1R2 − x)dR1dR2.

Remarking that P (x) = P (−x), i.e. that the distribution P is symmetric,
we can apply a simple inequality (Dyson) to give a lower bound to (7.5.30):

if x̂ =
( ∫

P (x)x2dx
)1/2

one has

ϕ(a) ≥ x̂ tanh(ax̂)
def
= ψ(a), (7.5.31)e7.5.31

valid if P (x) = P (−x) (cf. problem [7.5.1] at the end of this section).
Then (7.5.31) can be applied to (7.5.29) to deduce

f(N) >
1

2
f(N − 1) +

1

2
x̂ tanh(ax̂), (7.5.32)e7.5.32

and, by remarking that x̂2 =
∫
(R1R2)

2πN−1(R1)πN−1(R2)dR1dR2 =
f(N − 1)2, we get

f(N) >
1

2
f(N − 1) +

1

2
f(N − 1) tanh(af(N − 1)) =

= f(N − 1)
(
1 + exp

[
− β

2
2N(1−ε)f(N − 1)

])−1

.

(7.5.33)e7.5.33

Suppose inductively that f(k) ≥ 1
4

(
1 + 1

2+k

)
for k = 0, . . . , N − 1. The

hypothesis, true for k = 0 (f(0) = 1), gives, combined with (7.5.33),

f(N) ≥ 1

4

(
1 +

1

1 +N

)(
1 + e

[
− β

2 2N(1−ε) 1
4

(
1+ 1

1+N

)])−1

=

=
1

4

(
1 +

1

1 +N

)(
1 + e

[
− β

8 2N(1−ε) N+2
N+1

])−1

≥

≥ 1

4

(
1 +

1

2 +N

)
(7.5.34)e7.5.34
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for all N ≥ 1, provided β is large enough. Hence if β is large enough one
has

f(N) ≥ 1/4, (7.5.35)e7.5.35

which concludes the proof.

Remarks: (1) The requirement that ε > 0 comes from the requirement
that the potential be summable which is necessary in order that the Gibbs
state be defined and enjoys the properties that we expect on the basis of
the general theory. The requirement that ε < 1 is fundamental: as we have
seen the proof is essentially reduced to the theory of the recursive relation

π′(R) =

∫
exp[βbNR

′(2R−R′)]π(R′)π(2R −R′)dR′
∫
exp[βbNR′(2R′′ −R′)]π(R′)(2R′′ −R′)dR′dR′′

def
=

def
= (KNπ)(R),

(7.5.36)e7.5.36

or, better, to some aspects of it. In the case ε < 1, bN = 1
42

+N(1−ε)−−−−→
N→∞ +

∞ very rapidly, while bN −−−−→N→∞ 0 if ε > 1.
(2) The cases bN = 0 and bN = +∞ are extreme cases. In the first case
the relation that links π to π′ links the distribution of the average of two
equally distributed random variables to that of the individual variables

π′(R) =
∫
π(R1)π(R2)δ

(R1 +R2

2
−R

)
dR1dR2, (7.5.37)e7.5.37

while in the second case the relation becomes rather degenerate: for example
every π of the form

π(R) =
1

2
(δ(R +m) + δ(R−m)) (7.5.38)e7.5.38

is transformed into itself by the recurrence relation.
If β is large and if bN → ∞ we can think that we are very close to the
case bN = +∞ and that the distribution KNKN−1 . . .K1π0 conserves the
initial structure that presents two maxima in −1 and 1 and converges to a
distribution π with some m ∼= 1.
If instead bN → 0, for all β > 0 and for N large enough the recurrence
relation for KN should not differ substantially from (7.5.37). This case
corresponds to the study of the distribution of the average of 2N equally
distributed independent variables which converges, by the “0–1 law”, to 0
if such variables are symmetrically distributed: hence we should have the
trivial result that KNKN−1 . . .K1π0−−−−→N→∞ δ. The connection between the
above remarks and the preceding proof should be clear and motivates intu-
itively the several steps of the proof.
(3) The theory of the recurrence relations of the type (7.5.36) is another
interesting chapter of the theory of Gibbs states and it appears as a natural
generalization of the classical problems on the distributions of sums or of
linear combinations of independent random variables. As we already see
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from the content of this section such theory is, perhaps surprisingly, rich of
results and interesting phenomena. The modern approach to the study of
critical phenomena is based on developments that followed the analysis by
Wilson of the properties of “hierarchical” relations like (7.5.36) which came
out remarkably at about the same time as Dyson’s work illustrated here,
[Wi70]. For a review see [Wi83], [Ga85], and [Ga99].

Problems for §7.5

[7.5.1]:Q7.5.1 Consider the functions ϕ(a) and ψ(a), a ≥ 0, introduced in (7.5.30) and (7.5.31).

If 〈·〉 denotes the average value with respect to P note that

ϕ(a) =
〈x sinh ax〉
〈cosh ax〉 ,

∂ϕ

∂a
(a) =

〈x2 cosh ax〉
〈cosh ax〉 − ϕ

2(a),

and, furthermore,

〈x2 cosh ax〉
〈cosh ax〉 − 〈x2〉 = 〈x

2 cosh ax〉 − 〈x2〉〈cosh ax〉
〈cosh ax〉 =

= 〈cosh ax〉−1

∫
P (x)P (y)(x2 cosh ax− x2 cosh ay)dxdy =

= 〈cosh ax〉−1

∫
P (x)P (y)x2(cosh ax− cosh ay)dxdy =

=
1

2
〈cosh ax〉−1

∫
P (x)P (y)(x2 − y2)(cosh ax− cosh ay)dxdy ≥ 0.

Hence ∂ϕ(a)/∂a ≥ 〈x2〉 − ϕ2(a). Show that ψ is instead a solution of ∂ψ
∂a

= 〈x2〉 − ψ2,

and that from ϕ(0) = ψ(0) = 0 it follows ϕ− ψ ≥ 0, for all a ≥ 0.

[7.5.2]:Q7.5.2 (Hierarchical model)

Give a definition of the measure formally defined on R
Z
+

by

const

(
e
β
∑∞

p=1
2−αp

∑∞

k=0
S(p,k)2

) ∏

i∈Z+

π(Sj)dSj = µ(dS),

where π(S)dS is a measure with compact support and 1 < α is an exponent measuring
the strength of the interaction at large distances. (Hint: Proceed as in the construction
of the Gibbs states by realizing µ as limit point of a sequence:

µ̃N (dS) = const

(
e
β
∑N

p=1
2−αp

∑2N−p

k=0
(S(p,k))2

) 2N∏
i=1

π(Sj)dSj
∏

j>2N

of finite volume distributions. Compute the conditional probability µ(S1 . . . S2N |S2N+1,

. . .) and define G(α, β, µ) as the set of the measures on R
Z
+

that have these same condi-
tional probabilities).

[7.5.3]:Q7.5.3 (Renormalization in the hierarchical model)

Let µ ∈ G(α, β, π) (cf. preceding problem), ρ ∈ (0, 1) and set

S′
j =

S1,j

2ρ/2
=
S2j + S2j−1

2ρ/2
.
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We define the transformation Kρ mapping a distribution µ on S into the distribution µ′

of the new variables S′ above: µ′ = Kρµ. Show that the distribution of the variables
S′, which can be thought of as a probability distribution on R, is the function π′ ∈
G(α, β2ρ−α, π′), where

π′(S) = const eβ2
α−ρS2

∫
π(S1)π(S2)δ

(
S1 + S2

2ρ/2
− S
)
dS1dS2.

The semigroup of transformations given by the iterates of Kρ is an example of what is
called a renormalization group.

[7.5.4]:Q7.5.4 (Triviality of fixed points for the renormalization map in hierarchical models)
Making use of the central limit theorem show that if α > 2 and ρ = 1 the limit:
limn→∞Kn

1 µ = µ exists in a suitable (and natural) weak sense and it is Gaussian:

µ(dS) =
∏∞
j=1

e
−S2

j
/2C

√
2πC

dSj , where C > 0 is a suitable constant.

[7.5.5]:Q7.5.5 Develop the analogues of problems [7.5.2], [7.5.3] and [7.5.4] for

const

(
e
21−αβ

∑∞

p=1
2−αp

∑∞

k=1
S(p,2k−1)S(p,k)

) ∏
j∈Z+

π(Sj)dSj ,

where π is a smooth rapidly decreasing even density distribution on R.

[7.5.6]:Q7.5.6 Call G′(α, β, π̃) the set of the measures constructed as in problem [7.5.1] starting

from the formal expression of problem [7.5.5] show that given α, β > 0 there exists π̃

for which G′(α, β, π̃) = G(α, β, π) (Hint: Compare the conditional probabilities of the
elements of G′ and of G).

Bibliographical note to §7.5
Modern phase transitions theory in systems with dimension d ≥ 2 orig-
inated with the works of Peierls, [Pe36], van der Waerden, [Wa41] and
Onsager, [On44], on the Ising model (with nearest neighbour potential:

J(2σ− 1)(2σ′− 1), which is the simplest Gibbs process on {0, 1}Z2). In the
latter work the pressure P (J) is computed in terms of elementary functions
and their quadratures. Another contemporary work (by van der Waerden,
[VW41]), went unnoticed although it gave a proof of the existence of phase
transitions in the same model considered by Onsager. Phase transitions the-
ory in one-dimensional systems began with a negative theorem by Van Hove,
[VH50]: the theorem was later substantially extended by Ruelle, [Ru67], to
cover the “most general ” possible case in which we could reasonably expect
to show absence of phase transitions by mathematically showing the validity
of a famous heuristic argument of Landau and Lifshitz in the last page of
[LL67].
Violating Van Hove–Ruelle condition, (5.2.1), on absence of phase transi-
tions makes it possible to obtain examples of potentials for one dimensional
systems with phase transitions. These results are in a series of papers by
Dyson; the third of them is particularly simple and readable, and it can be
useful as a first reading, see [Dy69]; the analysis in Section §7.5 is based on
it.

20/novembre/2011; 22:18



Problems for §7.5 273

An essential instrument in the phase transitions theory are the Griffiths
inequalities. The very simple proof described above is due to Ginibre, [Gi70]:
the previous proofs were much more involved as one can realize by looking,
for instance, to the proof in [Ru69]. Theory of inequalities between average
values with respect to Gibbs distribution has had, after the works of Griffiths
and Ginibre, a tumultuous development. See as an introduction [FKGC71],
[Ho74], [Le74]. Another very interesting type of result related to the phase
transitions theory (a result that we do not use here but that would have
been necessary if we discussed the proof of item (i) of proposition (7.3.1)) is
the Lee-Yang theorem and its generalizations due to Asano and Ruelle. It is
a theorem of algebra which is quite surprising: in it one determines the locus
of the zeroes of a certain class of polynomials of interest in the theory of
Gibbs states. It is perhaps surprising that this theorem has received limited
applications in other areas of mathematics. See the appendix of [LY52] and
[Ru71], [Ru72], [Ru73], [SF72].
Phase transitions theory is quite developed in systems in more dimensions.
An introduction can be the review article [Ga72], and [Ga00]. The phe-
nomenon of coexisting phases for systems in a several dimensional space
has been studied, sometimes in great detail; an analogous theory for one di-
mensional systems would be really interesting. Phase transitions theory in
systems with a simple potential is easier in one dimension because most sys-
tems simply do not have phase transitions. However they have transitions
in more dimensions. In one dimension only remarkably complex systems
can present phase transitions, like the long range system considered in this
section.
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.
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CHAPTER VIII

Special ergodic theory problems in nonchaotic dynamics

§8.1 Theory of quasi-periodic Hamiltonian motions

A very natural and important question that one can ask about stability in
Hamiltonian systems is what becomes of the simple foliation of phase space
into invariant tori when a perturbing force is switched on.
The simplest case is when the unperturbed Hamiltonian has the form

H0(A,α)
def
= K(A) =

1

2J
A2,

{
A = (A1, . . . , Aℓ) ∈ R

ℓ,

α = (α1, . . . , αℓ) ∈ T
ℓ
,

(8.1.1)e8.1.1

where J > 0 and (A,α) ∈ R
ℓ × T

ℓ are ℓ canonical momenta and their
ℓ conjugate angles. This is the Hamiltonian representing the motion of ℓ
point masses (rotators) rotating on ℓ unit circles with moment of inertia J ,
angular momenta Aj and positions αj : K(A) is their kinetic energy.
The motion trivially takes place on ℓ–dimensional invariant tori param-
eterized by the momenta A: calling ω = (ω1, . . . , ωℓ) = J−1A, the point
(A,α) evolves in time t into St(A,α) = (A,α+ ω t).
If V (α) is an analytic function (perturbing potential) one might expect that
the perturbed system described by the Hamiltonian function K(A)+εV (α)
still has, at least for small ε, quasi-periodic motions developing on tori which
foliate the entire phase space and are close to the unperturbed ones in the
sense that their parametric equations have the form

{
α = ψ + hε(B,ψ),
A = B +Hε(B,ψ),

ψ ∈ T
ℓ, (8.1.2)e8.1.2
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where Hε, hε are 2ℓ analytic functions of ε small as ε → 0 and B are
ℓ parameters that are introduced to parameterize the various tori. On the
tori the motion should be (A,α)→ Sεt (A,α) = (A(t), α(t)) with (A(t), α(t))
obtained by replacing ψ with ψ + ω′ t in equation (8.1.2), i.e. the motion
should be given by

{
α(t) = α+ ω′t+ hε(B,α+ ω′t),
A(t) = B +Hε(B,α+ ω′t),

, (8.1.3)e8.1.3

with B determined by the condition that the initial data A should be con-
tained in the torus, A = B+Hε(B,α). Moreover the velocities ω′ (rotation
vectors) should be suitable functions of B, i.e. of the torus containing the
initial data (A,α).
In fact the parameters B could be defined quite arbitrarily (by changing
correspondingly the definition of the function Hε(B,α)). However in the
unperturbed case there is a direct proportionality between velocities and
angular momenta so that a natural choice of the parameters B could be
simply B = J ω′. This would mean choosing to parameterize the perturbed
invariant tori by the rotation vector of the quasi-periodic motion on them.
Another natural choice could be that of determining the invariant tori by
their average action:

B = lim
T→∞

1

T

∫ T

0

A(t) dt; (8.1.4)e8.1.4

in this case ω′ would be a suitable function of B, not necessarily equal to
J−1B. However as B varies the velocities ω′ should assume all possible
values, because in the unperturbed case they take all possible values as
functions of the angular momenta. In other words the perturbed motion
would exhibit all unperturbed motions with the only difference that they
take place on slightly deformed trajectories.

The above naive picture representing the perturbed evolution as taking
place on a phase space smoothly foliated into invariant tori on which a
peaceful quasi-periodic motion takes place is clearly impossible as the simple
case ℓ = 2, V (α) = cos(α1 − α2) shows. In this case the perturbed motions
with velocities ω1 = ω2 = ω do not form a family of closed trajectories
filling up a 2–dimensional torus, as equation (8.1.2) would imply. It is easy
to check that while the unperturbed motions with ω1 = ω2 = ω consist
in a continuum family of periodic motions covering a torus the perturbed
motions only contain two such motions which are close to the unperturbed
ones; see problem [8.1.1].
In other words the perturbation “breaks” the invariant torus with ω1 =
ω2 = ω and the only trace left of it are two isolated periodic orbits and
no motion near them is periodic with period 2π/ω. All this can be eas-
ily checked because the perturbed system is still integrable in the sense
of Hamiltonian mechanics in most of phase space and its theory reduces
essentially to that of the classical pendulum.
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It is very interesting that the above example in a way describes “all that
can go wrong” and points out that essentially the only exceptions occur
at resonances, i.e. the only motions that may be “absent” among the per-
turbed motions and which were present among the unperturbed ones are
motions with “resonant frequencies” or with frequencies “too close” to res-
onant ones. A resonance is defined as a quasi-periodic motion with rotation
vector ω ∈ R

ℓ such that

ω · ν = 0 for some ν = (ν1, . . . , νℓ) ∈ Z
ℓ
, ν 6= 0. (8.1.5)e8.1.5

A rotation vector ω can be “far” from resonant in various senses. Here we
shall consider, for simplicity, one of the strongest senses in which “far” can
be understood and select the following vectors.

(8.1.1) Definition:D8.1.1 (Diophantine vectors)

A vector ω ∈ R
ℓ
such that there exist two constants C, τ > 0 for which

C|ω · ν| > |ν|−τ , for all ν ∈ Z
ℓ, ν 6= 0, (8.1.6)e8.1.6

where |ν| def= ∑ℓ
i=1 |νi|, is called a Diophantine vector with constant C and

exponent τ .

Remark: It can be shown, see problem [8.1.7], that if τ > ℓ− 1 almost all

ω ∈ R
ℓ verify (8.1.6) for some suitable C (depending on ω), while in any

ball of radius r in R
ℓ the set of ω’s which do not satisfy (8.1.6) for given C

and τ has volume < Bτ,ℓC
−1rℓ−1, for a suitable Bτ,ℓ <∞.

In other words “most vectors ω ∈ R
ℓ are far from resonances and satisfy

a Diophantine condition” (hence they are rationally independent and enjoy
the properties discussed in Section §2.2).
The key result is the following one.

(8.1.1) Proposition:P8.1.1 (KAM theorem)

Let V (α) be even and analytic, let K(A) = A2/2J , J > 0, and let
ω0 = A0/J be a Diophantine vector with constant C and exponent τ .
Then there exists ε0 > 0 depending on C and τ and two functions, de-
noted H(ψ, ε), h(ψ, ε), analytic for (ε, ψ) ∈ (−ε0, ε0) × T

ℓ and divisible by
ε, such that the points (A,α) that lie on the tori

{
α = ψ + h(ψ, ε),
A = A0 +H(ψ, ε),

ψ ∈ T
ℓ, (8.1.7)e8.1.7

form invariant surfaces for the evolution generated by the Hamiltonian

H(A,α) = K(A) + εV (α), (8.1.8)e8.1.8

and their motion is simply ψ → ψ + ω0 t. Furthermore the time average of
A(t) = A0 +H(ψ + ω0 t, ε) is precisely A0.
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Remarks: (1) This means that the Diophantine tori of the unperturbed
system1 are deformed into Diophantine tori of the perturbed system withN8.1.1

the same rotation vector and with the same average action.
(2) The coincidence between the average action and the rotation vector
times the moment of inertia J is a special property of Hamiltonians of the
form (8.1.8). This property has been qualified with the adjective twistless in
[Ga94a]. The interest of analyzing the KAM theorem for the special models
in (8.1.8) has been remarked by Thirring, see p. 133 in [Th83], and for this
reason they have been called Thirring models.
(3) The parity assumption on V (α), i.e.

V (α) =
∑

ν∈Zℓ
fν e

iν·α, with fν = f−ν , (8.1.9)e8.1.9

is a simplicity assumption that can be released as discussed in the problems
for Section §(8.4).
(4) The proof presented here is elementary and it is based on the proof of
Eliasson, [El96]. It is an interpretation of [El96] and provides a detailed
analysis of the “cancellations” following [Ga94a].
(5) The proof will be discussed under slightly stronger assumptions in order
to clarify its conceptual structure: the two extra assumptions that will
be made below can be released as discussed in Section (8.2). The first
assumption will be that V (α) is a trigonometric polynomial, i.e. the sum in
(8.1.9) is, for some N <∞, restricted to

|ν| ≤ N <∞. (8.1.10)e8.1.10

The second assumption will be that the rotation vector ω0 satisfies a prop-
erty slightly stronger than the Diophantine inequality (8.1.7) that we shall
introduce later (see definition (8.3.2)).

The proof will be split into several parts:
(i) We first derive the expression for the Taylor coefficients of the function
h in powers of ε.
Calling H(k)(ψ), h(k)(ψ), k ≥ 1, the k-th order coefficients of the Taylor
expansion of H(ψ, ε), h(ψ, ε) in powers of ε we derive recursive expressions
for such coefficients supposing that h,H exist, are analytic at ε = 0 and
have zero average over ψ: we show that they are uniquely determined. In

this way we obtain a formal power series2 and we have to show its conver-N8.1.2

gence to prove the proposition. Existence of the coefficients is a result due
to Lindstedt and Newcomb in special cases and to Poincaré, [Po93] Ch. IX,
in our case as well as in more general cases. The formal series is sometimes

1 i.e. the tori on which run quasi-periodic motions with Diophantine rotation vectors.
2 A formal power series of a field F is an infinite sequence {ak}∞k=1 over F ; it is often

written as a1ε+a2ε2 +a3ε3 + . . ., but with the understanding that no value is assigned
to the symbol ε.
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called the Lindstedt series although the same name is also given to a par-
ticular construction of the coefficients H(k)(ψ), h(k)(ψ) as sums of suitably
defined “values” (cf. Section §(8.2)).
(ii) Subsequently, in Section §(8.2), we show that the coefficients of the
Lindstedt series can be represented as sums of numerical values assigned
to certain diagrams or graphs. Furthermore we check that the difficulty in
proving convergence of the formal power series is only due to certain classes
of diagrams whose members can give contributions to the coefficients of
order k whose size could attain the order of a power of k!. This of course
causes a problem, known as the small divisors problem.
(iii) In the only part which requires some work, Section §(8.3), we identify
the diagrams which give too large contributions to the coefficients of order
k and the way in which they can be collected together so that cancellations
between their values become manifest. Finally we check that their sums
is indeed far smaller than feared a priori so that the final bound on the
coefficients of order k will be only of the order of an exponential in k,
Section §(8.4), thus achieving the proof of proposition (8.1.1).

The first step is to show that the formal series for h,H in powers of ε can
be constructed and are well defined to all orders in ε.

(8.1.1) Lemma:L8.1.1 (Definition of the Lindstedt series)
There exists at most one solution h(ψ), H(ψ) of (8.1.7) which is analytic in
ε near ε = 0, divisible by ε and with zero average over ψ. The Taylor coeffi-
cients at ε = 0 of order k ≥ 1 of such a solution are uniquely determined by
(8.1.7). The resulting formal power series in ε will be called the Lindstedt
series.

Proof: We suppose that V (α) is a trigonometric polynomial of some degree
N : this means that the sum in (8.1.9) is restricted by (8.1.10).

Call H(k)(ψ), h(k)(ψ), k ≥ 1, the k-th order coefficients of the Taylor ex-
pansion of H(ψ, ε), h(ψ, ε) in powers of ε. By imposing that (8.1.7) with
ψ = ω0t solve the equations of motion by substitution into the equations

of motion α̇ = J−1A, Ȧ = −ε∂αf(α) we find the necessary (and sufficient)
condition {

(ω0 · ∂ψ)h(ψ, ε) = J−1H(ψ, ε),

(ω0 · ∂ψ)H(ψ, ε) = −ε∂αV (ψ + h(ψ, ε)),
(8.1.11)e8.1.11

where ∂αV (ψ + h(ψ, ε)) = ∂αV (α)|α=ψ+h(ψ,ε). By equating the coefficients

of the expansion of both sides in powers of ε we get immediately recursion
relations for H(k)(ψ), h(k)(ψ).
In fact the second set of equations in (8.1.11) shows that the only unknown
is h(ψ, ε) and that it is a solution of the “Hamilton–Jacobi equation”:

(ω0 · ∂ψ)2h(ψ, ε) = −εJ−1∂αV (ψ + h(ψ, ε)), (8.1.12)
e8.1.12

because H(ψ, ε) is immediately determined from the first equation in the

20/novembre/2011; 22:18



280 §8.1: Quasi-periodic Hamiltonian motions

second set in (8.1.11). Clearly h(ψ, ε) is determined up to a constant which

we choose to fix by requiring that h(ψ, ε) has zero average over ψ.3
N8.1.3

Writing h(ψ, ε) = εh(1)(ψ) + ε2h(2)(ψ) + . . . and substituting into (8.1.12)
we find for k = 1

h(1)(ψ) = −
∑

ν 6=0

iJ−1ν

(iω0 · ν)2
fν e

iν·ψ. (8.1.13)e8.1.13

And more generally one finds the k-th order from (8.1.11) simply by expand-
ing in powers of h(ψ, ε) the function ∂αV (ψ + h(ψ, ε)) and, subsequently,
by expanding h(ψ, ε) in powers of ε. The result is, for k > 1,

(ω0 · ∂ψ)2 h(k)(ψ) =

= −J−1
∞∑

m=1

1

m!
∂m+1
α V (ψ)

∑

k1,...,km≥1
k1+...+km=k−1

m∏

r=1

h(kr)(ψ).
(8.1.14)e8.1.14

Here we made an effort in trying to reduce the quantity of indices: therefore
∂m+1
α means a tensor with m+ 1 indices j0, j1, . . . , jℓ in {1, 2, . . . , ℓ}. If we

imagine to use (8.1.14) to evaluate the component j0 of the vector h(k)(ψ)

and set ∂j ≡ ∂αj , then ∂1+mα V (ψ) denotes the tensor ∂j0∂j1 · · ·∂jmV (α)
evaluated at α = ψ; the indices j1, . . . , jm of the latter tensor must be
contracted with the indices j1, . . . , jm determining the components of the

vectors h(kr)(ψ), i.e. if ∂j1···,jm
def
= ∂j1 . . . ∂jm and kr ≥ 1

(
∂m+1
α V (ψ)

m∏

r=1

h(kr)(ψ)
)
j0

=

=

ℓ∑

j1,...,jm=1

∑

k1+...+km=k−1

∂j0j1...,jmV (ψ)

m∏

r=1

h
(kr)
jr

(ψ),

(8.1.15)e8.1.15

while naturally the first index j0 remains uncontracted as it represents the
component of h(k)(ψ) that we compute.

The equation (8.1.14) can be solved by Fourier transform: calling Φ(k)(ψ)

the r.h.s. we see that the Fourier transforms of h(k) and Φ(k) are related by

−(ω0 · ν)2 h(k)ν = Φ(k)
ν , ν ∈ Z

ℓ, (8.1.16)e8.1.16

which can be solved if (and only if) Φ
(k)
0 = 0, i.e. if Φ(k)(ψ) has zero average

over ψ. The latter property holds for k = 1 because in this case Φ(1) ≡ ∂αV

3 In fact the equation for h(ψ, ε) in (8.1.11) can be solved by Fourier transform only if

H(ψ, ε) has zero average over ψ and, if it can be solved, it is then determined up to an

additive constant equal to its average over ψ.
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is a gradient (cf. (8.1.13)). In general suppose that h(k)(ψ) is trigonometric
polynomial in ψ of degree ≤ kN , odd in ψ, for 1 ≤ k < k0 − 1. Then we
see immediately that the r.h.s. of (8.1.14), with k = k0, is odd in ψ and
of degree ≤ k0N . Therefore the r.h.s. of (8.1.14) has zero average in ψ,
and (8.1.14) can be also solved for k = k0. This means that the equation

for h(k0)(ψ) can be solved for all k0 ≥ 1, and its solution is a trigonometric

polynomial of degree ≤ k0N which is odd in in ψ, if h(k0)(ψ) is uniquely
determined by imposing that its average over ψ vanishes.

Problems for §8.1

[8.1.1]:Q8.1.1 (A resonance phenomenon)
Show that for any ω ∈ R the two-dimensional system described by the Hamiltonian
K(A) + εV (α), with K(A) = 1

2
A2, V (α) = cos(α1 − α2), admits only two periodic

motions with rotation vector (ω, ω) corresponding to the stationary points of a suitable
function (this is an example of a resonance). (Hint: Use the (canonical) change of variable
β1 = α1 +α2, β1 = α1 −α2 and similar for A. Note that this is a simple example of the
general set-up of the forthcoming Section §(9.1) about low-dimensional tori, of which the
periodic orbits are an (easy) subcase.)

[8.1.2]:Q8.1.2 (Rationally independent 3–vectors, [Ch99])

Suppose that the two equations n3 = an ± b, with a, b integers, do not admit integer
solutions, and let ω be real and a root of the equation ω3 = aω+ b. Show that the vector
w = (1, ω, ω2) has rationally independent components. The case a = b = 1 defines a real
root ω which is called the spiral mean. (Hint: If not ν · w = ν1 + ν2 ω + ν3 ω2 = 0 with

0 6= ν ∈ Z
3 and ω would be a quadratic number, i.e. a number of the form ω = (x+

√
y)

with x, y rational. Since ω is also a solution of the third order equation
√
y must be

rational: in fact if
√
y is irrational then the equation ω3 = aω + b implies

x3 + 3xy − ax− b+√y (y + 3x2 − a) = 0,

and necessarily y + 3x2−a = 0 and x3 + 3xy−ax−b = 0, which means that 8x3−2ax+b =
0 admits a rational root x = p/q, with p, q relatively prime, i.e. 8p3 − 2apq2 + bq3 = 0.

This says that (2p)3 is divisible by q2 so that q = 1 or q = 2 and n = 2p
q

is integer:

therefore n3 = an − b admits an integer solution, in contradiction with the hypothesis.
Hence ω has to be rational. If ω = p/q, p, q relatively prime integers, then p3 = a p q2+q3

and q2 divides p3, hence q = 1 and p is an integer solution of n3 = an+ b, which again
contradicts the hypothesis.)

[8.1.3]:Q8.1.3 (Tartaglia’s formula and rational independence)

Let 3 p, 2 q be integers with q2 + p3 > 0 and suppose that the equations z3 = 3pz± 2q do
not admit integer solutions. Show that w = (1, ω, ω2) is a rationally independent vector

if ω = (q + (p3 + q2)
1
2 )

1
3 + (q − (p3 + q2)

1
2 )

1
3 . Show that, therefore, w = (1, 2

1
3 , 4

1
3 ) is a

rationally independent vector. Check that the spiral mean is

ω = 3

√
1
2
+ 1

2

√
23
27

+ 3

√
1
2
− 1

2

√
23
27
.

(Hint: By Tartaglia’s formula, divulged by Cardano, ω is a real root of ω3 = −3pω+2q:

hence one applies problem [8.1.2]. Note that 21/3 is a root of ω3 = 2.)

[8.1.4]:Q8.1.4 (An example of a Diophantine 3–vector, [Ch99])

To obtain an extension of problem [2.2.3] let

N =

(
0 1 0
0 0 1
1 1 0

)
, Nk

(
1
0
0

)
def
=

(
pk
qk
rk

)
def
= vk
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Show that ρj = pj , qj , rj verify the recursion ρj = ρj−2 +ρj−3, j ≥ 3. Let λ > 1, λ+, λ−
be the three eigenvalues of N , |λ+| = |λ−| = λ−1/2 and let w0, w+, w− = (1, λj , λ

2
j ),

j = 0,± be the respective eigenvectors (note that λ3j = λj+1). Let NT be the transposed

of N . Given ν ∈ Z
3 define, if it exists, k so that for 0 ≤ h ≤ k

|(NT )hν · w0| ≤ max
±
|(NT )hν · w±|, |(NT )(k+1)ν · w0| > max

±
|(NT )(k+1)ν · w±|,

otherwise set k = −1. Check that |ν| > B|λ±|−k = B λ
k
2 for some B > 0 (which

only depends on the matrix N); deduce that therefore w0 is a Diophantine vector with

exponent τ = 2. (Hint: The recursion can be derived from the remark that N3v0 =

v0 +Nv0. To check the Diophantine property remark that 1 ≤ |(NT )kν| because N has
no zero eigenvalue; hence by the definition of k and for a suitable b > 0 depending on the

basis w0, w±, one has 1 ≤ |(NT )kν| ≤ b max± |w± · (NT )kν| ≤ b′ |ν|λ− k
2 max± |w±|

(in fact in R3 all metrics are equivalent). Therefore, by the definition of k, one has

|w0 ·ν| = λ−(k+1)|w0 · (NT )(k+1)ν| ≥ b′′λ−(k+1)|(NT )(k+1)ν| ≥ b′′λ−(k+1) ≥ b′′′|ν|−2.)

[8.1.5]:Q8.1.5 (Hyperbolicity, Anosov maps of T3 and quasi periodicity)

Show that the matrix T in problem [4.3.6] yields a natural example of a algebraic hyper-

bolic map of the torus T
3 and of a Diophantine 3 vector.

[8.1.6]:Q8.1.6 (More examples of Diophantine 3–vectors, [Ch99]: an extension of problem

[2.2.3])
Show that the example of problem [8.1.4] can be extended by considering 3 × 3 integer
entries matrices N with only one eigenvalue with modulus greater than 1 and two others
with modulus less than 1 and with eigenvectors with rationally independent components.
Find a few examples by studying matrices whose characteristic equation has roots that
can be discussed by the techniques of problems [8.1.2] and [8.1.3]. The vectors constructed
in this way are all in a class called Pisot–Vijayaraghavan Diophantine 3–vectors. (Hint:
For instance consider matrices obtained from N in problem [8.1.4] by replacing the last
row (0, 1, 0) by (0, p, q).)

[8.1.7]:Q8.1.7 (Genericity of Diophantine vectors)

Given C and τ > ℓ−1 show that the volume of the points ω ∈ R
ℓ with |ω| < r that do not

verify property (8.1.6) is bounded by BτC−1rℓ−1, for a suitable constant Bτ depending
on τ . Show that this implies that the set of ω which do not satisfy a Diophantine
property with a prefixed exponent τ > ℓ− 1 and some constant C <∞ has complement
of zero volume in R

ℓ. (Hint: Consider the slab |ω0 · ν| < C−1|ν|−τ , ν 6= 0, in the sphere

|ω0| < r. Note that its volume is bounded proportionally to C−1|ν|−τ−1rℓ−1 hence the

set of points not verifying (8.1.6) has volume bounded proportionally to C−1rℓ−1. The
theorem of Borel–Cantelli, for instance, then implies the second statement.)

[8.1.8]:Q8.1.8 (Examples of isochronous systems, [CF02])

Consider in C
n the equation ż = Λz +Q(z), where Λ is a diagonal matrix with diagonal

λ1, . . . , λn and Q is a polynomial with a second order 0 at the origin. Suppose λj ≡ i.

Prove that all solutions with initial data z0 small enough are periodic with period 2π.

(Hint: Define τ = (eit − 1)/i and set ζ(τ)
def
= e−itz(t): then ζ(τ) satisfies the equation

dζ(τ)

dτ
= (1 + iτ)−2Q

(
(1 + iτ) ζ(τ)

)
. The latter equation has solutions holomorphic in τ

for |τ | < R provided the initial data are small enough. Therefore choosing R > 2 we see
that the solution is z(t) = eitζ((eit − 1)/i) which is periodic in t.)

[8.1.9]:Q8.1.9 Find the condition under which the equation for ζ in problem [8.1.8] is au-
tonomous.

[8.1.10]:Q8.1.10 (Perturbation expansion without divisor problems and isochrony)

Derive the result of problem [8.1.8] by a perturbation expansion showing the existence of
a function h(ζ) holomorphic near 0 and vanishing to second order such that the change
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of variables z = ζ + h(ζ) transforms the differential equation into ζ̇ = Λζ. (Hint: No

small divisors problems arise in the perturbative determination of h.)

[8.1.11]:Q8.1.11 Consider in C
n the equation ż = Λz+Q(z), where Λ is a diagonal matrix with

diagonal λ1, . . . , λn and Q is a polynomial with a second order 0 at the origin. Suppose

that min |ν · λ − λj | > c > 0 with the minimum evaluated over all non-negative integer

components vectors ν with
∑

j
νj ≥ 2 and over all j = 1, . . . , n. Show the existence of a

function h(ζ) holomorphic near 0 and vanishing to second order such that the change of

variables z = ζ+h(ζ) transforms the differential equation into ζ̇ = Λζ. Hence if Reλj ≤ 0

all its solutions with small enough initial data are asymptotic to a quasi-periodic solution.
Exhibit cases in which all solutions are quasi-periodic. (Hint: No small divisors problems
arise in the perturbative determination of h. Consider in particular the cases λj = i+εj ,
with εj ≤ 0, and the cases λj = i+ iεj , with |εj | small enough.)

§8.2 Graphs and diagrams for the Lindstedt series

The analysis of the previous section provides us with a recursive algorithm
to evaluate a formal power series solution to our problem. However it is very
convenient to interpret the algorithm in terms of graphs and diagrams. An
explicit construction of the values of the coefficients h(k)(ψ) of the Lindstedt

series can be obtained by simply “iterating” (8.1.15) until only h(1)(ψ), cf.

(8.1.13), appears. We get what we shall call a tree representation of h(k)(ψ).
The construction is most easily performed through the diagrammatic ex-
pansion and therefore we dedicate some care to its detailed discussion. Note
that the computation of h(k) involves the inversion of the operator (ω0 ·∂ψ)2
which is easily done if instead of h(k)(ψ) we study its Fourier transform h(k)ν
as this involves simply a division by (ω0 · ν)2, cf. (8.1.16). Hence we rewrite
(8.1.14) as

h(k)ν =
1

J(ω0 · ν)2
∞∑

m=1

∑

ν
0
+ν

1
+...ν

m
=ν

1

m!
iν0 fν0

∑

k1,...,km≥1
k1+...+km=k−1

m∏

s=1

iν0 · h(ks)ν
s
.

(8.2.1)e8.2.1
And the latter relation can be represented by Fig.(8.2.1), where the l.h.s is

a symbol for h(k)ν and in the r.h.s. we have a “simple tree” consisting of a
“root” r, a “root branch” λv ≡ rv coming from the “node” (or “vertex”) v
and m = mv branches “entering v”.
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r

j ν

v
(k) =

∑

m>0
k1+...+km=k−1

1

m!

ν0

r

j ν

v

ν1

νm

(km)

(km−1)

(k2)

(k1)

Fig.(8.2.1)F8.2.1 Diagrammatic interpretation of (8.2.1). The tensor labels are not marked.

The length of the branches and the angles at which they are drawn (with
respect to the sides of the present sheet of paper) are irrelevant.

The node v symbolizes the tensor with entries

Φv;j0,j1,...,jm =
1

mv!
J−1(iν0)j0fν0

m∏

s=1

(iν0)js , (8.2.2)e8.2.2

The line entering from the node v in the r.h.s. represents the propagator,
i.e. the matrix

δjj0
(ω0 · ν)2

(8.2.3)e8.2.3

The line exiting from the bullet of the l.h.s represents h
(k)
ν,j ; the branches

exiting from the bullets of the r.h.s. with label (ks), see figure (8.2.1),

represent h
(ks)
ν
s
,j′s
.

We should imagine that the labels j0, j1, . . . , jm are affixed on the line
exiting the node v and, respectively, on the lines entering the node v (and
close to v). The labels j′1, . . . , j

′
m should be imagined affixed on the lines

exiting the bullets on the r.h.s. of the drawings in figure (8.2.1). And the
root label j can be imagined affixed over the root of the tree. Note that in
such a way we associate a pair of labels (j′v, jv) to each branch v′v of the
tree.

The labels j0, j1, . . . , jm, j
′
1, . . . , j

′
m will be called tensor labels and the label

j root label. However the drawing in the figure does not carry the tensor
labels explicitly: the tensor labels on the same line are meant to be “con-
tracted” (i.e. set to equal values) and summed over their possible values in
{1, . . . , ℓ}.
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r

j

ν=νλ0

λ0

v0

νv0

v1

νv1

v2

v3

v5

v6

v7

v11

v12 v10

v4

v8

v9

Fig.(8.2.2)F8.2.2 A tree ϑ with mv0 = 2, mv1 = 2, mv2 = 3, mv3 = 2,mv4 = 2, mv12 = 1

and k = 13, and some decorations. Only two mode labels and two momentum labels are
explicitly marked on the lines λ0, λ1; the number labels, distinguishing the branches, are
not shown. The arrows represent the partial ordering on the tree.

At this point, if one notes that (8.1.14) is multilinear in the h
(ks)
ν,j′s

(i.e. of

degree 1 in each of them), it is clear that we can just replace each of the
branches exiting from a bullet with the same graphical expression in the
r.h.s. of the above figure. And so on, until the labels (k) on all the branches
exiting from a bullet (“top branches”) become equal to 1. In this case the

branches will represent h(1)νj′ = (iνj′)J
−1 (ω0 · νj′)−2fν

j′
for some j′.

Thus we have represented our h(k)ν as a “sum over trees”, with k branches
and k nodes (we shall not regard the root as a node), of suitable “tree
values”.
The combinatorial factors (coming from the factorial in (8.2.2)) can be
simplified if we decide to distinguish the lines of the trees with k branches
by affixing on them a number label taking values from 1 to k. The set
of labels attached to the trees, other than the tensor labels, will be called
decorations.
We shall regard as identical two decorated trees which can be overlapped
(with all labels matching) by adjusting the lengths of the lines and by piv-
oting the branches merging into a node around it.
The rule to construct h(k)ν can be summarized as follows.

(8.2.1) Definition:D8.2.1 (Trees and tree values)

To evaluate the Fourier transform h
(k)
ν,j of h

(k)
j (ψ) the following definitions

are given.
(i) A tree ϑ consists of a family of oriented branches (i.e. oriented segments
or arrows) Λ(ϑ) numbered from 1 to k arranged to form a (rooted) tree as
in Fig.(8.2.2) (i.e. all oriented towards the root r); the initial points of the
branches are the nodes V (ϑ). A partial ordering relation, denoted �, is
induced by the lines orientations between the lines and between the nodes.
(ii) At each node v we attach a mode label νv ∈ Z

ℓ
, |νv| ≤ N (cfr.

(8.1.10)). At the root r we attach a unit vector νr in a selected direc-
tion j ∈ (1, . . . , ℓ). The order of the tree will be the number k of nodes or
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the (equal) number of branches.1N8.2.1

(iii) At each branch λv ≡ v′v, connecting a node v with the following node
v′, we attach a momentum

νλv ≡
∑

w�v
νw, (8.2.4)e8.2.4

i.e. we can think that into each node “enters” a momentum νv which then
“flows” toward the root so that the the momentum flowing through the branch
emerging from v is νλv .

2

N8.2.2
(iv) Near each node v we write mv + 1 tensor labels jv,0, jv,1, . . . , jv,mv in
1, . . . ℓ: the first on the line exiting the node v and the remaining mv on the
lines entering the node v. We imagine such labels written very close to v.3N8.2.3

(v) With each line λ joining two nodes v′v or joining the root r and the first
node before it v0 we associate a propagator matrix δij(ω · νλ)−2, cf. (8.2.3),
whose indices i, j are contracted, respectively, with the labels jv′ and jv on
the line and close to the nodes v′v (defined in (ii) above). In the case of the

root line the label jr is taken equal to j, the index of the component of h
(k)
j

that we want to study (and no sum on the root label is performed).
(vi) The mode labels and the number labels “decorating” the tree will be called
also decorations (i.e. the labels attached to the tree and the decorations are
synonymous below). In particular the component indices j of points (iv)
and (v) are not decoration since they are contracted, i.e. summed over.
(vii) With each k–th order tree we associate a combinatorial factor k!−1.
We shall call Θk,ν,j the set of all decorated trees of order k with momentum
νλ0

= ν flowing through the root branch and such that for each branch λ
one has νλ 6= 0 and carrying a root label j.

The above combinatorial analysis has led us to a final result which is,
perhaps surprisingly, very simple.

(8.2.1) Lemma:L8.2.1 (Tree representation of the Lindstedt series)

Given the above definition h
(k)
ν,j will have the following representation for the

j–th component of h(k)(ψ) =
∑
ν∈Zℓ h

(k)
ν eiν·ψ:

h
(k)
ν,j = −i

1

k!

∑

ϑ∈Θk,ν,j

( ∏

v∈V (ϑ)

J−1fν
v

) ∏

λ=(v′v)∈L(ϑ)

νv′ · νv
(ω0 · νλv )2

, (8.2.5)e8.2.5

where Θk,ν,j is defined in item (vii) of definition (8.2.1).

Remarks: (1) The factor νr · ν0 in the contribution from the factor corre-
sponding to the root line λ0 ≡ rv0 has to be interpreted by taking νr to be

1 In Fig.(8.2.2) the mode labels are marked only above the nodes v0 and v1; the number
labels and the other labels are not marked explicitly, for simplicity.

2 In Fig.(8.2.2) the momentum labels are marked only on the root branch λ0 and on the
branch λ1.

3 In Fig.(8.2.2) the tensor labels are not marked.
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the unit vector in the direction j (see item (v) of definition (8.2.1)).
(2) The introduction of the number labels that distinguish the tree lines of
course greatly increases the number of terms contributing to a given order
k because there are many terms that give the same contribution simply
because the value of a tree, defined as

Val (ϑ) = −i 1
k!

( ∏

v∈V (ϑ)

J−1fν
v

) ∏

λ=(v′v)∈L(ϑ)

νv′ · νv
(ω0 · νλv )2

, (8.2.6)e8.2.6

does not depend on the number labels. However the advantage is that the
combinatorial factor is k!−1 for all trees, while using trees without number
labels would require a combinatorial factor

∏
vmv!

−1 which depends on the
structure of each tree: the advantage being that one would need to consider
far less trees.

The above formulae remain valid also in the case of a perturbation V (α)
which is not even: however in such case one needs to check (a result by
Poincaré, [Po93]) that this is correct because it does not follow immediately
from a parity property that the graphs in which a zero current flows have
to be discarded; see problem [8.4.8] in Section §(8.4). The formulae also
extend to the case in which V (α) is analytic in α.
It is sometimes useful to rewrite (8.2.6) more compactly (however some-
what more symbolically) as

Val(ϑ) =
1

k!

( ∏

v∈V (ϑ)

Fv

)( ∏

λ∈Λ(ϑ)

Gλ

)
, h

(k)
ν,j =

∑

ϑ∈Θk,ν,j

Val (ϑ) (8.2.7)e8.2.7

where the symbols are introduced in the following definition.

(8.2.2) Definition:D8.2.2 (Propagator and node factors)
Given a node v and a line λ the node factor Fv (a tensor) and the propagator
Gλ (a ℓ× ℓ–matrix proportional to the identity) will be defined, respectively
as

Fv = J−1(iνv)
mv+1fν

v
, Gλ =

1

(ω0 · νλ)2
. (8.2.8)e8.2.8

Remarks: (1) The above analysis is well known in graph theory. Since the
order of the tree is k, equal to the number of nodes, the above trees are
analogous to Feynman graphs of a perturbation theory and the evaluation
of the values “corresponds” to the Feynman rules for the KAM problem (in
fact a literal meaning could be given to the mentioned analogy, [Ga01]).
(2) In the general case the representation in (8.2.5) is known as the Lindst-
edt series and it was introduced, at low orders only, in Celestial Mechanics
problems by Lindstedt and Newcomb (independently); it has been extended
and studied to all orders by Poincaré: about the name see comment follow-
ing (8.1.10). The difficulty in the extension, solved by Poincaré, is that of
proving that the algorithm makes sense to all orders, i.e. the equations for
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H(k)(ψ), h(k)(ψ) can be solved by Fourier transform “without ever dividing
by 0”. The latter difficulty is absent here because of the parity assumption
on V (α) which excludes that (ω0 · ∂ψ)H(k)(ψ), as given by (8.1.11), has

non-zero average over ψ (being odd), see problems [8.4.8] and [8.4.9] for the
non-even cases.

Formula (8.2.5) would provide immediately a proof of proposition (8.1.1),
the KAM theorem, if certain trees were not present. The idea is that the
values of the “unwanted” trees cancel each other to the extent that their
sums behave well enough not to spoil the bounds. See problem [8.2.4] for
an example of an “unwanted” tree with value of extremely large size.
To see this, for the purpose of illustration, we shall first restrict the sum in
(8.2.7) to a sum over trees which, besides the property that for all branches
one has νλ 6= 0 (as expressed by the definition of the set Θk,ν,j in equation
(8.2.7)), satisfy the property

[P] νλv 6= νλv′ for all pairs of comparable nodes v, v′ (not necessarily next
to each other in the tree order), with v′ � v � v0.
This property is remarkable because of the following lemma.

(8.2.2) Lemma:L8.2.2 (Summation of values of trees with property [P])
Consider the formal power series in ε obtained by considering the sum of
the trees values of the trees in Θk,ν,j which verify property [P] above. Then
the series has a positive convergence radius.

Remark: The purpose of this lemma is to make clear where the problem
of proving proposition (8.1.1), i.e. the KAM theorem, is really located. To
prove the theorem we shall have to understand how to bound the sum of
the values of tree graphs which do not satisfy property [P].

Proof: There are at most 22kk! trees (see problem [8.2.2]) and the con-
traction of the tensors labels Fv, cf. (8.2.8), gives at most ℓk terms, while
the node momenta νv can be chosen in a number of ways bounded by
(2N + 1)ℓk < (3N)ℓk. Therefore, if f0 = maxν |fν |,

∑

ν

∣∣∣h(k)ν
∣∣∣ ≤ (3N)ℓk22kℓk

fk0C
2k

Jk
N2k−1 max

ϑ∈Θk,ν,j

∏

λ∈V (ϑ)

(Cω0 · νλ)−2

≤ (f0C
2J−1)kN (ℓ+2)k−1(4ℓ3ℓ)kM,

(8.2.9)e8.2.9

where M is an estimate of the indicated maximum which is over the k-th
order trees ϑ verifying property [P] above. Hence the whole problem is
reduced to find a value for M , a “small divisors problem”.
Let q be large: then by the Diophantine condition in (8.1.6) one has C|ω0 ·
ν| ≥ q−1 if 0 < |ν| ≤ q1/τ . We say that the harmonic with Fourier label

ν ∈ Z
ℓ
is “q–singular” if C|ω0 · ν| < q−1 and the following (extension) of a

lemma by Bryuno holds for trees of degree k verifying property [P] above.
Fixed q ≥ 1 let N(k, q) be the number of “q–singular branches” (i.e. of

20/novembre/2011; 22:18



Problems for §8.2. 289

branches corresponding to q–singular harmonics) in a tree ϑ with k nodes.
Then we can have recourse to the following lemma

(8.2.3) Lemma:L8.2.3 (Simple Bryuno–Siegel bound)
The number N(k, q) of “q–singular branches” of a tree of order k in the
above sense is equal to

N(k, q) ≤ const
k

q1/τ
, (8.2.10)e8.2.10

and the constant could be taken 2N23/τ .

Remark: (1) We shall not prove here the lemma as the present argument
is being carried over only for illustration purposes (in any event (8.2.10)
and the value of the constant are an immediate corollary of the proof of the
lemma discussed and proved below).
(2) The intuition behind (8.2.10) is very simple. In order to achieve a
branch momentum ν = νλv with Cω0 · ν of size q−1 one needs at least

|ν| ≥ q1/τ , i.e. the node v must be preceded by at least N−1q1/τ nodes.
Once a q–singular branch has been generated, the branches following it will
have non-q–singular momentum and we must collect about as many new
nodes to generate a second q–singular branch and so on. Since the total
number of nodes is k it follows that the number of q–singular branches is
bounded proportionally to k/q1/τ . The actual estimate of the constant in
(8.2.10) is irrelevant for our immediate purposes.

Assuming lemma (8.2.3) we can continue the proof of lemma (8.2.2). We
fix an exponentially decreasing sequence γn, n = 1, 0,−1,−2, . . .; we choose
γ = 2. The number of 2−n–singular harmonics among the line momenta
which are not 2−(n−1)–singular is bounded by 2N23/τ k 2−n, (being trivially
bounded by the number of 2−n–singular harmonics!). Hence we can take as
a bound on M in (8.2.9) the quantity

∏

λ∈Λ(ϑ)

1

(Cω0 · νλ)2
≤

−1∏

n=−∞
2−(n−1)4N23/τ2n/τk = ecNτk ≡M, (8.2.11)e8.2.11

where c > 0 is a suitable constant (see problem [8.2.5]); therefore the se-

ries for the approximation to h
(k)
ν , that we are considering because of the

extra restriction in the sum equation (8.2.4), has radius of convergence in ε
bounded below by ε′0 given by

(ε′0)
−1 = (f0C

2J−1)kN (ℓ+2)(4ℓ3ℓ)ecNτ . (8.2.12)e8.2.12

Hence the proof of the lemma (8.2.2) is concluded.

Lemma (8.1.1) shows that we must understand the contributions to the

value of h(k) coming from the tree graphs that violate property [P] above.
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Fig.(8.2.3)F8.2.3 A rooted tree and the corresponding random walk W .

Problems for §8.2

[8.2.1]:Q8.2.1 Prove that the number of trees of order k with assigned labels {mv} is bounded
by (k − 1)!/

∏
v
mv ! (Hint: It is just problem [7.1.4]).

[8.2.2]:Q8.2.2 (Counting tree graphs)

Show that the number of elements in Θk,ν is bounded by k!22k. (Hint: The number of
non-numbered trees is bounded by the number of random walks on the one-dimensional
lattice with 2k − 1 steps, that is by 22k . In fact we can imagine walking on the tree
starting at the root and marking +1, i.e. a step forward, every time we pass a node; once
we reach an endpoint we imagine reversing the direction and continue walking on the
“other side” of the branch (we imagine that each branch has an upper and a lower side)
marking a −1, i.e. a step backward until we reach a non trivial node where we reverse
the walk direction etc.; see Fig.(8.2.3). At the end we reach the root and the sum of the
number of +1’s equals that of the −1 and the sequence of ±1’s determines uniquely the
non-numbered tree. Furthermore the number of ways of assigning the numbers 1, . . . , k
to the branches is k!.)

[8.2.3]:Q8.2.3 Prove inductively, by using the result of [8.2.2], that if in (8.2.7) we replace Gλ

with 1 then the bound |h(k)ν | < Ck does follows for a suitable constant C. (Hint: Prove

that one has |h(k)ν | < DkN(k), where D is a suitable constant and N(k) is the number of

not numbered trees of order k, then use the bound on N(k) proved in problem [8.2.2].)

[8.2.4]:Q8.2.4 (Factorial growth of (some) trees)
Consider the tree θ:

ν1

ν2

νk

νk+1

v2k

ν

v2k−2

ν

v2

ν

v0 νλνλ νλ

−ν
v2k−1

−ν
v3

−ν
v1

Show that one can have Val(ϑ) ≃ Ckkαk for suitable positive constants C and α, where
the order of θ is 3k+1. (Hint: : The momentum νλ flowing through the line v2kv2k−2 is

bounded by Nk, and it can happen that Cω0 ·νλ is of the order of (Nk)−τ . Then choose
ν2p + ν2p+1 = 0 for p = 0, . . . , k − 1 (hence obtaining k − 1 self-energy graphs with the

terminology introduced in the forthcoming Section §(8.3)), and use that there are k line
carrying a momentum νλ.)
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[8.2.5]:Q8.2.5 Estimate the constant c in (8.2.11).

§8.3 Cancellations

The key remark in order to take into account the values of the trees that
we have excluded by imposing the unphysical property [P] in lemma (8.2.2)
is that they cancel almost exactly. This is the core of the theorem: indeed
the previous sections basically contain only definitions necessary to set up
the formalism and the following contains bounds based on the maximum
principle and the analyticity properties of tree values.
The reason behind the cancellation is very simple. If νλv = νλv′ for two
comparable nodes v′ ≻ v, and if we denote with ϑ the tree with λv′ as
root line, we imagine to detach from the tree ϑ the subtree ϑ2 with last
node v. Then attach it to all the remaining nodes w � v′, w ∈ ϑ/ϑ2,
(this means the tree ϑ with the subtree ϑ2 removed). The simplest case
is illustrated in Fig.(8.3.1). We can, furthermore, imagine changing all the
signs, simultaneously, of the node momenta of the nodes w ∈ ϑ/ϑ2. Then
we add together all the values of the family D of trees constructed in this
way.
Note that the line momenta of the lines λw emerging from w ∈ ϑ/ϑ2 have
either the form νλw = ν0λw + ν with ν = νλv and ν0λw =

∑
w′�w,w′∈ϑ2

νw′ or

the form νλw = ν0λw : the first case arises when the path from v to v′ passes
through w.
Therefore if δ = ω0 ·ν the denominators of the propagators of the lines λw ∈
ϑ2 (i.e. preceding v′ but not preceding v) will have the form (ω0 ·ν0λw+δ)−2

or, respectively, (ω0 · ν0λw)−2. Hence the above trees can be considered only
if no one among the divisors vanishes: which cannot happen as we suppose
temporarily if ω0 · νλw is large compared to δ. By construction if we sum
the values of all trees in the family D we get an even function of δ.
The family of trees D consists of trees whose contributions to h(k)ν differ
because
(1) some of the branches below v′ have changed total momentum by the
amount ν ≡ νλv : this means that some of the denominators (ω0 · νλw )−2

have become (ω0 ·νλw+δ)−2 or −(ω0 ·νλw+δ)−2 (see the branch λw2 ≡ w1w2

in Fig.(8.3.2));
(2) there is one of the node factors which changes by taking successively the
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+
v′ w1

w2

v v′ w1

w2

v

Fig.(8.3.1)F8.3.1 The simplest cancellation: the circle encloses a subgraph which violates

of property [P] (which we shall call later a self-energy graph), provided νw1
+ νw2

= 0.

The parts of the tree ϑ above v′ and below v are not drawn. Imagine that the branch
momentum ν of the branch coming out of v is very large and that δ ≡ ω0 · ν is very small
and note that in the two trees one has ω0 · νλw2

= ω0 · νw2
and ω0 · νλw2

= ω0 · νw2
+ δ,

respectively.

value νw, where w ∈ ϑ/ϑ2 is the node to which such a branch is reattached.

Hence if δ = ω0 ·νλv is replaced by 0 and if we sum the values of all the trees
considered we would build, in this resummation, a quantity proportional to∑
νw = νλv′ − νλv which is zero. Since δ 6= 0 we can expect to see a sum

of order δ2, as the sum that we are considering is even in δ.

However this can be advantageous only if |δ| ≪ |ω0 · ν0λ| for any branch λ
in ϑ\ϑ2. If the latter property does not hold then ω0 ·νλw must be small of
order δ at least for some w ∈ ϑ/ϑ2 and (ω ·ν0λw + δ)−2 may be an extremely
small divisor spoiling the gain due to the fact that the sum vanishes for
δ = 0 to second order in δ.

By applying carefully the argument above one sees that the extreme case
in which all lines λw are such that ω0 · νλw is close to δ would be essentially
also treatable. Therefore the problem is to show that the two regimes just
envisaged (and their “combinations”) do exhaust all possibilities.

Such problems are very common in renormalization theory where they are
called overlapping divergences problems. Their systematic analysis is made
through the “renormalization group methods”. We argue here that Elias-
son’s method can be interpreted in the same way. The following definition
of scale of a line with momentum ν will play a key role.

(8.3.1) Definition:D8.3.1 (Scale of a propagator)
Given a scaling factor γ and setting ω = Cω0 we say that a propagator
Gλ = (ω0 · νλ)−2 of a line λ has scale n if

γn−1 ≤ |ω · νλ| < γn, for n ≤ 0, (8.3.1)e8.3.1

and we set n = 1 if 1 ≤ |ω · νλ|.
Remark: (1) The notion of scale of a line of a graph was introduced in the
theory of (overlapping) divergences in the renormalization of the perturba-
tion series arising in quantum field theory by Hepp, [He61].
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(2) In the following we fix γ = 2: this is an arbitrary choice which recom-
mends itself. However any other value γ > 1 would be suitable in order to
carry the analysis that we need.

We make at this point a second simplifying assumption (which can be
removed quite easily as discussed in Section §(8.4)). Namely we want to
suppose more than the Diophantine condition (8.1.6), i.e. that the vector
ω0 is strongly Diophantine in the sense of the following definition.

(8.3.2) Definition:D8.3.2 (Strongly Diophantine vectors)

Let ω0 ∈ Z
ℓ
and suppose that there exists γ > 1 and C, τ > 0 such that for

all integers n ≤ 0

(1) C |ω0 · ν| ≥ |ν|−τ , 0 6= ν ∈ Z
l
, (8.3.2)e8.3.2

(2) min
0≥p≥n

∣∣C |ω0 · ν| − γp
∣∣ > γn+1 0 < |ν|τ ≤ (γ−(n+3)).

We shall say that ω0 satisfies a strong Diophantine property with scale
factor γ, constant C and exponent τ .

Remark: (1) The notion means that the values of the numbers C|ω0 · ν|
are “far” from the prescribed sequence of scale factors γp for all n ≤ p ≤ 0
provided |ν| is not too large, i.e. it does not exceed a constant times γ−nτ

−1

.
The constant is chosen γ−3/τ for later convenience. In other words, taking
γ = 2 a line of momentum ν and scale n+3 is such that the value C|ω0 · ν|
is far on the scale 2n from the “marks” 2p, for n ≥ p ≥ 0.
(2) For a given γ one can prove that the set of strong Diophantine vectors

contained in any ball of radius r in R
ℓ
has relative measure which tends to

1 for C →∞; see problem [8.3.1].

In view of the last remark (2) and for simplicity we shall take γ = 2 and
suppose that ω0 is strongly Diophantine with scale factor 2, constant C and
exponent τ , (see problems for Section §(8.4) for a discussion on releasing
the assumption).
Proceeding as in quantum field theory, given a tree ϑ we can attach a
scale label to each branch λ ∈ Λ(ϑ): it is equal to n if n is the scale of
the branch propagator. Note that the labels thus attached to a tree are
uniquely determined by the tree: they will have only the role of helping to
visualize the orders of magnitude of the divisors associated with the various
tree branches. The scale labels allow us to organize naturally the lines of a
tree into “clusters” defined formally as follows.

(8.3.3) Definition:D8.3.3 (Clusters of lines and nodes)
Given a tree in which each line carries its scale label one can identify the
largest connected clusters T of nodes that are linked by continuous paths of
branches carrying the same scale label nT or a higher one. We shall say
that the cluster T has scale nT . We shall denote by V (T ) the set of nodes in
T , and by Λ(T ) the set of branches connecting them; by extension we shall
say that such branches are contained, or internal, in T . We also denote
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by Λ1(T ) the set of branches in Λ(T ) plus the exiting branch of T (if any).
Finally call T (ϑ) the set of all clusters in ϑ.

Remark: (1) This can be visualized by drawing a box enclosing all the
nodes and lines internal to a cluster T . In this way the boxes are hierarchi-
cally ordered by inclusion, cf. Figure (8.3.2).
(2) The definition implies that a cluster T of scale nT is maximal, i.e. it
cannot be enlarged by adding new lines of scale n ≥ nT .
(3) The branches of the tree carry an arrow pointing to the root: this gives
a meaning to the expressions “entering” or “exiting a cluster”.
(4) Each cluster can have at most one exiting line. One can also imagine to
define the entering lines (if any). Note that the number of entering lines can
be arbitrary: hence figure (8.3.2) is a rather special case, so chosen for its
convenience in the later illustration of other features of clusters of a graph.

v1
v2

v3

v5

v6

v4

T

T ′

T ′′

v7

Fig.(8.3.2)F8.3.2 An example of three clusters symbolically delimited by circles, as visual

aids, inside a tree (whose remaining branches and clusters are not drawn and are indicated
by the bullets); not all labels are explicitly shown. The scales (not marked) of the branches
increase as one crosses inward the circles boundaries: recall, however, that the scale labels
are integers ≤ 1 (hence typically ≤ 0). If the mode labels of (v4, v5) add up to 0 the cluster
T ′′ is a self-energy graph. If the mode labels of (v2, v4, v5, v6) add up to 0 the cluster T ′

is a self-energy graph and such is T if the mode labels of (v1, v2, v3, v4, v5, v6, v7) add up
to 0. The cluster T ′ is maximal in T .

Among the clusters we consider the ones with the property that there is
only one tree branch entering them and only one exiting and both carry the
same momentum. We set the following definition.

(8.3.4) Definition:D8.3.4 (Self-energy clusters and divergence seeds)
Let T be a cluster with just one entering and one exiting lines. Denote λT
the entering branch: its scale n = nλT is smaller than the smallest scale
nT of the branches inside T . We call w1 the node into which the branch
λT ends inside T . We say that such a T is a self-energy subgraph if the
following conditions are verified.
(i)
∑
w∈T νw = 0: hence the entering and exiting branches carry the same

momentum.
(ii) If n = nλT , and E, η are defined by E ≡ 2−3ηN−1, η = τ−1 then the
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number M(T ) of branches contained in T is not too large:

M(T )
def
= number of branches contained in T ≤ E 2−nη, (8.3.3)e8.3.3

We call nλT the self-energy-scale of T , and λT a self-energy branch.
A graph containing a self-energy graph will be said to contain a divergence
seed.

Remarks: (1) The self-energy graphs are called resonances in Eliasson’s
terminology, [El96].
(2) Note that the self-energy-scale n of a self-energy graph T is different
from the scale nT of T as a cluster: one has n < nT .
(3) The reason for the name of divergence seed that we give to self-energy
subgraphs is due to the fact that the values of graphs of order k which con-
tain many divergence seeds can only be, in general, bounded proportionally
to a power of k! as the key example in problem [8.2.4] shows. The appro-
priateness of the name is even more clear when one considers the theory
of invariant tori of dimension lower than the maximal, i.e. lower than the
number of degrees of freedom, [GG02], of the approach to KAM theory
based on “resummations” of the Lindstedt series; see Sections §(9.1) and
§(9.1).
Let us consider a tree ϑ and its clusters. We wish to estimate the number
Nn(ϑ) of branches in Λ(ϑ) with scale n ≤ 0.
Denoting by T a cluster of scale n let qT be the number of self-energy
graphs of self-energy-scale n contained in T (hence with entering branches
of scale n). Recalling that Θk,ν,j is defined in item (vii) of definition (8.2.1),
we have the following inequality.

(8.3.1) Lemma:L8.3.1 For all trees ϑ ∈ Θk,ν,j one has

Nn(ϑ) ≤
4k

E 2−ηn
+

∑

T∈T (ϑ)
nT=n

(−1 + qT ), (8.3.4)e8.3.4

with E = N−12−3η, η = τ−1.

Remarks: (1) This is a version of Bryuno’s lemma which goes back to
Bryuno’s work on a theorem by Siegel (in fact Siegel found in a seminal
paper the first solution of a small divisor problem, cf. problem [8.3.2]); a
proof of (8.3.1) is deferred to Appendix (8.3) below.
(2) Note that a cluster T of scale n can contain self-energy graphs of self-
energy scale n which in turn contain other self-energy graphs (necessarily of
higher self–energy scale): the number qT in lemma (8.3.1) counts only the
self–energy graphs of self-energy scale n.
Besides an estimate of the number of self-energy graphs that can be found
in a tree in Θk,ν,j we shall need a precise description of the families of trees
containing divergence seeds whose values we want to sum together to exhibit
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the cancellations that show that their sums are not as large as they could
a priori be. The families are defined below: a definition whose usefulness
relies upon he validity of the following lemma (8.3.2). The formulation is
quite involved and the reader is advised to follow it on a drawing of a graph,
e.g. on the graph of figure (8.3.2).

(8.3.5) Definition:D8.3.5 (Resummation families)
Given a labeled tree ϑ ∈ Θk,ν,j and a self-energy graph T of ϑ detach the
part of ϑ which has λT as root line and attach it successively to the points
w ∈ T̃ , where T̃ is the set of nodes of V (T ) outside the self-energy graphs
contained in T if any (note that the endpoint w1 ∈ V (T ) of λT is among
them). This defines a family F1(ϑ) of trees that have the same self energy

graphs. Denote by Λ(T̃ ) the set of branches λ contained in T and with at

least one point in T̃ , and by Λ1(T̃ ) the set of branches in Λ(T̃ ) plus the self-

energy branches λT ; note that all branches λ ∈ Λ(T̃ ) have a scale nλ ≥ nT .
Select another self energy graph T 1 of ϑ and reapeat the above operations of
detaching and attaching the line λT 1 on all the trees ϑ1 ∈ F1(ϑ) and thus
define a larger family of trees F2(ϑ). Imagine the procedure repeated for all
self-energy graphs in ϑ. For each self-energy graph T of ϑ we shall call VT
the number of nodes in T̃ , i.e. VT = |V (T̃ )|. To the just defined set of trees
we add the trees obtained by reversing simultaneously the signs of the node
modes νw, for w ∈ T̃ : the change of sign is performed independently for the
various self-energy graphs. This defines a family of

∏
2VT trees that we call

F(ϑ) (the product is over all self-energy graphs in ϑ).

Remarks: (1) The number
∏

2VT is bounded by exp
∑

2VT ≤ e2k.
(2) It is important to note that the definition of self-energy graph is such
that the above operation (of shift of the node to which the branch entering
the self-energy graph is attached) has the property that it cannot change
too much the sizes of the propagators of the branches inside the self-energy
graphs. The reason is simply that inside a self-energy graph of self-energy-
scale n the number of branches is not very large, being ≤ Nn ≡ E 2−nη

and the number E has been chosen to make the property true.
Indeed let λ be a branch contained inside the self-energy graphs T = T1 ⊂
T2 ⊂ . . . of self-energy-scales n = n1 > n2 > . . .; then the shifting of the
branches λTi can cause a change in the size of the propagator of λ by at
most

2n1 + 2n2 + . . . < 2n+1. (8.3.5)e8.3.5

For any branch λ in Λ(T ) the quantity ω0 ·νλ has the form ω0 ·ν0λ+σλω0 ·νλT
if ν0λ is the momentum of the branch λ “inside the self-energy graph T ”,
i.e. it is the sum of all the node modes of the nodes preceding λ, in the
sense of the branch arrows, but contained in T ; and σλ = 0, 1.
Therefore not only |ω · ν0λ| ≥ 2n+3 (because ν0λ is a sum of ≤ Nn node
modes, so that |ν0λ| ≤ N Nn) but ω0 · ν0λ is “in the middle” of the dyadic
interval containing it and by (8.3.2) does not get out of it if we add a
quantity bounded by 2n+1 (like σλω0 · νλT ), cf. remark (1) to definition
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(8.3.2). Hence no branch changes scale as ϑ varies in F(ϑ1), if ω0 verifies
(8.3.2).

By the strong Diophantine property (8.3.2) imposed on the rotation vector
ω0 we have therefore achieved a proof of the following lemma.

(8.3.2) Lemma:L8.3.2 (Invariance of the scales of the lines of trees in the re-
summation families)
The self-energy graphs of the trees ϑ in F(ϑ1) all contain the same sets
of branches, and the same branches enter or exit each self-energy graph
(although they are attached to generally distinct nodes inside the self-energy
graphs: the identity of the branches is here defined by the number label that
each of them carries in ϑ1). Furthermore the scales of the self-energy graphs,
and of all the branches, do not change as ϑ varies in F(ϑ1).

Remarks: (1) The above proof of this key lemma relies in an essential way
on the strong Diophantine property assumed for the rotation vector ω0. It
is therefore desirable to show that one can release the latter assumption. In
the problems for Section §(8.4) we shall see that if ω0 does not satisfy the
strong Diophantine property for a sequence of scale factors γn with γ = 2 it
essentially satisfies it for another sequence of scaling factors also exponen-
tially shrinking to 0 (as n→ −∞) and this is all one really needs to achieve
a proof of the proposition (8.1.1).
(2) The lemma allows us to consider the collection of the trees in Θk,ν,j
organized as follows. Let ϑ2 be a tree not in F(ϑ1) and construct F(ϑ2),
etc. We define a collection {F(ϑi)}i=1,2,... of pairwise disjoint families of

trees. We shall sum all the contributions to h
(k)
ν,j coming from the individual

members of each family and we shall use that no line “changes scale” as the
tree varies in the collection in the sense of lemma (8.3.2).
(3) Collecting tree values in this way is a realization of Eliasson’s resumma-
tion: it is more detailed than the original one in [El96], where no subdivision
of the trees in classes was considered and the cancellation that we exhibit
below was derived from an argument involving all graphs at the same time.
Thus the Eliasson cancellation can be regarded as a cancellation due to a
special symmetry of the problem (analogous to the Ward identities of field
theory) and the above analysis shows that more symmetry is present in the
problem and the cancellation takes place in a more detailed fashion.

Appendix 8.3: Siegel-Bryuno bound on the number of self-energy
graphs.

We give here a proof of the lemma (8.3.1). The argument followed below
is a minor adaptation of Bryuno’s proof of Siegel’s theorem, as remarkably
exposed by Pöschel, [Po86].

Proof of lemma (8.3.1). Call N∗
n(ϑ) the number of non-self-energy branches

carrying a scale label ≤ n in a tree ϑ with k nodes. We shall prove first
that N∗

n(ϑ) ≤ 2k(E2−ηn)−1−1 if Nn(ϑ) > 0 (recall that E = N−12−3η and
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η = 1/τ). We fix n and denote N∗
n(ϑ) as N

∗(ϑ).
If ϑ has the root branch λ0 with scale > n then calling ϑ1, ϑ2, . . . , ϑm
the subtrees of ϑ emerging from the last node of ϑ and with kj > E 2−ηn

branches, one has N∗(ϑ) = N∗(ϑ1) + . . . + N∗(ϑm) and the statement is
inductively implied from its validity for k′ < k provided it is true that
N∗(ϑ) = 0 if k < E2−ηn, which is is certainly the case if E is chosen as in
equation (8.3.4).1N8.3.1

In the other case, call λ1, . . . , λm the m ≥ 0 branches on scale ≤ n which
are the nearest to λ0:

2 such branches are the entering branches of a clusterN8.3.2

T on scale nT > n. If ϑi is the tree with λi as root branch one has N∗(ϑ) ≤
1 +

∑m
i=1N

∗(ϑi), and if m = 0 the statement is trivial, while if m ≥ 2 the
statement is again inductively implied by its validity for k′ < k.
If m = 1 we once more have a trivial case unless the order k1 of ϑ1 is
k1 > k−E 2−nη/2. Finally, and this is the real problem as the analysis of a
few examples shows, we claim that in the latter case either the root branch
of ϑ1 is a self-energy branch or it cannot have scale ≤ n.
To see this, note that |ω · νλ0

| ≤ 2n and |ω · νλ1
| ≤ 2n, hence δ ≡ |(ω ·

(νλ0
− νλ1

)| ≤ 2n+1, and the Diophantine condition implies that either

|νλ0
− νλ1

| > 2−(n+1)η or νλ0
= νλ1

. The latter case being discarded as k−
k1 < E 2−nη/2 (and we are not considering the self-energy graphs), it follows
that k−k1 < E 2−nη/2 is inconsistent: it would in fact imply that νλ0

−νλ1

is a sum of k−k1 node modes and therefore |νλ0
−νλ1

| < NE 2−nη/2, hence
δ > 23 2n which contradicts the above opposite inequality.
A similar, far easier, induction can be used to prove that if N∗

n(ϑ) > 0
then the number pn(ϑ) of clusters of scale n verifies the bound pn(ϑ) ≤
2k (E2−ηn)−1 − 1; see problem [8.3.3]. Thus equation (8.3.4) is proved.

Problems for §8.3

[8.3.1]:Q8.3.1 (Full measure of strongly Diophantine vectors)

Show that the volume of the points ω ∈ R
ℓ that do not verify property (8.3.2) for some

C > 0 has zero volume if τ > ℓ− 1. (Hint: Follow a path similar to the hint for problem
[8.1.7].)

[8.3.2]:Q8.3.2 (Siegel’s theorem)

Given a function F (z) of ℓ complex variables holomorphic in |zi| < R and with F (0) = 0,

∂ziFj(0) = δije
iωj , consider the map

z′j = Fj(z) = eiωj zj + O(|z|2)

and the problem of finding new variables ζ = Φ(z) = z+O(|z|2) such that near the origin

the map takes the form
ζ′j = eiωj ζj .

1 Note that if k ≤ E 2−nη one has, for all momenta ν of the branches, |ν| ≤ NE 2−nη ,
i.e. |ω · ν| ≥ (NE 2−nη)−τ = 23 2n so that there are no clusters T with nT = n and
N∗(ϑ) = 0. The choice E = N−12−3η is convenient: but this, as well as the whole
lemma, remains true if 3 is replaced by any number larger than 1. The choice of 3 is
made only to simplify some of the arguments based on the self-energy graph concept.

2 i.e. such that no other branch along the paths connecting the branches ℓ1, . . . , ℓm to
the root is on scale ≤ n.
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Show that if there exist C, τ > 0 such that |ω · ν + 2πn| > C−1(|ν| + |n|)−τ for all

ν ∈ Z
ℓ, n ∈ Z with |ν|+ |n| > 0 then Φ exists and is analytic near the origin z = 0. (Hint:

Settingm = (m1, . . . ,mℓ) ∈ Z
ℓ
+ and |m| = m1+. . .+mℓ, write Φ(z) = z+

∑
|m|>1

cm zm

in Taylor series and determine cm recursively via a tree expansion: note that m ∈ Z
ℓ
+

plays here the role of ν in the KAM theory: however no self-energy graphs can arise
because mj ≥ 0. Therefore the result follows from a simpler version of lemma (8.3.1),
i.e. from lemma (8.2.2) which is also implicit in lemma (8.3.1).)

[8.3.3]:Q8.3.3 (Estimate of the number of clusters of scale n)

Show that the number pn(ϑ) of clusters on scale n contained in a tree ϑ verifies the
bound pn(ϑ) ≤ 2k(E2−ηn)−1 − 1, with η = τ−1 and E = N−12−3η . (Hint: The
bound is true for k ≤ E2−ηn. If the last tree node v0 is not in a cluster of scale n
one has pn(ϑ) = pn(ϑ1) + . . . + pn(ϑm), with the notation in Appendix 8.3 , and the
statement follows by induction. If v0 is in a cluster of scale n we call ϑ1, . . ., ϑm the
subtrees entering the cluster containing v0 and with orders kj > E2−ηn: then one has
pn(ϑ) = 1+ pn(ϑ1) + . . .+ pn(ϑm). As in Appendix 8.3 we can assume m = 1, the other
cases being trivial. But in such a case there will be only one branch entering the cluster
V of scale n containing v0 and it will have a momentum of scale ≤ n− 1. Therefore the
cluster V must contain at least E2−ηn nodes. This means that k1 ≤ k −E2−εn.)

[8.3.4]:Q8.3.4 In the context of problem [8.1.11] replace the condition that the minimum

(evaluated over all non-negative integer components vectors ν with
∑

j
νj ≥ 2 and over

all j = 1, . . . , n) min |ν · λ − λj | is > c > 0 with the condition min |ν · λ − λj | > C|ν|−τ
for suitable constants C, τ > 0 and prove that the same conclusions hold. (Hint: Follow
the proof of Siegel’s theorem in problem [8.3.2].)

§8.4 Convergence and KAM theorem

Having exhibited, cf. remark (2) to lemma (8.3.2) and definition (8.3.5),
the class of graphs whose values we want to add up before attempting an
estimate we turn to proving that the value of their sums admits, at fixed
order k, a much better bound than the one they satisfy individually.
Let ηT = ω · νλT if νλT is the momentum of the line λT of scale nλT ,

nλT < nT and ω = C ω0. If λ is a branch in Λ(T̃ ), i.e. by definition (8.3.3)
a branch of a line outside the inner self–energy clusters in T if any, we can
imagine to write the quantity ω ·νλ as ω ·ν0λ+σληT , with σλ = 0, 1 (cf. figure

(8.3.2)). The product of the propagators of the branches in T̃ is C2|Λ(T̃ )|

times ∏

λ∈Λ(T̃ )

1

(ω · ν0λ + σληT )2
. (8.4.1)e8.4.1

(8.4.1) Definition:D8.4.1 (Height of tress and of self-energy graphs)
If the tree does not contain any self-energy graphs, we say that it has height
0; if the only self-energy graphs do not contain other self-energy graphs, we
say that the tree has height 1; more generally if the maximum number of
self-energy graphs that contain a given self-energy graph is p, we say that
the tree has height p.
Likewise we say that a self-energy graph has height 0 if it does not contain
other self-energy graphs. Recursively we say that a self-energy graph has
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height p if it contains only self-energy graph of height ≤ p− 1 and at least
one self-energy graph of height p − 1. Given a tree ϑ, call V(ϑ) the set of
all self-energy graphs in ϑ, and set

Λ(V(ϑ)) = ∪
T∈V(ϑ)

Λ(T ), Λ1(V(ϑ)) = ∪
T∈V(ϑ)

Λ1(T ). (8.4.2)e8.4.2

Remark: Of course in (8.4.2) the union could just be restricted to the
maximal self-energy graphs (the sets Λ(T ) and Λ1(T ) have been introduced
in definition (8.3.5)).

Consider first the case of a tree ϑ of height 1 and let us denote by T any
of its self-energy graphs: if we regard the quantities ηT as independent
variables we see that (8.4.1) is holomorphic in ηT for |ηT | < 2nT−3. While
ηT varies in such complex disk the quantity |ω ·ν0λ+σληT | does not become
smaller than 2nT−3.1 The main point here is that the quantity 2nT−3 willN8.4.1

usually be ≫ 2nλT which is the value that ηT actually can reach in every
tree in F(ϑ); this can be exploited in applying the maximum principle, as
done below.
Note that the quantities ηT do not depend on the element of the family
F(ϑ), so that we can factor out of the sum of the values of the graphs
in F(ϑ) the product

∏
T∈V(ϑ) η

−4
T (because each self-energy graph has one

branch entering and one exiting with the same propagator) and write the
product of the propagators of any tree as C2|Λ(widetildeϑ)|

( ∏

λ∈Λ(ϑ)\Λ1(V(ϑ))

1

(ω · νλ)2
)
·
( ∏

T∈V(ϑ)

λ∈Λ(T )

1

(ω · ν0λ + σληT )2

)
·
( ∏

T∈V(ϑ)

1

η2T

)
,

(8.4.3)e8.4.3
where the first product is over the branches λ which neither enter nor are
inside a self-energy graph of ϑ (so that their momentum is the same in
all trees of the family F(ϑ)), the second product is over the branches λ
contained in V , and the third product is over the self-energy graphs T ∈
V(ϑ) and takes into account the branches entering T , i.e. the self-energy
branches. As said above the last product factors out of the sum of the
values of the trees in F(ϑ) at fixed ϑ.
Consider the sum of the

∏
2VT ≤ e2k products of propagators of the mem-

bers of the family F(ϑ) divided by the last factor in (8.4.3). Each such
product relative to the tree ϑ is holomorphic in the region |ηT | < 2nT−3

and it is bounded there by
∏

2−2(nλ−3) ≤ 26k
∏
λ 2−2nλ , if nλ the scale of

the branch λ in ϑ and if the product is over the branches neither entering
nor exiting a self-energy graph. This even holds if the ηT are regarded as
independent complex parameters.

1 In fact |ω·ν0λ| ≥ 2n+3 because T is a self-energy graph; therefore |ω·νλ| ≥ 2n+3−2n+1 >

2n+2 so that nT ≥ n+ 3. On the other hand we note that |ω · ν0
λ
| > 2nT−1 − 2n+1, so

that it follows that |ω ·ν0λ+σληT | ≥ 2nT−1−2n+1−2nT−3 ≥ 2nT−3, for |ηT | < 2nT−3.
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By construction it is clear that the just considered sum of the
∏

2VT ≤ e2k
terms from the trees in F(ϑ), vanishes to second order in the ηT parameters
(by the approximate cancellation discussed above). By the maximum prin-
ciple this means that if we bound the sum by the number of terms times
the maximum among them (easy to estimate because the propagators have
all well defined seizes) we can multiply the result by a further factor of the
order of 2−2nλT /2−2(nT−3) and still obtain a valid bound.
Hence by the maximum principle, and recalling that each νv in (8.2.8) can
be bounded by N , and that (as it is straightforward to check) one has

∑

v∈V (ϑ)

mv = k − 1, (8.4.4)e8.4.4

we can bound the contribution to h(k)ν from the family F(ϑ) by

[ 1
k!

(f0C2N2

J

)k
26ke2k

∏

n≤0

2−2nNn
][ ∏

n≤0

∏

T∈T (ϑ)
nT=n

qT∏

i=1

22(n−ni+3)
]
, (8.4.5)e8.4.5

where
(1) Nn = Nn(ϑ) is the number of propagators of scale n in ϑ (n = 1 does
not appear as |ω · ν| ≥ 1 in such cases);
(2) the first square bracket is the bound on the product of individual ele-
ments in the family F(ϑ) times the bound e2k on their number: this takes
into account also the last product in (8.4.3);
(3) the second square bracket is the part coming from the maximum prin-
ciple, applied to bound the resummations, and is explained as follows.
(i) The dependence on the variables ηTi ≡ ηi relative to self-energy graphs
Ti ⊂ T with self-energy-scale nλTi = n is holomorphic for |ηi| < 2ni−3, if
ni ≡ nTi , provided ni > n+ 3 (see above).
(ii) The resummation says that the dependence on the ηi’s has a second
order zero in each. Hence the maximum principle tells us that we can im-
prove the bound given by the third factor in (8.4.3) by the product of factors
(|ηi| 2−ni+3)2 if ni > n + 3. If ni ≤ n + 3 we cannot gain anything: but
since the contribution to the bound from such terms in (8.4.3) is > 1 we
can leave them in it to simplify the notation, (of course this means that the
gain factor can be important only when ≪ 1).

We shall shortly see that the above would be sufficient if there were no
trees of height higher than 1. To treat the general case we can proceed
inductively and suppose that the bound in (8.4.5) holds for trees of height
1, 2, . . . , p−1 and for values of the ηT = ω ·νλT of the branches that enter the
maximal self-energy graphs T which are in the complex disk |ηT | < 2nT−3.
Let ϑ be a tree with height p: then each of its maximal self-energy graphs V
contains a tree of height < p. We imagine that all the resummations relative
to the branches that enter the self-energy graphs that are not maximal have
been performed so that we only have to consider the trees that are obtained
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by attaching the branches that enter the maximal self-energy graphs T to
the nodes in T̃ .
Suppose for simplicity that there is only one maximal self-energy graph T
of height p. Then the sum of the values of the trees of the family F(ϑ)
obtained by shifting the entrance node into the self-energy graphs of lower
height will have the form

( ∏

λ∈Λ(ϑ)\Λ1(T )

νv′ · νv
(ω · νλ)2

)
·

·
( ∏

λ∈Λ(T̃ )

νv′ · νv
(ω · ν0λ + σληT )2

)
· 1

η2T
·
(∏

Ti

F (Ti, νvi , νv′i
)
)
,

(8.4.6)e8.4.6

where the last product is over all the maximal self-energy graphs Ti con-
tained in T , v′i and vi are the nodes in T̃i from which exits (or enters,
respectively) the branch that enters (or exits) the self-energy graph Ti, and
F (Ti, νvi , νv′i

) is the sum of the values of all the trees that we have to sum in
shifting the entrance node of the branches that enter the self-energy graphs
of lower order inside Ti. Note that the branches λ in the first product are
the branches external to T (but not entering T ), while the ones in the second
product are the branches internal to T (i.e. branches connecting to nodes

in T̃ ).
We can then remark that when ηT varies in the complex disk |ηT | ≤ 2nT

the divisors of the branches that enter the inner self-energy graphs T ′ (of
any height) do not exceed in modulus 2nλT ′ . Therefore we can bound the
quantities F (Ti, νvi , νv′i

) via the inductive bound and obtain that (8.4.5) is
valid also for trees of height p which contain only one maximal self-energy
graph.
Since the case in which there are many self-energy graphs of height p is
clearly reducible to the case in which there is only one such cluster the
conclusion is the validity of the inequality (8.4.5) in general. It would also
possible to give a proof of the inequality that is not base on an inductive
argument but we leave it as a problem for the reader.

Hence substituting (8.3.2) into (8.4.5) we see that the qT is taken away by
the first factor in 22n2−2ni , while the remaining 2−2ni are compensated by
the −1 before the +qT in (8.3.2), taken from the factors with T = Ti, (note
that there are always enough −1’s).
Hence the product (8.4.5) is bounded by

1

k!
(C2J−1f0N

2)ke2k212k
∏

n≤0

2−8nkE−1 2ηn ≤ 1

k!
Bk0 , (8.4.7)e8.4.7

with B0 suitably chosen.
To sum over the trees we note that fixed ϑ the collection of clusters is fixed.
Therefore we only have to multiply (8.4.7) by the number of tree shapes for
ϑ, (≤ 22kk!), by the number of ways of attaching mode labels, (≤ (3N)ℓk),
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by the number of ways of contacting the tensor labels, (≤ ℓk), so that we

can bound |h(k)ν | by

ε−k0 ≡ (bℓJ
−1C2f0N

2+ℓecNeξN )k, (8.4.8)e8.4.8

with bℓ suitably chosen.

Problems for §8.4 (Complements to KAM theory)

[8.4.1]:Q8.4.1 (Diophantine spacing)

Let ω be a Diophantine vector, cf. (8.1.6), with constants C and exponent τ . Consider the

set Bn of the values of |ω · ν| as ν ∈ Z
ℓ varies in the set 0 ≤ |ν| < (2n+3)−1/τ , with n =

0,−1,−2, . . .. The sets Bn verify the inclusion relation Bn ⊂ Bm if m < n. Check that
the spacing between the points of each of the sets Bn is at least 2τ (2(2n+3)−1/τ )−τ ≥
2n+3. Check also that x ∈ Bn is such that x > 2n+3, if x 6= 0.

[8.4.2]:Q8.4.2 In the context of problem [8.4.1] let, more abstractly, Bn, n = 0,−1, . . ., be

a sequence of sets such that (i) 0 ∈ Bn, (ii) Bn ⊂ Bm if m < n and (iii) the spacing
between the points in Bn is at least 2n+3 (the latter will be the spacing property). Show
that there exists a sequence γ0, γ−1, . . . with γp ∈ [2p−1, 2p] such that

|x− γp| ≥ 2n+1 if n ≤ p ≤ 0 and x ∈ Bn, (8.4.9)e8.4.9

for all n ≤ 0. (Hint: The reader who does not want to build the proof can read it in the
appendix (8.4).)

[8.4.3]:Q8.4.3 (Arithmetic properties related to the Diophantine property)

In the context of problem [8.4.2] let C0 = 2τC and ω = C0ω ehre ω0 is a Diophantine
vector with constant C and exponent τ ; show that it is possible to find a sequence γp
with γp ∈ [2p−1, 2p], p ≤ 0, such that

||ω · ν| − γp| ≥ 2n+1 if 0 < |ν| ≤ (2n+3)−τ
−1

(8.4.10)e8.4.10

for all n ≤ 0 and for all p ≥ n. Furthermore |ω · ν| 6= γn, for all n ≤ 0. (Hint: This is
implied by the arithmetic result of problem [8.4.2].)

[8.4.4]:Q8.4.4 (Elimination of the assumption of strongly Diophantine property, [GG95])

Starting from the result of problem [8.4.3] consider the notion of self–energy subgraph
introduced in Section 8.3 assuming rotation vectors ω satisfying the conditions (8.3.2).
Adapt the notion to the case in which only the Diophantine property (8.1.6) is assumed.
To define the scales let (as above) ω = 2τCω; a propagator will be said to be on scale
n if one has γn−1 ≤ |ω · ν| < γn, for n ≤ 0, and set n = 1 if γ0 < |ω · ν|. Show
that the line scales do not change as a line entering a self-energy graph is detached and
reattached to another node of the subgraph. (Hint: The shift of the lines exemplified
in Fig.(8.3.1) causes a change of the size of the propagator by at most γn1 + γn2 + . . .
(instead of 2n1 +2n2 + . . ., see (8.3.5)), but such a quantity is still bounded by 2n+1. By
proceeding as in Section 8.4, we see that the product of the propagators is holomorphic
in ηT ≡ ω · νλT for |ηT | < γnT−3....)

[8.4.5]:Q8.4.5 (Extension of Siegel–Bryuno bound)

Imagine that the perturbation f(α) is not a trigonometric polynomial but it is just
analytic in α. Extend the definition of self–energy graph by changing the condition that
the number of branches is ≤ E2−nη , cf. (8.3.3), into

M(T )
def
=

∑

v∈V (T )

|νv| ≤ E2−nη , (8.4.11)e8.4.11
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where E = 2−3η . Show that a lemma analogous to lemma (8.3.1) holds in the form: for
all trees ϑ one has

Nn(ϑ) ≤
4M(ϑ)

E 2−ηn
+
∑

T∈T (ϑ)
nT=n

(−1 + qT ) , M(ϑ) =
∑

v∈V (ϑ)

|νv|, (8.4.12)e8.4.12

with E = 2−3η and η = 1/τ . Check that the above statement implies as a particular
case lemma (8.3.1) if the perturbation is a trigonometric polynomial.(Hint: The proof is
again by induction, and it is essentially identical to that of lemma (8.3.1), apart from the
obvious changes in the notations.)

[8.4.6]:Q8.4.6 (Non-divergent graphs in the case of analytic perturbations)

Check that the bound in problem [8.4.5] can be directly used to obtain the result of
proposition (8.1.1) under the only assumption that the perturbation is analytic. (Hint:

In (8.4.3) the bound fk0 has to be replaced by the bound F k
∏
v∈V (ϑ)

e−κ|νv| for

some F, κ > 0 (which comes from the analyticity assumption on V ). The product∏
n≤0

2−2nNn will be replaced by 2−2n0k
∏
n≤n0

2−2nNn where n0 is an arbitrary neg-

ative integer. Of course it is no longer possible to bound the product
∏
v∈V (ϑ)

|νv|mv+1

with N2k as in (8.4.3), but we can use that 1
m!
|ν|m ≤

(
8
κ

)m
and that the number of

trees with given {mv} and without labels is bounded by k!/
∏
v
mv !; see problem [8.2.1].

From the above bound by F k
∏
v∈V (ϑ)

e−κ|νv | we can extract a factor ≤ exp[−κ|ν|/2],
with ν = νλ0

, if λ0 is the root branch, while the remaining factor exp[−κM(ϑ)/2] (with

M(ϑ) ≡
∑

v
|νv |, see (8.4.12)), will be kept as such. Collecting together the bounds the

sum over all non divergent graphs (i.e. without self-energy subgraphs) is

F ke−
1
2
κ|ν|

∑

{ν
v
}v∈V (ϑ)

(∏

v

e−
1
2
κ|ν

v
||νv|

)
2−2n0k

(
8

κ

)2k ∏

n≤n0

2

∑
v
|ν
v
|4E−12n/τ

can be bounded by a constant to the power k if n0 is so chosen that∑
n≤n0

4(log 2)E−12n/τ < κ/4, which assures the summability over the Fourier labels.)

[8.4.7]:Q8.4.7 (Cancellation in the case of analytic perturbations)

Prove that, by considering the quantities ηT
def
= ω · νλT , cf. lines preceding (8.4.1), as

independent variables, the product of propagators is holomorphic in ηT for |ηT | < γnT−3.
Check that this can be combined with the results of problems [8.4.5] and [8.4.6], to proceed
as in Section §8.4 and to achieve a proof of proposition (8.1.1) under the only assumption
the perturbation V (α) is analytic in α. (Hint: If λ is a branch on scale nT , one has
γnT−1 ≤ |ω · νλ| < γnT ; then |ω · ν0λ| > 2n+3 implies |ω · νλ| > 2n+3 − 2n > 2n+2, so
that nT ≥ n + 3. On the other hand, if nT > n + 3, i.e. nT = n+m, for some m > 3,
one has |ω · ν0λ| > γnT−1 − γn, because the the scales of all the branches do not change,

so that it follows that, for |ηT | < γnT−3, one has |ω · ν0
λ
+ σληT | ≥ γnT−1 − γn − γnT−3

≥ (2nT−2 − 2nT−m)− γnT−3 ≥ (2nT−3 + 2nT−4 + . . .+2nT−m+1)− 2nT−3 ≥ 2nT−4;

otherwise, if nT = n+ 3, one has |ω · ν0λ + σληT | > 2n+3 − γnT−3 ≥ 2nT−1, for |ηT | <
γnT−3. Therefore we can conclude that, for |ηT | < γnT−3, the quantity |ω · ν0

λ
+ σληT |

does not become smaller than 2nT−4.)

[8.4.8]:Q8.4.8 (Lindstedt series for non-even perturbations)
Check that the assumption fν = f−ν can be avoided in order to obtain the formal

solubility of the equations of motions (8.1.12). (Hint: We can prove by induction on the
tree order that no branch can have a vanishing momentum. Consider all contributions
arising from the trees ϑ ∈ Θk,0 deprived of the root branch2 (so that Val(ϑ) is a well-

N8.4.2
defined quantity by the inductive hypothesis): we group together all trees obtained from

2 This means that the propagator of the root line is replaced with 1.
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each other by shifting the root branch, i.e. by changing the node which the root branch
exits and orienting the arrows in such a way that they still point toward the root. We
call F(ϑ) such a class of trees (here ϑ is any element inside the class). The values Val(ϑ′)
of such trees ϑ′ ∈ F(ϑ) differ because (1) there is a factor iνv depending on the node
v to which the root branch is attached, and (2) some arrows change their directions.
More precisely, when the root branch is detached from the node v0 and reattached to the
node v, if P(v0, v) = {w ∈ V (ϑ) : v0 � w � v} denotes the path joining the node v0
to the node v, all the momenta flowing through the branches λ along the path P(v0, v)
change their signs: nevertheless the propagators do not change. Then by summing the
values of all possible trees inside the class F(ϑ) we obtain a common value times i times∑

v∈V (T )
νv, and the sum gives zero.)

[8.4.9]:Q8.4.9 (KAM theorem for non-even perturbations)

Check that the assumption fν = f−ν can be avoided in the proof of the KAM theorem.

(Hint: Given a tree ϑ with a self-energy graph T , set δ = ω ·ν, with ν = νλ2
T
. Consider all

trees which can be obtained by shifting the entrance node of the entering branch λ2T : the

sum of the values of all the so obtained trees is zero when the propagators of the branches

in Λ(T ) are computed at δ = 0, by the same argument as the one used in Section 8.1.

Then consider the corresponding contributions to first order in δ: one has to derive the

product of propagators of the branches λ ∈ Λ(T ) and compute it at δ = 0. The derivative

gives |Λ(T )| terms, each of which has the derivative acting on a propagator Gλ, while all

the other propagators Gλ′ , λ′ 6= λ, are not derived. The branch λ divides V (T ) into two

disjoint set of nodes V1 and V2, such that λ1T exits from a node inside V1 and λ2T enters

a node inside V2: if λ = λv one has V2 = {w ∈ V (T ) : w � v} and V1 = V (T ) \ V2.
By setting ν1 =

∑
v∈V1

νv and ν2 =
∑

v∈V2
νv, one has ν1 + ν2 = 0. Then consider

the families F1(ϑ) and F2(ϑ) of trees obtained as follows: F1(ϑ) is obtained from ϑ

by detaching λ1T then reattaching to all the nodes w ∈ V1 and by detaching λ2T then

reattaching to all the nodes w ∈ V2, while F2(ϑ) is obtained from ϑ by reattaching

the branch λ1T to all the nodes w ∈ V2 and by reattaching the branch λ2T to all the

nodes w ∈ V2. As a consequence of such an operation the arrows of some branches

λ ∈ Λ(T ) change their directions: this means that for some branch λ the momentum νλ
is replaced with −νλ. The derived propagator Gλ can change sign, while the non-derived

propagators Gλ′ , with λ′ 6= λ, do not change by parity: one has a different sign for the

trees in F1(ϑ) with respect to the trees in F2(ϑ). Then by summing over all the possible

trees in F1(ϑ) we obtain a value i2ν1ν2 times a common factor, while by summing over

all the possible trees in F2(ϑ) we obtain −i2ν1ν2 times the same common factor, so that

the sum of two sums gives zero.)

Appendix 8.4: Weakening the strong Diophantine condition.

Here we prove the statement in problem [8.4.2]. Note that (8.4.10) is very
similar to the second condition introduced in (8.3.2) to define the strong
Diophantine condition. Our point is that all that is really needed (see the
following discussion) to prove the KAM theorem are (8.1.6) (Diophantine
property) and (8.4.10): the latter is a simple arithmetic property which is
in fact a consequence of the first.

Proof: Note that if γp ∈ [2p−1, 2p] ≡ Ip the equations (8.4.9) are obviously
verified for n > p− 3, hence we can suppose p ≥ n+ 3.

Fix p ≤ 0 and let G = [a, b] be an interval verifying what we shall call
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below the property Pn:
Pn : |x− γ| ≥ 2m+1 for all n ≤ m ≤ −3,

for allx ∈ Bn and for all γ ∈ G, |G| ≥ 2n+1.
(A8.4.1)eA8.4.1

Let Gp−3 ≡ [2p−1, bp−3], with bp−3 ∈ [2p−1, 2p], be a maximal interval
verifying property Pp−3 (note that Gp−3 exists because x ∈ Bp−3, x 6= 0
implies x ≥ 2p by the spacing property, and it is bp−3 ≥ 2p−1 + 2p−2).
Assume inductively that the intervals [an, bn] = Gn can be so chosen that
Gn′ ⊆ Gn′′ if n′ < n′′ and Gn is maximal among the intervals contained in
Gn+1 and verifying the property Pn.
If we can check that the hypothesis implies the existence of an interval
G ⊆ Gn verifying Pn−1 we shall be able to define Gn−1 to be a maximal
interval among the ones contained in Gn and with the property Pn−1: in
case of ambiguity we shall take Gn−1 to coincide with the rightmost possible
choice. And as a consequence we shall be able to define γp = limn→−∞ bn,
which will verify (8.4.10).
To check the existence of G ⊆ Gn verifying Pn−1 we consider first the
case in which Bn−1 has one and only one point x in Gn. If |Gn| ≥ 2n+2

and x is in the first half of Gn we can take, by the spacing property, G =
[x + 2n,min{bn, x + 2n+2 − 2n}]; if it is in the second half we take G =
[max{an, x− 2n+2 + 2n}, x− 2n].
If, on the other hand, |Gn| < 2n+2 it is Gn ⊂ Gn+1 strictly and, further-
more, the interval (x − 2n+2, x + 2n+2) does not contain points of Bn−1

other than x itself (by the spacing property). The strict inclusion implies
that there is a point y ∈ Bn at distance exactly 2n+1 from Gn (recall the
maximality of Gn).
Suppose that x is in the first half of Gn and y < an, i.e. y = an − 2n+1;
then x−y < 2n+1+2n+1 contradicting the spacing property. Hence y > bn,
i.e. y = bn+2n+1: in such case it cannot be, again by the spacing property,
that x + 2n+2 > y = bn + 2n+1, so that bn − x ≥ 2n+1 and we can take
G = [bn − 2n, bn]. If x is in the second half the roles of left and right are
exchanged.
This completes the analysis of the case in which only one point of Bn−1

falls in Gn. The cases in which either no point or at least two points of
Bn fall in Gn are analogous but easier. If two consecutive points x < y of
Bn−1 fall inside Gn we must have y − x ≥ 2n+2 by the spacing property:
hence G = [x + 2n, y − 2n] ⊂ Gn enjoys the property Pn−1. If no point of
Bn−1 falls in Gn let y ∈ Bn−1 be the closest point to Gn; if its distance
to Gn exceeds 2n we take G = Gn. Otherwise suppose that y > bn: the
spacing property implies that the interval (y − 2n+2, y) is free of points of
Bn−1. Hence if a = max{an, y − 2n+2 + 2n}, b = y − 2n then G = [a, b]
has the property Pn−1. If, instead, y < an we set a = y + 2n > an and
b = min{bn, y + 2n+2 − 2n} and G = [a, b] enjoys the property Pn−1.

Bibliographical note for §8.1, §8.2, §8.3 and §8.4
The stability problem of Hamiltonian motions is ancient; introductions to
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this problem are the first two chapters of the book by Moser, [Mo63], the
article [Mo78] and the article by Arnold, [Ar63], from p. 85 to p. 99. For a
“classical” proof of the KAM theorem see Appendix 34 of [AA68] or Section
12 in [Ga82]. More recently a new proof of the theorem has been derived by
Eliasson, [El96]: we have followed the interpretation given to it in [Ga94].
The proof presented in this section deals with a special case but it can be
done in full generality along the same lines, see [GM96] and Section §8.4.
The technique used is inspired to the perturbation theory in quantum field
theory and renormalization group, [Ga01].
The analytic case considered in this section has been studied, in great gen-
erality, by Kolmogorov and then applied to celestial mechanics by Arnold.
The case in which V (α) is only assumed differentiable has been studied by
Moser: the methods of this section can also be applied to some differentiable
cases, see [BGGM98].
As remarked in problem [8.4.4] almost all ω verify (8.3.2) for some C and
some τ > ℓ − 1, with a sequence γp that can be prescribed a priori as
γp = 2p. This, however, leaves out important cases like a quadratic ir-
rational as rotation number in ℓ = 2. And it has the very unfortunate
drawback of being non-constructive, as the set of full measure of the ω ver-
ifying the strong Diophantine condition is obtained by abstract arguments
(e.g. the Borel-Cantelli lemma), see problem [8.1.7]. Nevertheless consid-
ering strongly Diophantine vectors is natural as it leads to the simplified
proof of the previous section, eliminating the “secondary” difficulty we have
discussed here.
The Siegel–Bryuno bound is not the only way to approach the problem of
bounds on products of small divisors. Instead one can use that, for trees ϑ
without self-energy graphs one has

∣∣∣
∏

λ∈Λ(ϑ)

Gλ

∣∣∣ ≤ Dk
( ∑

v∈V (ϑ)

|νv|
)−1 ∏

v∈V (ϑ)

|νv|3τ ,

for a suitable constant D. This is an extension of a bound due to Siegel and
Eliasson. and it leads to the same results while it can be fruitfully applied
also to related problem for which the bound in lemma (8.3.1) is not well
suited. Such a bound would allow us to obtain the same conclusions: for
further details we refer to the original papers (see [El96] and [BGGM98]).
The “tree expansion technique” can be applied to most perturbation theory
problems providing a simple and unifying way of seeing them (however
simplicity is not objective and this point of view does not seem to be shared
by everybody).
A further natural question could be what happens if the perturbation is not
an even function or, even more, if it depends also on the action variables.
If the function V (α) is not even, than the formal solubility of the equa-
tions of motions and the second order cancellation of the self-energy graphs
does not follow anymore from parity considerations. In such a case the
cancellation mechanism is a little more complicated, and it requires also
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the shifting of the exiting branch of the self-energy graphs (as originally
remarked in [CF94]; see [GM96] for an implementation within a formalism
closer to the one described here).
The generalization to perturbations depending also on the action variables
requires some minor extensions of the cancellations described in Section §8.1,
which can be found in [CF96] and in [GM96]; also the case of unperturbed
Hamiltonians K(A) with a more general dependence on the action variables
can be dealt with provided that one has det ∂2AK(A) 6= 0 (anisochrony

condition). But no real new difficulty arises; we shall not discuss further
such a case here, for which we refer to the original papers. For a discussion
of the optimal conditions under which the KAM theorem can be formulated
we refer to a recent exhaustive paper by Rüssmann [Ru01].
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CHAPTER IX

Some special topics in KAM theory

§9.1 Resummation and renormalized series for invariant tori

In Chapter VIII the proof of the KAM theorem was based on diagrams
and notions becoming visually clear if the diagrammatic interpretation of
the various terms building the Lindstedt series was kept in mind. The
analogy with the diagrams used in perturbation theory in Quantum Field
Theory and in Statistical Mechanics is, we feel, quite striking. Therefore
one can wonder whether one could go ahead and apply other techniques
widely employed in those fields.
One key technique is that of transforming power series solutions to per-
turbation problems parameterized by a small parameter ε into series which
are no longer power series but which are series of functions that depend in
a nontrivial way on ε. This is interesting particularly in the cases (virtu-
ally all cases in the quoted fields) in which the power series solutions are
either very unlikely to converge even for small ε or are even known to di-
verge: although they often are asymptotic series. The new series in terms
of functions of the parameters are usually obtained by collecting together
parts of different orders in ε identified by suitable properties of graphs that
are used to represent them: in the best cases the new series may even be
absolutely convergent and from them one can obtain informations about
the nature of the singularity at ε = 0, as well as much simpler expressions
for the solutions to perturbation problems.
In the case of the KAM theory however we have seen that the results are
analytic in ε and no resummation is, strictly speaking, necessary. Neverthe-
less the analogies allow us to apply ideas that had so much impact in the
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understanding of quantum and statistical theories to the “simpler” case of
KAM.
This is interesting enough in itself, and its interest becomes even more
manifest if one attempts studying the invariant tori of dimension lower than
the maximal one (i.e. lower than the number of degrees of freedom). Such
tori exist and are conjectured to have parametric equations that are non
analytic functions of the perturbation parameter. This will be discussed
briefly later: we show here how resummations of the Lindstedt series can be
actually performed in the case of the KAM theory leading to simpler renor-
malized series, for instance, for the parametric equations of the invariant
tori h,H considered in proposition (8.1.1).

We consider the case of perturbations which are even trigonometric poly-
nomials depending only on the angle variables, and impose the strong Dio-
phantine condition, definition (8.3.2), with scale factor γ ≡ 2 on the rotation
vector ω0 of the invariant torus that we study. In this case we know from
the analysis in Chapter VIII that the power expansion in ε for the paramet-
ric equation h(ψ) converges for small ε. However, conceptually, the analysis
here is independent of the one developed in Chapter VIII and it develops an
independent proof of the KAM theorem, which at the same time leads to
a natural approach to the study of some invariant tori of dimension lower
than the maximal one, namely the hyperbolic ones.
In terms of the power expansion envisaged in the previous Chapter, we can
define a solution “approximated to order k” as

h(≤k)(ψ, ε) =
∑

ν∈Zℓ
eiν·ψh(≤k)ν (ε), h(≤k)ν (ε) =

k∑

k′=1

εk
′

h(k
′)

ν , (9.1.1)e9.1.1

where h(k)ν is defined in (8.2.5) and h
(k)
0 = 0.

The propagators Gλ introduced in (8.2.3) are matrices (proportional to
the identity). Given a branch λ = v′v it carries two tensor labels j′v′ , jv
associated with the nodes v′ and v, respectively. The propagator labels are
contracted with the tensor labels of the line λv which are then summed over
all the ℓ possible values.1N9.1.1

Note in particular that the propagators Gλ ≡ G(ω0 · νλ) satisfy (trivially)
the relations

GT (−x) = G†(x) = G(x), (9.1.2)e9.1.2

which will play a crucial rôle in the following; here and henceforth super-
scripts T and † on a matrix denote, respectively, the transposed and the
adjoint (i.e. the conjugated transposed) of a matrix.
We define scales and clusters exactly as in Chapter VIII using γ ≡ 2 as a
scale factor.

1 Since Gλ is diagonal this means the we have to take jv = j′
v′

and sum over this common

value.
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If T is a self-energy graph in a tree ϑ, we denote by V (T ) the set of nodes
in T , by Λ(T ) the set of branches in T (see definition (8.3.3) for details),
by kT the number of nodes in T (i.e. kT = |V (T )|), and by λ1T and λ2T the
branches, respectively, exiting and entering T .
Let ϑ be a tree ϑ ∈ Θk,ν,j , cf. item (vii) in definition (8.2.1), with a self-
energy subgraph T . Define ϑ0 = ϑ \ T as the set of nodes and branches of
ϑ outside T (of course ϑ0 is not a tree), we define V (ϑ0) = V (ϑ) \ V (T )
and Λ(ϑ0) = Λ(ϑ) \ Λ(T ). Consider simultaneously all trees such that the
structure ϑ0 outside of the self-energy graph is the same, while the self-
energy graph itself can be arbitrary, i.e. T can be replaced by any other
self-energy graph T ′ with kT ′ ≥ 1. This allows us to define as a formal
power series the matrix

M(ω0 · ν; ε) =
∑

ϑ=ϑ0∪T ′

VT ′(ω0 · ν), where

VT (ω0 · ν)
def
= εkT

( ∏

v∈V (T )

Fv

)( ∏

λ∈Λ(T )

Gλ

)
,

(9.1.3)e9.1.3

where the sum is over all trees ϑ such that ϑ \ T is fixed to be ϑ0 and the
mode labels of the nodes v ∈ V (T ) have to satisfy the conditions defining
the self-energy graphs (see (8.3.3)).
Recall that a self-energy graph T has height p = 0 if it does not contain
any other self-energy graphs, and that it has height p ∈ N, recursively,
if it contains maximal self-energy graphs with height p − 1 (see definition
following (8.4.1)).

The following property holds as an algebraic identity between formal power
series.

(9.1.1) Lemma:L9.1.1 (Symmetries of the propagators)
The following two properties hold:
(1) (M(x; ε))

T
=M(−x; ε), and

(2) (M(x; ε))
†
= M(x; ε);

The latter means that the matrix M(x; ε) is self-adjoint.

Proof: Consider a graph computed with propagators verifying the properties
(9.1.2), which is trivially valid in our case since the propagator is a real and
diagonal matrix, cf. (8.2.3). Given a self-energy graph T with momentum
ν flowing through the entering branch λ2T , call P the path connecting the
exiting branch λ1T to the entering branch λ2T .

2 Then consider also the self-N9.1.2

energy graph T ′ obtained by taking λ1T as entering branch and λ2T as exiting
branch and by taking −ν as momentum flowing through the (new) entering
branch λ1T : in this way the arrows of all branches along the path P change
orientation, while all the subtrees (internal to T ) having the root in P are

2 i.e. the minimal connected set of branches joining the branches λ1T and λ2T along the

lines of the graph T .
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left unchanged. This implies that the momenta of the branches belonging
to P change sign, while all the other momenta do not change. Since all
propagators Gλ corresponding to the branches λ ∈ P are transformed into
GTλ , the property (9.1.2) implies that the entry ij of the matrix M(ω0 ·ν; ε)
corresponding to the self-energy graph T is equal to the entry ji of the
matrix M(−ω0 · ν; ε); then the property (1) is proved.
Given a self-energy graph T , consider also the self-energy graph T ′ obtained
by reversing the sign of the mode labels of the nodes v ∈ V (T ), and by
swapping the entering branch with the exiting one. In this way the arrows
of all the branches along the path P joining the two external branches are
reversed, while all the subtrees (internal to T ) having the root in P are
left unchanged (as before). One then realizes that the complex conjugate
of VT ′(ω0 · ν) equals VT (ω0 · ν), by using the form of the node factors in
(8.2.8), and the fact that one has f∗

ν = f−ν (as V (α) is real) and G†(ω0 ·ν) =
G(ω0 · ν); this proves the property (2).

Remark: The lemma has been proved without making use of the exact
form of the propagator, but only exploiting the fact that it satisfies the
property (9.1.2). Therefore it has a more general validity, a fact that will
be exploited below.

The function M(ω0 · ν; ε) depends on ε but, by construction, it is indepen-
dent of ϑ0: hence we can rewrite (9.1.3) as

M(ω0 · ν; ε) =
∑

T ′

VT ′(ω0 · ν), (9.1.4)e9.1.4

where the sum is over all self-energy graphs of order k ≥ 1 with external
branches with momentum ν.
Note that, by setting ω = 2τCω0, in (9.1.4), if 2n−1 ≤ |ω · ν| < 2n, the
sum is restricted to the self-energy graphs T ′ on scale nT ′ ≥ n + 3. If we
define n0

λ so that, if ν0λ is the momentum which would flow on the line λ if
the entering line had momentum ν = 0 (cf. comment following ♣8.3.5),

2n
0
λ−1 ≤

∣∣ω · ν0λ
∣∣ < 2n

0
λ , (9.1.5)e9.1.5

then, for all branches λ ∈ Λ(ϑ) one has nλ = n0
λ because, for the same

reasons discussed, in Sections §8.1 and §8.2, when shifting the branches
external to the self-energy graphs of a tree ϑ, the scale labels nλ of all
branches λ ∈ Λ(ϑ) do not change.

So far we considered formal power expansions in ε. Instead of the function

in (9.1.1), we can define a different sequence {h[d](ψ, ε)}d∈N of approximat-
ing functions converging to the solution (as we shall see below), by defining
it iteratively as follows.

(9.1.1) Definition:D9.1.1 (Renormalized graphs and clusters)
Denote by ΘR

k,ν,j the set of all trees of order k without self-energy graphs
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and with labels νλ0
= ν and jλ0 = j associated with the root branch; we

shall call ΘR
k,ν the set of renormalized trees of order k and with label ν as-

sociated with the root branch. Given a tree ϑ ∈ ΘR
k,ν and a cluster T in ϑ,

by extension we shall say that T is a renormalized cluster.
We can also consider a self-energy graph which does not contain any other
self-energy graph: we shall say that such a self-energy graph is a renormal-
ized self-energy graph; of course no one of such clusters can appear in any
tree in ΘR

k,ν,j.

For a renormalized tree ϑ of arbitrary order k, define

Val
[d]
(ϑ)

def
=
( ∏

v∈V (ϑ)

Fv

)( ∏

λ∈Λ(ϑ)

G
[d−1]

λ

)
, (9.1.6)e9.1.6

with the dressed propagators given by the matrices



G

[0]

λ = (ω0 · νλ)−2
,

G
[d]

λ =
[
(ω0 · νλ)2 −M [d](ω0 · νλ; ε)

]−1

, for d ≥ 1 ,
(9.1.7)e9.1.7

and the sequence {M [d](ω0 · ν; ε)}d∈N is iteratively defined as sum of the
values of all renormalized self-energy graphs that can be inserted on a line

of momentum ν and that are computed by using the propagators G
[d−1]

λ ,
i.e. as

M [d](ω0 · ν; ε) =
∑

renormalizedT

V [d]
T (ω0 · ν),

V [d]
T (ω0 · ν) = εkT

( ∏

v∈V (T )

Fv

)( ∏

λ∈Λ(T )

G
[d−1]

λ

)
;

(9.1.8)e9.1.8

We set M [0](ω0 · ν; ε) ≡ 0. If a line λ has scale −dλ the self energy graphs
that can be inserted on λ necessarily consist of lines with scales < −dλ
therefore M [d](ω · νλ) ≡M [dλ](ω · ν) for d > dλ.
To avoid confusing the value of a renormalized tree with the tree value
introduced in (8.2.7), we shall call (9.1.6) the renormalized value of the
(renormalized) tree. Then we shall write

h
[d]
(ψ, ε) =

∑

ν∈Zℓ
eiν·ψh

[d]

ν (ε),

h
[d]

ν (ε) =

∞∑

k′=1

εk
′

h
[d,k]

ν (ε), h
[d,k]

ν (ε) =
∑

ϑ∈ΘR
k,ν

Val
[d]
(ϑ),

(9.1.9)e9.1.9

where the last formula holds for ν 6= 0, because for ν = 0 one has h
[d,k]

0 ≡ 0,
cf. (9.1.1).

Remark: Note that if we expand the quantityM [d](ω0 ·ν; ε) in powers of ε,

by expanding the propagators G
[d−1]

λ , we reconstruct the sum of the values
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of all self-energy graphs containing only self-energy graphs with height p < d
(recall the definition of height given after (9.1.3)). Therefore if we expand
M [d+1](ω0 · ν; ε) in powers of ε we obtain the same terms that we would
obtain by expandingM [d](ω0 ·ν; ε), plus the sum of the values of all the self-
energy graphs containing also self-energies graphs with height d, which are
absent in the self-energy graphs contributing toM [d](ω0 ·ν; ε). Such a result
can be used in order to prove that the power series defining the functions

h
[d]

ν (ε), truncated at order k < d, coincide with the functions h(≤k)ν (ε) given
by (9.1.1), as it is not difficult to check (see problem [8.3.1]).

In the coming section we shall derive the following renormalization result.

(9.1.1) Proposition:P9.1.1 (Resummation and renormalization of Lindstedt
series)
(i) The matrices M [d](x, ε) defined in (9.1.8) admit a limit M [∞]((x, ε) as
d→∞ which is analytic in ε and is defined for all real x 6= 0 and verifies,
for all ε small enough

‖M [d](x, ε)‖ ≤ C ε2 x2 (9.1.10)e9.1.10

with an ε–independent constant C.
(ii) The series obtained by considering all renormalized tree graphs (i.e. all
graphs without any self–energy subgraph) and computing their values by the
rules of definition (8.2.1) but replacing the propagator δj′j(ωo · ν)−2 by the
matrix

((ω0 · ν)2 +M [∞](ω0 · ν, ε))−1 (9.1.11)e9.1.11

is convergent for |ε| small.

(iii) The functions t → ψ + ω0t+ h[∞](ψ + ω0t), where h
[∞] is the sum of

the series in item (ii), is analytic in ε for ε small and in ψ ∈ T
ℓ and solve

the equations of motion for the Hamiltonian (8.1.1).

(iv) The function h[∞] defines the parametric equations for an invariant
torus with rotation vector ω0. Therefore it coincides with the function h
considered in proposition (8.1.1).

Remark: This means that the resummation procedure leads to a renor-
malized series with propagators (9.1.11) which is a representation of the
function h whose existence is proved by the KAM theorem. At the same
time this yields an independent proof of the KAM theorem. We devote
Section §(9.2) to a proof of the above proposition.

§9.2 Bounds on renormalized series. Convergence

Let ‖ · ‖ be an algebraic matrix norm (i.e. a norm which verifies ‖AB‖ ≤
‖A‖ ‖B‖ for all matrices A and B); for instance ‖ · ‖ can be ‖A‖ =
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maxw ‖Aw‖, with the maximum taken over all vectors w of norm 1,
i.e. ||w||2 =

∑
j |wj |2 = 1.

(9.2.1) Lemma:L9.2.1 (Uniform bounds on resummed series)

Assume that the propagators G
[d]

λ ≡ G
[d]
(ω · νλ; ε) satisfy

(
G

[d]
(x; ε)

)T
= G

[d]
(−x; ε),

∥∥G[d]
(x; ε)

∥∥ < 2

x2
(9.2.1)e9.2.1

for all |ε| < ε0, if ε0 is small enough. Then given κ > 0 there is a constant
Bf such that one has, setting M(ϑ) =

∑
v∈V (ϑ) |νv|,

h
[d,V ]

ν ≤ 1

V !

∑

ϑ∈ΘR
V,ν

∣∣∣Val[d](ϑ)
∣∣∣ ≤ (|ε|Bf )V ,

1

V !

∑

ϑ∈ΘR
V,ν

M(ϑ)=s

∣∣∣Val[d](ϑ)
∣∣∣ ≤ (|ε|Bf )V e−κs/4,

(9.2.2)e9.2.2

for all s > 0.

Proof: The hypothesis (9.2.1) implies that for all propagators G
[d]

λ one has

∥∥∥G[d]

λ

∥∥∥ ≤ C12
−2nλ , C1 = 2

(
2τ+2C

)2
. (9.2.3)

e9.2.3

where C is the constant in definition (8.3.2). Therefore the contribution
from a single tree is bounded for all n0 ≤ 0 by

|ε|V
(
C1 2

−2n0
)V ∏

v∈V (ϑ)

[
Nmv+1f0

( n0∏

n=−∞
C12

−ck2n/τ
)]
, (9.2.4)e9.2.4

where f0 is a bound of the size of the Fourier coefficients of the perturbation,
cf. (8.4.4), V = |V (ϑ)|, having used that, for all trees ϑ ∈ ΘR

k,ν,j , the number

Nn(ϑ) of branches with scale n in ϑ satisfy the bound

Nn(ϑ) ≤ c k 2n/τ (9.2.5)e9.2.5

for some constant c (see lemma (8.3.1) where c is shown to be bounded by
4E−1.
We then can simply proceed as we did in the analysis of the convergence of
the Lindstedt series when the tree values of trees not verifying property [P],
introduced before lemma (8.2.2), were ignored. The only difference being
that the constant C1 which bounds the propagators is now different from
the constant C and is given by (9.2.3).
Finally the last factor in the second of Eq. (9.2.2) can be inserted by
further increasing the constant that multiplies ε because

∑
v |νv| ≤ kN as
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f is a trigonometric polynomial of degree N and 1 = eκ
∑

v
|νv |e−κ

∑
v
|νv | ≤

eN κ ke−κ
∑

v
|ν
v
|.

Remark: Note that, although the propagators are no longer diagonal, they
still satisfy the same property as (9.1.2), which was the crucial one which
is used in order to prove the formal cancellations between tree values.

(9.2.2) Lemma:L9.2.2 (Symmetry and cancellations properties)

The matrices M [d](ω0 · ν; ε) satisfy the relation

(
M [d](x; ε)

)T
=M [d](−x; ε). (9.2.6)e9.2.6

Moreover the matrix M [−q](x; ε) is the restriction to the x’s of the form
x = ω ·ν with ν of scale ≤ q of an analytic function of x in the disk |x| ≤ 2q

if ε0 is small enough; it satisfies the bound

∥∥∥M [d](x; ε)
∥∥∥ ≤ Dx2|ε|2, (9.2.7)e9.2.7

for all d ∈ N and for a suitable d–independent constant D. As a consequence

G
[d]

λ verify (9.2.1) for all d ≥ 1, and therefore (9.2.2) holds for all d ≥ 1.

Proof. We consider the matrices M [d] defined in (9.1.8) and suppose induc-
tively that M [d] verifies (9.2.7) and the analyticity property preceding it for
0 ≤ d ≤ p − 1; note that the assumption holds trivially for d = 0. Note

also that (9.2.6) imply that the propagators G
[d]

λ verify (9.2.1) for ε0 small
enough.
To defineM [p] we must consider the renormalized self-energy graphs T and

evaluate their values by using the propagators G
[p−1]

λ , according to (9.1.8).
Given ω · ν such that 2q−1 ≤ |ω · ν| < 2q for some q ≤ 0, the propagators

G
[p−1]

λ have an analytic extension to the disk |ω · ν| < 2q+2 and, under the
hypotheses (9.2.6) and (9.2.7), verify the symmetry property and the bound
in (9.2.1).
We have

M [p](x; ε) =

0∑

h=q+3

∑

renormalized T
nT=h

V [p]
T,h(x), (9.2.8)e9.2.8

where by appending the label h to V [p]
T (x) we distinguish the contributions to

M [p](x; ε) coming from self-energy graphs T on scale h (which is constrained
to be ≥ q + 3).

The value V [p]
T (ω0 · ν) is analytic in ω · ν for |ω · ν| ≤ 2h+2, and the sum

over all the self-energy graphs T with V nodes is bounded by

∑

T
kT=V

∣∣∣V [p]
T,h(ω0 · ν)

∣∣∣ ≤ (|ε|Bf )V
1− e−κ/8 e

−κ2−h/τ/8, (9.2.9)e9.2.9
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because the mode labels νv of the nodes v ∈ V (T ) must satisfy∑
v∈V (T ) |νv| > 2−h/τ (recall that we are dealing with renormalized trees, so

that for all clusters T one has T̃ = T , i.e. T contains no self-energy graph,
cf. definition (8.3.5)).
Since the symmetry property expressed by (9.2.1) for d = p − 1 is im-
plied by(9.2.6) and this is the only property of the propagators that one
needs in order to check the algebraic cancellations, we can conclude that
the same cancellation mechanisms extend to the renormalized self-energy

values V [p]
T (ω0 · ν). Therefore we see that V [p]

T,h(x) will vanish at x = 0 to
order 2.
By the analyticity in ω · ν for |ω · ν| ≤ 2h+2 and by the maximum principle
we deduce from (9.2.9) that one has

∑

T
kT=V

∣∣∣V [p]
T,h(x)

∣∣∣ ≤ (|ε|Bf )V
1− e−κ/8 e

−κ2−h/τ/8
(
2τCx

2h+2

)2

, (9.2.10)e9.2.10

Therefore we can use that
∑0
h=q+3 e

−κ2−h/τ 2−2h < B1 <∞ and that V ≥ 2,
and the proof is complete.

It also follows that there exists the limit (reached at a finite value of d if
x is fixed because M [d](x; ε) becomes identically equal to M [d0](x; ε) if if
x = ω · νλ with λ on scale −d0))

lim
d→∞

M [d](x; ε) =M [∞](x; ε), (9.2.11)e9.2.11

with M [∞](x; ε) analytic in ε for |ε| < ε0: in fact the following result holds.

(9.2.3) Lemma:L9.2.3 (Further uniform bounds on resummed Lindstedt series)
For all d ≥ 1 one has∥∥∥M [d+1](x; ε)−M [d](x; ε)

∥∥∥ ≤ B̂1B̂
d
2ε

2dx2, (9.2.12)e9.2.12

for some constants B̂1 and B̂2 and for |ε| < ε0 with ε0 small enough.

Proof: For −d < scale of x the difference is 0. For −d ≥ scale of x this is
implied by (9.2.10).

We can now define the “fully renormalized” expansion of the parametric
equations of the invariant torus as the sum of the values of the renormalized

trees evaluated according to (9.1.8) with G
[d−1]

λ replaced by

G
[∞]

(x; ε) =
(
x2 −M [∞](x; ε)

)−1

, x = ω0 · νλ. (9.2.13)e9.2.18

The above discussion shows that the series

h
[∞]

(ψ, ε) =

∞∑

k=1

∑

ν∈Zℓ
εkeiν·ψ

∑

ϑ∈ΘR
k,ν

Val
[∞]

(ϑ),

Val
[∞]

(ϑ) =
( ∏

v∈V (ϑ)

Fv

)( ∏

λ∈Λ(ϑ)

G
[∞]

λ

)
,

(9.2.14)e9.2.19
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converges for |ε| < ε0 and that it coincides with the limit for d → ∞ of

h
[d]
(ψ; ε), which therefore exists. Moreover the function h

[∞]
(ψ, ε), which

we have just shown to be well defined and analytic for ε small enough, solves
the equations of motion, as the following lemma shows.

(9.2.4) Lemma:L9.2.4 Convergence of renormalized series)
One has, formally (i.e. order by order in the expansion in ε around ε = 0)

h
[∞]

(ψ, ε) ≡ lim
d→∞

h
[d]
(ψ; ε) = h(ψ; ε), (9.2.15)e9.2.20

where h(ψ; ε) is the formal power series which solves the equations of mo-

tion. The function h
[∞]

(ψ, ε) solves, therefore, the equations of motion.

Remark: (1) In the formulation of the above lemma we combine the infor-

mation about the existence and analyticity of the function h
[∞]

(ψ, ε) which
has been proved in the previous lemmata and the existence of the formal
power series for h(ψ, ε), about whose convergence we make no statement
here as we do not want to make use of the KAM result of Section §8.1, but
we want to derive it again by the alternative approach that we are following.
(2) If we show that the analytic function in the l.h.s. of (9.2.15) has a power
series at ε = 0 whose coefficients coincide with those of the Lindstedt series
(which is a formal series) for h(ψ) then it follows that the Lindstedt series

necessarily converges and its sum coincides with h
[∞]

(ψ, ε). Furthermore

the function h
[∞]

(ψ, ε) solves the equations of motion in the sense that

t→ α(t) = ψ+ωt+ h[∞](ψ+ωt, ε) is a solution of the equations of motion
α̈ = −∂V (α): here we use that if two analytic functions (in our case the

two sides of (8.1.12) evaluated with h
[∞]

(ψ, ε) in place of h(ψ, ε)) have equal
derivatives of all orders at ε = 0 then they coincide.
(3) The above remarks show the validity of the lemma: it is however inter-

esting to check its validity directly by substituin of the series for h
[∞]

(ψ, ε)
into the equation (8.1.12) that it solves. Therefore we discuss how to per-
form the check. This provides a useful method in similar cases in which it is
not known or it is not true that generalizations of Lindstedt series converge
and their solution is produced by summation rules of divergent series: see
Appendix 9.2 for an example in which this situation arises.

Proof: We denote by G
[∞]

the operator with kernel G
[∞]

(ω0 ·ν; ε) in Fourier
space, and we represent (9.2.14), in a more compact notations, as

h
[∞]

(ψ, ε) =
∑

ϑ∈ΘR

Val
R
(ϑ;ψ, ε), (9.2.16)e9.2.21

where ΘR is the set of all renormalized trees, and, for ϑ ∈ ΘR
k,ν ⊂ ΘR, we

have defined
Val

R
(ϑ;ψ, ε) = εkeiν·ψVal

[∞]
(ϑ). (9.2.17)e9.2.22
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The function h(ψ, ε) solving the equations of motion is formally defined as
the solution of the functional equation

h(ψ, ε) = G∂ψf
(
ψ + h(ψ, ε)

)
, (9.2.18)e9.2.23

where G = (iω0 · ∂)−2 = G
[0]

is the operator with kernel G(x) = x−2.
We have (see problem [8.3.1])

G(x)
(
M [∞](x; ε) + (G[∞](x; ε))−1

)
= 1. (9.2.19)e9.2.24

Then it is easy to realize that the function h
[∞]

(ψ, ε) solves the equation of
motions; one can reason as follows. One has

G∂ψf
(
ψ + h

[∞]
(ψ, ε)

)
= G

∞∑

m=0

1

m!
∂m+1
ψ f(ψ)

(
h
[∞]

(ψ, ε)
)m

= G

∞∑

m=0

1

m!
∂m+1
ψ f(ψ)

∑

ϑ1∈ΘR

Val
R
(ϑ1;ψ, ε) . . .

∑

ϑm∈ΘR

Val
R
(ϑm;ψ, ε)

= G
(
G

[∞]
)−1 ∑

ϑ∈ΘR
∗

Val
R
(ϑ;ψ, ε), (9.2.20)e9.2.25

where ΘR
∗ differs from ΘR as it contains also trees which can have only one

self-energy graph with exiting branch λ0, if, as usual, λ0 denotes the root

branch of ϑ; the operator G(G
[∞]

)−1 takes into account the fact that, by
construction, to the root branch λ0 an operator G is associated, while in

Val
R
(ϑ;ψ, ε), by definition, a propagator G

[∞]
is associated.

Then we can write (9.2.20), by explicitly separating the trees containing
such a self-energy graph from the others,

G∂ψf
(
ψ + h

[∞]
(ψ, ε)

)

= G
(
G

[∞]
)−1 (

G
[∞]
M [∞]

∑

ϑ∈ΘR

Val
R
(ϑ, ψ, ε) +

∑

ϑ∈ΘR

Val
R
(ϑ, ψ, ε)

)

= G
(
M [∞]h

[∞]
(ψ, ε) + (G

[∞]
)−1h

[∞]
(ψ, ε)

)

= G
(
M [∞] + (G

[∞]
)−1
)
h
[∞]

(ψ, ε) = h
[∞]

(ψ, ε),

(9.2.21)e9.2.26
where the property (9.2.19) has been used in the last line.
Note that at each step only absolutely converging series have been dealt
with; the lemma is thus proved.

This completes the alternative proof of proposition (8.1.1). We can take
full advantage of such a different approach when dealing with hyperbolic
lower-dimensional tori (see Appendix (9.2)).
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Appendix 9.2: Resonances and low dimensional invariant tori

Consider the Hamiltonian

H(A,α) = ω0 ·A+
1

2
A · A+

1

2
B ·B + εf(α, β), (A9.2.1)eA9.2.1

where (α,A) ∈ T
r × R

r and (β,B) ∈ T
s × R

s are conjugated vari-
ables, and ω0 is a vector in R

r satisfying the Diophantine property
C |ω0 · ν| > |ν|−τ , ∀ν ∈ Z

r \ {0}, with C > 0 and τ ≥ r − 1, and
f(α, β) =

∑
ν∈Zr e

iν·αfν(β).
The motions α(t) = α0 + ω0t, β(t) = β

0
, A = 0, B = 0 define, if ε = 0,

an invariant torus of dimension r + s which is called resonant and which
is foliated into invariant tori of dimension r on which the motion is quasi-
periodic and ergodic (parameterized by the s angles β

0
).

The question is whether the resonant tori continue to exist, slightly de-
formed, when ε is > 0 and small. This means that we ask whether there
are solutions of the form

{
α(t) = ψ(t) + a(ψ(t), β

0
; ε),

β(t) = β
0
+ b(ψ(t), β

0
; ε),

(A9.2.2)eA9.2.2

for some functions a and b, real analytic and 2π-periodic in ψ ∈ T
r, such

that the motion in the variable ψ is ψ̇ = ω0.
The problem can be naturally studied via the resummation method used
for the maximal tori: however not all invariant tori will still exist for ε > 0,
at least not in general. Only invariant tori which are close to the unper-
turbed ones which have β

0
coinciding with a stationary point for the func-

tion f0(β) = (2π)−r
∫
dα f(α, β) and which correspond to strict maxima of

f0(β) can be shown to exist for ε > 0 small and to be analytically reducible
to the unperturbed ones.

(9.2.1) Proposition:P9.2.1 (Hyperbolic tori, [GG02])

Consider the equations of motion α̈ = −∂αf(α, β), β̈ = −∂βf(α, β) (the

Hamiltonian equations for (A9.2.1)), and suppose ω0 to satisfy (8.1.6) and
β
0
to be such that

∂βf0(β0
) = 0, ∂2βf0(β0

) is negative definite. (A9.2.3)eA9.2.3

There exist a constant ε0 > 0 and, for all ε ∈ (0, ε0), two functions
a(ψ, β

0
; ε) and b(ψ, β

0
; ε), real analytic and 2π-periodic in ψ ∈ T

r, such

that (A9.2.2) is a solution of (A9.2.1) with ψ̇ = ω0. Moreover a(ψ, β
0
; ε)

and b(ψ, β
0
; ε) are analytic in ε for ε ∈ (0, ε0).

Remarks: (1) The solutions whose existence is stated by the theorem do
not seem to be analytic in ε at ε = 0: however they are certainly analytic
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for ε > 0 and small: it appears to be an open problem to prove their actual
divergence (or convergence) for |ε| small. Furthermore, if the second con-
dition in (A9.2.3) is replaced by ∂2βf0(β0

) is positive definite then the same

conclusions hold for ε ∈ (−ε0, 0).
(2) The proof based on the resummation methods is not the only possible
one, nor it has been the first in historical order, however it yields rather
detailed information on the regularity of the considered tori. In particu-
lar the analyticity domain is much larger, see the heart-like domain D0 in
Fig.(9.2.1).
(3) From the point of view of stability theory the negative definiteness as-
sumption in (A9.2.3) and ε > 0 imply that the invariant torus with β close
to β

0
is unstable and has positive Lyapunov exponents which, to first order,

coincide with the eigenvalues of −ε∂2βf(β0
): for this reason we call them

hyperbolic tori.

complex
ε−plane

O

Fig.(9.2.1)F9.2.1 Analyticity domain D0 for the hyperbolic invariant torus. The cusp at

the origin is a second order cusp. The figure corresponds to the case in (A9.2.3) of the

proposition (9.2.1).

A tempting conjecture is that the analytic functions a(ψ), b(ψ) admit a
more extended domain of analyticity which touches the negative ε axis on a
set ∆ which has 0 as a density point and such that the limiting value, as ε
approaches points on the negative real axis in ∆, of the functions a(ψ), b(ψ)
is real and describes the parametrization of an “elliptic invariant torus”.
The conjectured form of the extended analyticity domain is represented in
figure (9.2.2).

The above proposition is proved by the method of resummations in [GG02].

Problems for §9.2

[9.2.1]:Q9.2.1 Check that for any self-energy graph T with self-energy-scale n, one has nT ≥
n+3. (Hint: Writing, for any branch λ ∈ Λ(T ′), νλ as νλ = ν0λ+σλν, one has |ω · ν0λ| >
2τC−1C|ν0

λ
|−τ ≥ 2τ (

∑
v∈V (T̃ )

|νv|)−τ ≥ 2τ2n+3, while |ω ·ν| < 2n, so that one obtains

|ω · νλ| > 2τ2n+3 − 2n > 2n+2, which implies nλ ≥ n+ 3.)

[9.2.2]:Q9.2.2 Check that the power series defining the functions h
[d]

ν (ε), truncated at any

order k < d, coincide with the functions h
(≤k)
ν (ε) given by (9.1.1). (Hint: Compare the

diagrammatic representations of the two functions.)

[9.2.3]:Q9.2.3 Prove (9.2.19). (Hint: One has G
[∞]

(x; ε) = (G−1(x) − M [∞](x; ε))−1, so that

G−1(x) = (G
[∞]

(x; ε))−1 + M [∞](x; ε).)
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complex
ε−plane

Fig.(9.2.2)F9.2.2 The domain D0 of Figure 1 can be further extended? The conjecture

above asks whether the extended analyticity domain could possibly be represented (close
to the origin) as here: the domain reaches the real axis at cusp points which are in a
set ∆ which has 0 as a density point: the points of ∆ correspond to elliptic tori which
are analytic continuations of the hyperbolic tori in the complex ε-plane. The analytic
continuation would be continuous through the real axis at the points of ∆. The cusps
would be at least quadratic.

[9.2.4]:Q9.2.4 (Lindstedt series for resonant invariant tori)
Look for an expansion

a(ψ; ε) =

∞∑

k=1

εka(k)(ψ) =
∑

ν∈Zr
eiν·ψaν(ε) =

∞∑

k=1

εk
∑

ν∈Zr
eiν·ψ a(k)ν ,

b(ψ; ε) =

∞∑

k=1

εkb(k)(ψ) =
∑

ν∈Zr
eiν·ψbν(ε) =

∞∑

k=1

εk
∑

ν∈Zr
eiν·ψ b(k)ν ,

of the parametric equations for the resonant invariant tori in the context of proposition
(9.2.1): the dependence on β

0
has not been explicitly written. Check that to order k

the equations of motion for the Hamiltonian (A9.2.1) have solutions that, written in the
form (A9.2.2), become

(ω · ν)2 a(k)ν =
[
∂αf
](k−1)

ν
,

(ω · ν)2 b(k)ν =
[
∂βf
](k−1)

ν
,

and show that they can be uniquely solved to all orders, recursively, under the only
assumption that β

0
is a non degenerate stationarity point for f0(β) (i.e. det ∂2βf0(β0

) 6=
0) and that α(k) has 0 average over ψ. (Hint: it is essential that one does not assume

that β(k) has zero average over ψ and therefore also its average is determined (uniquely)

recursively; the definiteness positive or negative of ∂2βf(β0
) is not necessary for this

result.)

§9.3 Scaling laws for the standard map

In this section we shall consider another case in which the diagrammatic
formalism developed in Chapter VIII can be naturally applied. The problem
consists in considering what happens in some simple dynamical systems for
complex values of the rotation vector; for simplicity one can take systems
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with two degrees of freedom, and with one component of the rotation vector
fixed to some value (for instance 1), so that only one free component ω is
left, and one can refers to it as the rotation number.
The main motivation comes from studying the optimal arithmetic depen-
dence on the rotation number in order to have an invariant curve. It is
known that, for analytic perturbations of two-dimensional integrable area-
preserving maps, the best condition one can impose on the rotation number
ω, whose continued fraction convergents are pk/qk (see problem [2.2.3]),
is that the function B1(ω) =

∑∞
k=0 q

−1
k log qk+1 is finite: if B1(ω) < ∞

one says that ω satisfies the Bryuno condition (which is weaker than the
Diophantine condition). The function B1(ω) is related to the Bryuno func-
tion B(ω) introduced by Yoccoz in studying Siegel’s problem [Yo95]: the
difference B1(ω)−B(ω) is an essentially bounded function.
Then one asks if it is possible to interpolate the radius of convergence
ρ(ω) of the Lindstedt series for the standard map in terms of the Bryuno
function, in the sense that there exists β ∈ R

+ such that the quantity
Qβ(ω) ≡ log ρ(ω) + βB(ω) remains uniformly bounded, independently of
ω (provided that ω satisfies the Bryuno condition, so that both ρ(ω) and
B(ω) are well defined).
The possibility that Q2(ω) be uniformly bounded is related, see Remark
(1) to proposition (9.3.1), to the divergence rate of the conjugating function
for ω = p/q+ iη, with gcd(p, q) = 1 and η 6= 0. This is the problem that we
shall consider in this and next sections.

The standard map is a discrete-time, one-dimensional dynamical system
generated by the iteration of the area-preserving (symplectic) map of the
cylinder into itself, Tε : T×R→ T×R, given by

Tε :

{
x′ = x+ y + ε sinx,
y′ = y + ε sinx.

(9.3.1)e9.3.1

It was first introduced by Greene [Gr79] and Chirikov [Ch79], and it can
be considered as one of the simplest Hamiltonian dynamical systems with a
nontrivial behaviour (see problem [9.3.1] for the interpretation of the stan-
dard map as the Poincaré map of a continuous-time Hamiltonian system).
The homotopically non-trivial invariant curves Cε,ω with rotation number
ω of the map Tε may be determined by changing coordinates on T×R,

{
x = α+ u(α, ε, ω),
y = 2πω + v(α, ε, ω),

(9.3.2)e9.3.2

and imposing that the dynamics induced in the variables (α, ω) is given by
the unperturbed map {

α′ = α+ 2πω,
ω′ = ω.

(9.3.3)e9.3.3

By (9.3.1) one has y′ = x′−x so that v(α, ε, ω) = u(α, ε, ω)−u(α−2πω, ε, ω);
we can therefore consider only the function u.
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The coordinate transformation (9.3.2) conjugates the dynamics on the in-
variant curve to a rotation, and the function u is called the conjugating
function. It satisfies the functional equation

D2
ωu(α, ε, ω) = ε sin(α+ u(α)), (9.3.4)e9.3.4

where the operator D2
ω acts on functions of α as follows:

D2
ωφ(α) = φ(α + 2πω)− 2φ(α) + φ(α− 2πω). (9.3.5)e9.3.5

Assuming that equations (9.3.4) admit ε-analytic solutions near ε = 0 and
imposing that the average of u over α be 0 one checks that the Taylor coef-
ficients in ε of u(α, ε, ω) are uniquely determined and are odd as functions
of α. The proofs of such statements can be carried out as in Section §8.1.
However, as in the cases considered in Chapter VIII one needs to study, and
prove, the convergence of the series.
To each smooth solution to (9.3.4) corresponds an invariant curve Cε,ω
whose parametric equations are

Cε,ω :

{
x = α+ u(α, ε, ω),
y = 2πω + u(α, ε, ω)− u(α− 2πω, ε, ω),

(9.3.6)e9.3.6

and it has the same smoothness properties as those of u(·, ε, ω).
To simplify the notations, we shall drop the dependence on ω and write
just u(α, ε). The expansion in powers of ε of the conjugating function u
(that we naturally call Lindstedt series because it is derived by following
arguments analogous to those repeatedly discussed in Chapter VIII) has the
form

u(α, ε) =
∑

ν∈Z
uν(ε) e

iνα =
∑

k≥1

u(k)(α)εk =
∑

k≥1

∑

ν∈Z
u(k)ν eiνα εk. (9.3.7)

e9.3.7

By inserting in (9.3.4) the series (9.3.7) and equating the Fourier and Taylor

coefficients of both sides (see Section 8.1), one finds that the coefficients u
(k)
ν

are defined by the recursion relations

u(k)ν =
1

γ(ν)

∑

m≥0

1

m!

∑

ν0+...+νm=ν
k1+...+km=k−1

1

2
(−iν0)(iν0)m

m∏

j=1

u(kj)νj , (9.3.8)e9.3.8

with ν0 = ±1 and

γ(ν) = 2 (cos 2πων − 1) = −4 sin2 πων, (9.3.9)e9.3.9

for ν 6= 0, while u
(k)
0 = 0 for all k ≥ 1. The case m = 0 in (9.3.8) has to be

interpreted as u
(k)
ν = (−iν0)/γ(ν), which imposes k = 1 and ν = ν0.
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The radius of convergence of the Lindstedt series is defined as

ρ = inf
α∈T

(
lim sup
k→∞

∣∣∣u(k)(α)
∣∣∣
1/k
)−1

. (9.3.10)e9.3.10

Of course the Lindstedt series is plagued by the small divisors problem, due
to the fact that γ(ν) can be arbitrarily close to 0 for ω ∈ R \Q and can be
0 for ω ∈ Q (here Q denotes the real rational numbers). If ω ∈ R satisfies a
Diophantine property and ε is sufficiently small, ρ is strictly greater than 0
and therefore we have an analytic invariant curve and an analytic conjuga-
tion to a circle rotation. Here we are interested in the behavior of ρ as the
rotation number ω tends to a resonant value, i.e. ω → p/q, with p, q ∈ Z

and gcd(p, q) = 1. The behavior of the radius of convergence near a resonant
value of the rotation number is related to the problem of Bryuno’s interpo-
lation and to the problem of determining the optimal arithmetic condition
on ω to have an analytic invariant curve, see below. We consider

ω =
p

q
+ iη, (9.3.11)

e9.3.11

with p, q ∈ Z, gcd(p, q) = 1 and η ∈ R, in the limit η → 0. Later on we
shall show how to extend our results to the case in which ω tends to p/q
along any path on the complex ω plane non-tangential to the real axis.
We are interested in the exact (asymptotic) dependence of ρ on η, in the
limit η → 0. In particular, we shall prove the following result.

(9.3.1) Proposition:P9.3.1 (Asymptotics near resonances in the standard map)
Consider the standard map (9.3.1) with ω = p/q+iη, p, q ∈ Z, gcd(p, q) = 1
and η ∈ R. Then the following results hold.
(i) For fixed η 6= 0 the function u(α, ε), defined by (9.3.2), is divisible by
ε and jointly analytic in (α, ε) in the product of a strip of width δ0 > 0
around the real axis in the complex α-plane and a neighborhood |ε| < ε0 of
the origin in the complex ε-plane, with ε0 = O(η2/qe−δ0).
(ii) The function U(α, ε) ≡ u(α, (2πη)2/qε) is well defined for η → 0 and
converges to a function ū(α, ε), divisible by εq and analytic in εq in a neigh-
borhood of the origin. Furthermore u is 2π/q periodic and solves the differ-
ential equation

d2ū(α)

dα2
= Cp/qε

q sin (q(α+ ū(α))) , (9.3.12)e9.3.12

with boundary conditions ū(0) = ū(2π) = 0, for some nonvanishing explic-
itly computable constant Cp/q.

Remarks: (1) The bound ε0 = O(η2/q) of proposition (9.2.1) is consistent
with the law |Q2(ω)| < C, because the logarithm of the complex extension
of the Bryuno function diverges as η → 0 in the same way as the log ε0,
[Yo95]; but of course it does not implies such a law. The proof of the latter
bound can be found in [BG01].
(2) The analyticity strip in α width can be prefixed arbitrarily.

20/novembre/2011; 22:18



326 §9.3: Scaling laws for the standard map

The proof will be completed in Section §(9.4). Here we derive explicit

expressions for u
(k)
ν as sums of suitable quantities and exhibit cancellations

that occur if the quantities used to express the value of u
(k)
ν are suitably

collected showing the validity of item (i) of proposition (9.3.1).
We can envisage a tree expansion for the conjugating function as in Section
§8.1, with some simplifications, due to the fact that mode labels take only
the values νv = ±1 (because in (9.3.1) the non linear terms, i.e. sinx have
only harmonics ±1) has to be associated with the nodes v of the trees. Then
the momentum flowing through a branch λv will be defined as

νλv =
∑

w≤u
νw, νw = ±1; (9.3.13)e9.3.13

and the condition u
(k)
0 = 0 implies that no branch λ can have momentum

νλ = 0.
So we can write

u(k)ν =
1

2k

∑

ϑ∈Θk,ν

Val(ϑ), Val(ϑ) = −i
∏

v∈V (ϑ)

1

mv!

νmv+1
v

γ(νλv )
, (9.3.14)e9.3.14

where Θk,ν is (unlike in the previous Sections) the set of non-numbered trees
with k nodes and momentum νλv0 = ν, if v0 is the last node of the tree,
and such that νλ 6= 0 for all branches λ ∈ Λ(ϑ) (see Section §8.1).
Remark: Unlike what was done in the previous Sections, we consider here
non-numbered trees. This means that we do not introduce the number labels
for the branches: in order to count the number of non-numbered trees of
a given order k, one can imagine to assign to the mv subtrees with root
on a node v a number from 1 to mv from up to down, and to consider as
distinct only trees which cannot be overlapped by permuting such subtrees
(for instance if two subtrees with numbers 1 ≤ m < m′ ≤ mv are equal
to each other, then by exchanging the two subtrees we obtain no further
tree). This corresponds to the the factorials mv! associated, in evaluating
tree values, with the nodes of the trees. The number of elements in Θk,ν
is now bounded by 22k (see problem [8.2.2]). The reason to proceed in this
way shall become clear in the following where the new combinatorial factors
will turn out to be quite convenient to prove that the limit function ū(α)
solves the differential equation (9.3.12).1N9.3.1

For η 6= 0 the power series (9.3.7) is well defined and no small divisors
appear: the denominators in Val(ϑ) are all bounded from below by |η|2.
Nevertheless the convergence radius ρ is not uniform in η, and it shrinks to
0 when η → 0. The small divisor γ(ν) satisfies the bound

|γ(ν)| ≥
{
c|νη|2, for ν ∈ qZ \ {0},
cq−2, otherwise,

(9.3.15)e9.3.15

1 The enumeration of trees considered in Chapter VIII and in Sections 9.1, 9.2 will still
be useful later in checking cancellations. See also [Ga94b].
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for some positive constant c; one can take c = 2π2.
Given a tree ϑ, we can associate with each branch λ of ϑ a scale label nλ,
setting nλ = 0 if its momentum νλ is a multiple of q, and nλ = 1 otherwise.
Hence in the present analysis only two scales arise, unlike the infinitely
many arising in the previous sections and in Chapter VIII. Given a tree ϑ,
a cluster T of ϑ is a maximal connected set of branches on scale n = 1;
we shall say that such branches are internal to T , and write λ ∈ Λ(T ), so
denoting by Λ(T ) the set of branches in T . A node v will be considered
internal to T if the exiting branch or at least one of its entering branches
is in T , and we shall write v ∈ V (T ) so denoting by V (T ) the set of nodes
in T . The branches outside the clusters are all on scale n = 0, and each
cluster has an arbitrary number mT ≥ 0 of entering branches but only one
exiting branch.
A cluster T will be called a null graph if

∑

v∈V (T )

νv = 0, (9.3.16)e9.3.16

At least one entering branch must be present otherwise the exiting branch
or the root branch would have momentum ν = 0. For the same reason at
least one entering branch must exist. In such a case, the exiting branch of
the cluster T will be called a null branch; we also denote by kT the number
of nodes internal to T .

Remark: Note that the definition of null graph given here is not equivalent
to that of self-energy graph of the previous Sections, because a null graph
can have an arbitrary number of entering branches, and no constraint is
imposed on the number of internal nodes. Here we shall call null branch a
branch entering a null graph.

A null graph T in a tree graph ϑ0 determines a subtree ϑ attached to the
rest of the tree graph by its entering lines and its exiting line: we can define
its null graph factor VT (ϑ) as

VT (ϑ) =
( ∏

v∈V (T )

1

mv!

)( ∏

v∈V (T )

νmv+1
v

)( ∏

λ∈Λ(T )

1

γ(νλv )

)
(9.3.17)e9.3.17

the null graph factor will depend on ϑ0 only through the momenta of the
incoming branches of T . By (9.3.15), we have the bound

|VT (ϑ)| ≤ c−kT q2kT , (9.3.18)e9.3.18

because all branches inside T are on scale n = 1.
Let Nn(ϑ0), n = 0, 1, denote the number of branches in a tree graph ϑ0
which have scale n: using again (9.3.15) it follows that for a fixed tree ϑ0
one has

|Val(ϑ0)| ≤ c−kq2N1(ϑ0)|η|−2N0(ϑ0). (9.3.19)e9.3.19
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Let N∗
0 (ϑ0) be the number of branches on scale n = 0 which are not null

branches in a given tree ϑ. We then have the bound

N∗
0 (ϑ0) ≤

[
k

q

]
, (9.3.20)e9.3.20

where k is the order of the tree and [x] is the largest integer smaller or equal
to x. This is a statement analogous to the one that in Chapter VIII was
called “Siegel–Bryuno” bound and its check is very similar too, see problem
[9.3.4].
We now show how to construct a suitable partial resummation of the Lind-
stedt series. This means that we shall define families of trees to be grouped
and bounded together to obtain “extra” η factors in the bounds of the sums
of their values.
Given m trees ϑ1, . . . , ϑm with root lines λ1 . . . λm on scale 0 and a tree ϑ
which has among its lowest lines (in its partial order) a line λ on scale 0 as
well, we can imagine to construct a tree ϑ0 which contains a null graph T
with kT nodes, mT ≡ m entering lines λ1 . . . λmT and with λ as exiting line.
The kT nodes v1, . . . , vkT carry modes νv1 , . . . , νvkT such that

∑
νvi = 0.

We shall call F the family of trees formed by all trees that can be built
in this way (it depends on ϑ, ϑ1, . . . , ϑm). Each element of F is entirely
defined by the tree ϑ determined by the null graph T (see comments before
(9.3.17)) and its value is the product of a ϑ–independent factor times the
null graph factor VT (ϑ) defined in (9.3.17).
It is now convenient, for enumeration purposes, to strip VT (ϑ) of the first
factor

∏
v

1
mv!

and to attach a label 1, 2, . . . , kT + m to the kT + m lines
forming ϑ. We obtain a family of “numbered null graphs” which contain
many more graphs: we want to regard them as distinct unless they can
be overlapped (number labels included) by pivoting, around their ending
nodes, the lines ending on the nodes of ϑ.
If we define the value of the new numbered null graphs as in (9.3.17)
with

∏
v

1
mv !

replaced by 1
(kT+m)! we realize that the sum of the values of

the distinct numbered null graphs equals the sum of the values of the null
graphs previously considered in the family F .
The momentum flowing through a branch λv inside a null graph will depend
on the modes of the nodes w ∈ T such that w � v and on the momenta
of the entering branches of the null graph only if the latter end into nodes
which precede v; we call Lv the set of such branches.
For any λv internal to a null graph T we have

νλv =
∑

w∈V (T )
w≤v

νw +
∑

λ′∈Lv
νλ′ , (9.3.21)e9.3.21

and, in the corresponding propagator, we can write the argument of the
cosine as

2πp

q

∑

w∈V (T )
w≤v

νw + 2πi
[ ∑

w∈V (T )
w≤v

ηνw +
∑

λ′∈Lv
ηνλ′

]
. (9.3.22)e9.3.22
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because the lines entering the graph have scale 0 so that
∑

λ′∈Lv νλ′ is a
multiple of q.
We can consider the null graph factor VT (ϑ) as a function of the quantities
µ1 ≡ ηνλ1 , . . ., µmT ≡ ηνλmT of the incoming branches λ1, . . ., λmT ,
i.e. VT (ϑ) ≡ VT (ϑ; ηνλ1 , . . . , ηνλmT ). For any v ∈ V (T ), we have Lv ⊆
{λ1, . . . , λmT }. We can write

VT (ϑ; ηνλ1 , . . . , ηνλmT ) = VT (ϑ; 0, . . . , 0)

+

mT∑

m=1

ηνλm
∂

∂µm
VT (ϑ; 0, . . . , 0) (9.3.23)e9.3.23

+

mT∑

m,m′=1

η2νλmνλm′

∫ 1

0

dt (1− t) ∂2

∂µm∂µm′
VT (ϑ; tηνλ1 , . . . , tηνλmT ),

where [∂VT /∂µm](ϑ; 0, . . . , 0) denotes the first derivative of VT (ϑ;µ1, . . . ,
µmT ) with respect to the argument µm, computed in µ1 = . . . = µmT = 0,
while the term in the second line is the integral interpolation formula for
the second order remainder.
We call FT (ϑ) the collection of all trees which are in the family F defined
above and which contain in the null graph T a tree ϑ′ of topological shape
which can differ from that of ϑ because of the shift of the entering lines of
T , and with given mode labels {νv}v∈ϑ assigned to the nodes v ∈ ϑ;2 weN9.3.2

further enlarge the family FT (ϑ) by adding to it the trees in which the signs
of the mode labels are all simultaneously reversed. Therefore the elements
of the family FT (ϑ) differ from each other because the entering lines can
be attached in various ways to the nodes of ϑ or because the signs of the
node modes are reversed simultaneously, i.e. the trees of F are obtained by
“shifting the external lines entrance nodes” in the null graph T or by the
“reversing all signs of the node modes”.
For the same reasons discussed in Section 8.3 we see that the sum of all
the numbered null graphs in FT (ϑ) is an even function of η (because if the
modes νv can be attached to the nodes of ϑ also the modes −νv can) which
vanishes as η → 0 to order ηmT : therefore it vanishes to order ηmT if mT

is even and ηmT+1 if mT is odd.3 Hence, since mT ≥ 1, it vanishes at leastN9.3.3

to second order in η so that the zero-th and first orders in η in the r.h.s. of
(9.3.23) vanish. This implies the following lemma which is the crucial one,
where cancellations between trees in the same family are exploited. The
lemma will be immediately used to prove the main estimate on the radius
of convergence of the Lindstedt series.

(9.3.1) Lemma:L9.3.1 (Cancellations : single null graph case)
Given a tree ϑ0, with a null graph T with kT nodes containing a tree of the

2 Two numbered trees have the same topological shape if, disregarding the number labels,
they can be overlapped by pivoting the branches around the nodes into which they enter.

3 The higher order of the zero in η is due to the fact that one can independently shift the
mT entering lines, while in Section 8.3 there was only one entering line.
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topological shape of some ϑ, let ν1, . . ., νmT be the momenta flowing through
the entering branches λ1, . . ., λmT of T . We consider the family FT (ϑ): we
have the bound

1

FT (ϑ)
∣∣∣
∑

ϑ′∈FT (ϑ)

VT (ϑ′)
∣∣∣ ≤ c−kT q2kTD0k

2
T

mT∑

m,m′=1

∣∣νmνm′η2
∣∣ , (9.3.24)

e9.3.24

for some constant D0.

Remark: The improved bound (9.3.24) is due to the above discussed re-
markable cancellations which extend those considered in Section 8.3. With-
out exploiting such cancellations, the value of a null graph could only be
bounded through (9.3.18). The cancellations produce the extra factors ap-
pearing in the sum: the factor k2T is due to the fact that in order to exhibit
the cancellation we use an interpolation formula, see (9.3.23), which involves
a second order derivative with respect to the kT momenta of the entering
lines of the null graph. The latter is proportional to the product of kT
propagators.

Proof: The first two terms in (9.3.23) give a vanishing contribution to the
sum over FT (ϑ), as discussed above; the integral appearing in the third term
in (9.3.23) gives, for each ϑ′ ∈ FT (ϑ), a contribution bounded by d0q

2 times
the original bound on |VT (ϑ)|, for a suitable d0. In fact the propagators of
all branches inside V are bounded by c−1q2, and their first and second
derivatives, respectively, by d1q

3 and d2q
4 for some constants d1 and d2

(such branches remain on scale n = 1: the incoming branches contribute a
quantity that modifies only the imaginary part of the momenta of branches
inside V ). Then the lemma follows, with D0 = max{cd21, d2}q2.
However a typical tree may contain more than one null graph: hence we
shall need the following easy corollary of the above lemma.

(9.3.1) Corollary:C9.3.1 (Cancellations: several null graphs case)
Given a tree ϑ0 with null graphs T1, . . ., Ts, containing numbered trees with
shapes ϑ1, . . . , ϑs; consider the families F1 = FT1(ϑ0), F2 = ∪ϑ′∈F1FT2(ϑ

′)
and so on recursively till Fs; the number of trees in the family F is given
by kFs =

∏s
i=1 |FTi(ϑi)|, and

1

kFs

∣∣∣
∑

ϑ′∈Fs
Val(ϑ′)

∣∣∣ ≤ c−kq2N1(ϑ0)|η|−2N0(ϑ0)Ds
0k

2|η|2s, (9.3.25)e9.3.25

with a suitable D0.

Proof: One remarks that the cancellation mechanisms operating for each
null graph do not interfere with each other (i.e. there is no cancellations
overlap because here we have only two scales), as noted (in a more general
context) in Section §8.1.
The above corollary implies the main result on the convergence radius of
the Lindstedt series (9.3.7), which can be formulated as follows.
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Let NR
0 (ϑ0) be the number of null branches (necessarily on scale n = 0),

so that N0(ϑ0) = N∗
0 (ϑ0) + NR

0 (ϑ0). For the null graphs an overall gain
Ds

0k
2|η|2s is obtained, by (9.3.25). Then we have

1

kFs

∣∣∣
∑

ϑ′∈Fs
Val(ϑ′)

∣∣∣ ≤ c−kq2N1(ϑ0)|η|−2N∗
0 (ϑ0)|η|−2NR0 (ϑ0)D

NR0 (ϑ0)
0 k4|η|2NR0 (ϑ0)

≤
(
c−1e2D0q

2
)k |η|−2k/q,

(9.3.26)e9.3.26
as k2 ≤ e2k and the number of null graphs is equal to the number of null
branches, i.e. s = NR

0 (ϑ0). Therefore, writing the sum over all trees as

∑

ϑ∈Θν,k

Val(ϑ) =
∑

ϑ∈Θν,k

1

kFs

∑

ϑ′∈Fs
Val(ϑ′), (9.3.27)e9.3.27

we can conclude that one has, for α real,

∣∣∣u(k)ν
∣∣∣ ≤ Dk

1 |η|−2k/q ,
∣∣∣
∑

ν∈Z
eiναu(k)ν

∣∣∣ ≤ Dk
1 |η|−2k/q , (9.3.28)e9.3.28

for some constants D1. The above analysis gives D1 = 4cD0q
2; this implies

that ρ(η) ≥ r|η|2/q , for some explicitly computable constant r.
Since the momentum ν of a k–th order tree is |ν| ≤ k we see that analyticity
in the strip |Imα| < δ0 has also been obtained in the domain |ε| < ρ(η)e−δ0

because |eiαν | ≤ eδ0k. This proves item (i) of proposition (9.3.1). Item (ii)
will be studied in Section §(9.4).
Problems for §9.3

[9.3.1]:Q9.3.1 (Kicked rotator)

Show that (9.3.1) can be seen as the map at time 1 of the continuous-time Hamiltonian
system (known in Physics literature as the kicked rotator) described by the singular
Hamiltonian

2πA+
I2

2
+ 2πε

∑

ν∈Z

δ(α − 2πn) (cosϕ− 1) ,

where δ is the delta function. (Hint: Simply write down the Hamilton equations and
integrate them between t = 0 and t = 1, then define x = ϕ and y = I − ε sinϕ/2.)
[9.3.2]:Q9.3.2 (Kicked rotator and KAM)

Prove the existence of the analytical invariant curves (9.3.6) for the standard map, for
ε small enough. (Hint: Simply adapt the proof of KAM theorem in Section §8.1 to the
standard map by using the tree expansion (9.3.14)).

[9.3.3]:Q9.3.3 Prove the bound (9.3.15). (Hint: Use that | cos z−1| ≥ |z|2/4, and | cos z−1| ≥
|Im z|2/2 for |Re z| ≤ π/4, while | cos z − 1| ≥ 1/2 for |Re z mod 2π| ≥ π/4.)
[9.3.4]:Q9.3.4 Prove the bound (9.3.20). (Hint: The cases q = 1 and q ≥ 2, k ≤ q are trivial.
So consider the case k > q. If the tree ϑ has the root branch either on scale n = 1 or on
scale n = 0 and resonant, then the bound N∗

0 (ϑ) ≤ k/q follows inductively. If the root
branch is on scale n = 0 and non-resonant, then the branches entering v0 cannot be all
on scale n = 0, otherwise νv0 = 0 (as q > 1), which is not allowed. Then at least one
branch will have scale n = 1: let T be the cluster containing it. The cluster T will have
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mT entering branches, with mT ≥ 0, and it is not a null graph; then
∑

v∈V (T )
νv 6= 0,

so there must be at least q nodes, hence q − 1 branches, inside T . The subtrees entering
into T will have, respectively, k1, . . ., kmT nodes, with q +

∑mT
j=1

kj ≤ k so that, again

inductively, one obtains N∗
0 (ϑ) = 1 +

∑mT
j=1

N∗
0 (ϑj) ≤ 1 + (k − q)/q ≤ k/q. Then N∗

0

will be bounded by k/q. As N∗
0 has to be an integer number, the assertion follows.)

Bibliographical note to §9.3
The possible relations between radius of convergence of the conjugating
function and some function depending only on the arithmetic properties of
the rotation number was first considered by Yoccoz for Siegel’s problem,
[Yo95], who also introduced the Bryuno function B(ω) as the solution of
a suitable functional equation. In particular he considered the problem of
the optimal dependence of the radius of convergence on the Bryuno func-
tion. The analogous problem for the semistandard map, which is a sim-
plified model sharing with the standard maps many interesting features,
was considered by Davie, [Da94], who found that, by denoting with ρ0(ω)
the radius of convergence of the function which takes the role of the con-
jugating function for the standard map, a bound | log ρ0(ω) + βB(ω)| < C
holds with β = 2. A natural question is then whether a bound of the
same kind can be obtained also for the standard map, i.e. if, by defining
Qβ(ω) ≡ log ρ(ω) + βB(ω), there exists a universal constant C such that
|Qβ(ω)| < C for some value of β and for all irrational numbers ω such that
B(ω) <∞ (the so called Bryuno numbers). Davie’s result implies the upper
bound Q2(ω) < C
The results stated in proposition (9.2.1) were first conjectured in [BM94],
supported by numerical results, and a proof was given for the resonances
p/q = 0/1 and p/q = 1/2. Validity of Bryuno’s interpolation formula
|Q2(ω)| < C was recently proved in [BG01], where a bound Q2(ω) > C
was found via a refinement of the techniques discussed in the present sec-
tion.

§9.4 Scaling laws for the standard map

In Section §9.3 we have proved that at least a rescaling ε → (2πη)2/qε is
needed in order to obtain a well defined limit of the conjugating function as
η → 0. Without exploiting any cancellations a rescaling ε→ (2πη)2ε might
seem to be necessary, but of course, by taking into account the cancellations
a posteriori, one sees that such a rescaling would have produced a vanishing
function. The analysis performed so far, however, does not exclude that
further cancellations are still possible, so that it could happen that the
limit of the rescaled conjugating function is still zero: in other words it
could happen that we are still rescaling “too much”. In this section we want
to show that this is not the case, and, furthermore, we want to provide an
explicit expression for the rescaled function.
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Let us consider the coefficient uν(ε) in (9.3.7). By definition of momentum,

only trees of order k ≥ |ν| can contribute to uν(ε), so that u
(k)
ν = 0 for

k < |ν|. Therefore we can write

uν(ε) =
∑

k≥|ν|
εku(k)ν = ε|ν|u(|ν|)ν +

∞∑

k=|ν|+1

εku(k)ν , (9.4.1)e9.4.1

and use the first bound in (9.3.28) for u
(k)
ν , k > |ν|, in order to bound the

last sum in (9.4.1) by

∣∣∣
∞∑

k=|ν|+1

εku(k)ν

∣∣∣ ≤ 2
(
D1|η|−2/qε

)|ν|+1

, (9.4.2)e9.4.2

provided that |ε| < D−1
1 |η|2/q/2. The coefficient u

(|ν|)
ν in (9.4.1) can be

expressed in terms of trees having all the modes νv = σ, where σ = sign ν.
From the definition of tree value it is easy to see that such trees have
the same product

∏
v∈V (ϑ) ν

mv+1
v appearing in Val(ϑ), which is given by

σ2|ν|+1 = σ. Furthermore among such trees there will also be trees having
[|ν|/q] propagators with momentum respectively q, 2q, . . ., [|ν|/q]q: for in-
stance the linear tree (i.e. the tree whose nodes have all only one entering
branch). Therefore there will be trees whose value will be bounded from
below by O

(
|η|−2[|ν|/q]). When the limit η → 0 is taken, remarking that

the quantities γ(ν) for η = 0 are not positive, cf. (9.3.9), each of such trees
ϑ has a value which is:

Val(ϑ) = −iσB(ϑ)η−2[|ν|/q],

B(ϑ) = (−1)k
( ∏

v∈V (ϑ)

1

mv!

)( ∏

λ∈Λ(ϑ)
nλ=0

1

(2πνλ)2

)( ∏

λ∈Λ(ϑ)
nλ=1

1

|γ(νλ)|
)
, (9.4.3)

e9.4.3

because the propagators γ(ν)−1 diverge as (2πiνη)−2 for η → 0.
This means that no cancellation is possible among them, so that

u(|ν|)ν = Aν |η|−2[|ν|/q], |Aν | > 0. (9.4.4)e9.4.4

If we want that, in the limit η → 0, the coefficient uν(ε) non only does not
diverge but also does not vanish, we have to impose that

0 < lim
η→0

ε|ν|u(|ν|)ν <∞, (9.4.5)e9.4.5

so that (9.4.4) implies that ε has to be taken of order O(|η|2/q). In such a
way all the limits (9.4.5) exist, for any ν, and they are vanishing but for |ν|
multiple of q.
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Moreover, when we compute uν(ε), with ν multiple of q, only the coeffi-

cients u
(k)
ν with k multiple of |ν| will contribute to the limit η → 0, be-

cause all other contributions arise from trees containing null graphs, and
the analysis above shows that the propagators corresponding to the reso-
nant branches do not introduce new denominators small in η, while each
new node contributes a factor |η|2/q, by (9.4.4) and (9.4.5).

The function U(α, ε) = u(α, (2πη)2/qε) admits a Taylor series in ε conver-
gent for |ε| < ε0 = O(1) uniformly in η. The k-th order Fourier coefficients
of U are defined by

U (k)
ν = u(k)ν (2πη)2k/q , (9.4.6)e9.4.6

so that, if we introduce the function

ū(α, ε) = lim
η→0

U(α, ε), (9.4.7)e9.4.7

we have that

ū(α, ε) =

∞∑

k=1

∑

ν∈Z
εkeiναū(k)ν ,

ū(k)ν = lim
η→0

u(k)ν (2πη)2k/q ,

(9.4.8)
e9.4.8

and the first series in (9.4.8) converges absolutely by (9.3.28): this means

that the coefficients ū
(k)
ν are well defined, and, from the analysis above, we

know that only the Fourier coefficients with modes multiples of q survive
when the limit η → 0 is taken; furthermore, the function ū(α, ε) is analytic
in ε for ε small enough and η independent, and periodic in α with period
2π/q. Summarizing, we have

ū(k)ν =




− (2π)k/q

2k

∑′

ϑ∈Θν,k

Val′(ϑ), if ν ∈ qZ \ {0} and k ∈ qZ \ {0} ,

0, otherwise ,
(9.4.9)

e9.4.9

where
∑′

means that only trees without null graphs have to be summed
over and Val′(ϑ) differs from Val(ϑ) inasmuch as, for ν multiple of q, the
denominator γ(ν) has to be replaced with (2πiν)2.

Let us now consider all trees of order q contributing to ν = σq, with
σ = sign ν: the values of such trees can be read from (9.3.14), and one sees
that the numerator is identically −iσ, so that

∑

ϑ∈Θσq,q

Val′(ϑ) = (2π)2
∑

ϑ∈Θσq,q

(−iσ)
∏

v∈V (ϑ)

1

mv!

1

γ(νλv )
=

1

(iν)2
(−iσ)Sp/q,

(9.4.10)e9.4.10
thus defining the expression Sp/q (which does not depends on σ): the factor
(iν)−2 arises from (2π)2 times the propagator γ(ν), which appears in all
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tree values of trees in Θσq,q so it can be factored out. For instance, for
p/q = 0/1, p/q = 1/2 and p/q = 1/3, by explicit computation, we find

S0/1 = 1,

S1/2 =
1

2(cosπ − 1)
= −1

4
, (9.4.11)e9.4.11

S1/3 =
1

2(cos(4π/3)− 1)

1

2(cos(2π/3)− 1)
+

1

2

1

[2(cos(4π/3)− 1)]2
=

1

6
,

as one checks from the definition (9.4.10).

We have the following result.

(9.4.1) Lemma:L9.4.1 (Limit function near the resonances)

The coefficients ū
(k)
ν satisfy the recursion relation

ū(k)ν =
1

2q−1

1

(iν)2

∞∑

m=1

1

m!

Sp/q

2
(−iσ)(iσq)m

∑

σq+ν1+...+νm=ν
k1+...+km=k−q

m∏

i=1

ū(ki)νi ,

(9.4.12)e9.4.12
where the constant Sp/q is defined in (9.4.10).

Proof: A generic tree of order k = κq, κ ≥ 1, and momentum ν = nq,
n ≥ 1, can be obtained starting from a tree ϑ0 of order q by attaching
to its nodes m ≥ 0 trees ϑ1, . . ., ϑm of orders k1 = κ1q, . . ., km = κmq,
with κ1 + . . . + κm = κ − 1 and total momenta ν1 = n1q, . . ., νm = nmq
with n1 + . . . + nm = n − 1. Each tree can be attached to any node of ϑ0
so that the combinatorial factor associated to any node v ∈ V (ϑ0)will be
mv!

−1, with mv = sv + rv, if sv is the number of branches connecting v
to other nodes of ϑ0 and rv is the number of trees attached to v. Then by
construction

∑
v∈V (ϑ0)

rv = m. Note that two trees in which one of the first

sv subtrees (with root branch belonging to ϑ0) is permuted with one of the
remaining rv cannot be identical, as they have a different number of nodes:
only the latter will have a number of nodes which is multiple of q.

If we sum together all trees which can be obtained from each other by
choosing in a different way the sv subtrees with root branch belonging to
ϑ0 and the remaining rv subtrees, we have

∏
v∈V (ϑ0)

mv!
sv ! rv !

terms, so that,

by taking into account that (see (9.4.10))

Val′(ϑ0) = (2π)2(−iσ)
∏

v∈V (ϑ0)

1

sv!

1

γ(νλv )
. (9.4.13)e9.4.13

Furthermore, by shifting the subtrees attached to the nodes of ϑ0, the mo-
mentum flowing through any branch of ϑ0 can vary by an amount propor-
tional to a multiple of q, so that the corresponding propagator does not
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change, we can write

Val′(ϑ) =
∑

ϑ0∈Θσq,q

Val(ϑ0)

∞∑

m=0

∑

{rv≥0}∑
v∈V (ϑ0)

rv=m

∏

v∈V (ϑ0)

1

rv!
(iσ)m

∑′

ϑ1,...,ϑm

m∏

i=1

Val′(ϑi),

(9.4.14)e9.4.14

where ′ recalls the constraint on the trees ϑ1, . . ., ϑp described above. Since

∏

{rv≥0}∑
v∈V (ϑ0)

rv=m

1

rv!
=
qm

m!
, (9.4.15)

e9.4.15

we deduce from (9.4.14) that

Val′(ϑ) =
∑

ϑ0∈Θσq,q

Val′(ϑ0)
∞∑

m=0

1

m!
(iσq)m

∑′

ϑ1,...,ϑm

m∏

i=1

(iσq)Val′(ϑi).

(9.4.16)e9.4.16
Then from (9.4.10) and (9.4.16) we read that

ū(k)ν =
1

2q

∑

ϑ0∈Θq,q

Val′(ϑ0)
∞∑

m=0

1

m!

∑

k1+...+km=k−q
σ+ν1+...+νm=ν

m∏

i=1

(iσq)ū(ki)νi . (9.4.17)e9.4.17

and using (9.4.10) we obtain (9.4.12).

The above results yield that the function ū(α) ≡ ū(α, ε) in (9.4.7) satisfies
the differential equation

d2ū(α)

dα2
= Cp/qε

q sin(q(α+ ū(α))), (9.4.18)
e9.4.18

with boundary conditions ū(0) = ū(2π) = 0, and Cp/q given by

Cp/q = 2−(q−1)Sp/q = 2−(q−1)
∑

ϑ∈Θq,q

(2πiν)2
∏

v∈V (ϑ)

1

mv!

1

γ(νλv )
, (9.4.19)e9.4.19

where the factor (2πiν)2 simply cancels the propagator of the root branch of
ϑ. This is seen by a straightforward check: write (9.4.18) in Fourier space,
and write the recursion relations defining the coefficients, by taking into
account that only orders and momenta multiples of q can occur (this can
be seen inductively), obtaining

ū(k)ν =
1

(iν)2

∞∑

m=0

1

m!

Cp/q

2
(−iσ)(iσq)m

∑

σq+ν1+...+νm=ν
k1+...+km=k−q

m∏

i=1

ū(ki)νi , (9.4.20)e9.4.20
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with σ = ±1. This is the same expression as (9.4.12) provided the constant
Cp/q is chosen as (9.4.19).

Now we come back to the proof of proposition (9.3.1), and, to conclude the
proof, we collect the results obtained so far.
Since for η 6= 0 there are no small divisors and the convergence of the
Lindstedt series can be proved by elementary means, the only non obvious
part of item (i) is the behavior of the radius of convergence as η → 0. This
has been studied in detail at the end of Section 9.3, and the conclusion is that
the radius of convergence is strictly positive; to exclude that the radius of
convergence could be infinite (see also problem [9.4.2]) one can consider the
limit function, whose existence is stated in item (ii), and use the properties
of the elliptic functions to conclude that its radius of convergence is finite
(see [BM94] for an explicit discussion).1N9.4.1

Remark: The restriction on the path over which we take the limit ω →
p/q in the complex plane (i.e. approaching the real axis perpendicularly) is
taken only for the sake of simplicity: in fact, it is easy to modify the proofs
in such a way that any path in the complex plane, provided it is not tangent
to the real axis, can be taken. More precisely, let

ω =
p

q
+ ζ + iη, (9.4.21)e9.4.21

with p, q ∈ Z, gcd(p, q) = 1, and ζ, η ∈ R, with

|η| ≥ a|ζ|, a > 0, (9.4.22)e9.4.22

in the limit η → 0. Condition (9.4.22) defines a cone in the complex ω
plane, with its vertex in p/q and its slope equal to a: any path inside this
cone tends to p/q non-tangentially.
First we show that inequalities like (9.3.15) can be derived under the con-
dition (9.4.22), with the only difference that now c = 2π2a−2.
Since the analysis above was based on the inequalities (9.3.15) and on the
definition of null graph, it can be repeated essentially unchanged in the
case (9.4.21), and the same results hold. In fact, the proof of lemma (9.3.1)
can be carried out in a similar manner, by expressing the null graph value
as a function of the quantities ξνλ1 , . . ., ξνλmT , with ξ = ζ + iη; then
by taking into account that, for any ν such that ν = 0 (mod q), one has

|γ(ν)| ≥ 4π2|νη|2, and |νζ| ≤ |ν|
√
ζ2 + η2 ≤ |νη|(1 + a−1), one sees that

the cancellation mechanisms operate exactly in the same way as before, and
the second order terms can be dealt with as before, with the only difference
that now D0 = max{cd21, d2}q2a−2(1 + a−1).
Once the perturbation parameter ε has been scaled to (2πξ)2/qε, the surviv-
ing terms are exactly the same as before, so that all of the above discussions

1 Alternatively one can use an argument due to Davie [Da94]; see also [BG01] for the
implementation of such an idea in a more general context.
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apply verbatim; in fact

lim
η→0

γ(ν)[2π(ζ + iη)]−2 = 1, (9.4.23)e9.4.23

for ν multiple of q and ζ, η satisfying (9.4.22).
Our main results therefore still apply provided the path taken by ω while
tending to p/q is not tangential to the real axis, so that (9.4.22) applies for
some a.

Problems for §9.4

[9.4.1]:Q9.4.1 Show that for rotation numbers ω satisfying (9.4.21) and (9.4.22), the bound

(9.3.15) still holds, for a different constant c. (Hint: The first inequality holds as,
for ν multiple of q, we can write cos(2π(p/q + ζ + iη)ν) = cos(2π(ζ + iη)ν), so that
2| cos(2π(p/q + ζ + iη)ν) − 1| ≥ 4π2|νη|2. If ν 6= 0 (mod q), we can deduce that, by de-
noting x = (p/q+ζ)ν, one has |γ(ν)| ≥ 1/2 for 2π|x| ≥ π/4. Then, if 2π|x| ≤ π/4 we have
|γ(ν)| ≥ 2π2(|x|2 + |ην|2), so that, if |x| ≤ (2q)−1, one has |ζν| ≥ (2q)−1 as |pν/q| ≥ 1,
hence |ν| ≥ (2q|ζ|)−1, i.e. |ην| ≥ (2q)−1|η/ζ|, which implies |γ(ν)| ≥ π2q−2a2/2, while,
if |x| ≥ (2q)−1, then |γ(ν)| ≥ π2q−2/2.)

[9.4.2]:Q9.4.2 Provide an example of a power series in ε depending on a parameter η such
that, for η → 0, there is only one possible rescaling of ε as a function of η making the
radius of convergence different from zero such that the rescaled function is different from
zero and its radius of convergence id infinite. (Hint: Consider

∑
k=1

(ε/η)k/k!.)
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CHAPTER X

Special ergodic theory problems in chaotic dynamics

§10.1 Perturbing Arnold’s cat map

A general theorem on Anosov maps allows us to say that in a certain sense
Anosov maps that are close enough in C2 can be considered as derived one
from the other by a “change of coordinates”, which, however, is not really
smooth. This is the theorem of structural stability of Anosov that can be
formulated as follows.

(10.1.1) Proposition:P10.1.1 (Structural stability) Let S, S′ be two Anosov dif-
feomorphisms of a manifold Ω. If they are close enough together with their
first two derivatives1 then there exists a homeomorphism H : Ω←→ Ω suchN10.1.1

that

S ◦H = H ◦ S′. (10.1.1)e10.1.1

The homeomorphism is Hölder continuous but, in general, not differentiable.

Remarks: (1) The lack of real smoothness, and even of differentiability, is
however a considerable obstacle to arguments based on the naive interpre-
tation of the theorem suggesting that S and S′ “just” differ by the change
of coordinates H .
(2) It is important to realize that if µ is an invariant measure for S then
µ′ = Hµ is an invariant measure for S′. Notwithstanding this nice property,
in general, the image under H of the SRB distribution µSRB of S is not the
SRB distribution µ′

SRB of S′. Indeed HµSRB is the weak limit under the

1 One also says “close enough in the C2 topology”
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action of S′ of Hλ where λ is the volume measure on Ω. Due to the above
remarks Hλ is, in general, singular with respect to λ.

We suggest a proof for the simple two-dimensional case in the problems
at the end of this section. Here we discuss how to construct concretely the
map H in a class of special cases. An explicit construction of H as well as
of the stable and unstable manifolds of an Anosov system and a detailed
study of the SRB distribution is of course a very difficult task. Nevertheless
it can be performed with remarkable depth in some special cases.
Here we consider maps that are perturbations of Arnold’s cat map and the
following proposition (or better its proof) is the key result [BFG03].

(10.1.2) Proposition:P10.1.2 (Arnold’s cat map perturbations) Let f(ϕ) be a

real trigonometric polynomial, f(ϕ) =
∑

ν∈Z2,|ν|≤N e
iν·ϕf

ν
, defined on the

two-dimensional torus T2 and let

Sεϕ = S0ϕ− εf(ϕ), with S0 =

(
1 1
1 0

)
. (10.1.2)e10.1.2

For β ∈ (0, 1) there exist C(β) <∞ and ε0(β) > 0 such that for |ε| < ε0(β)
the equation

H ◦ S0 = Sε ◦H (10.1.3)e10.1.3

defines a unique homeomorphism ϕ → H(ϕ) which is analytic in ε in the
complex disk |ε| < ε0(β) and Hölder continuous with exponent at least as
large as β and with Hölder continuity modulus bounded by C(β).

Remarks: (1) Proposition (10.1.2) tells us that we can conjugate the map
Sε to the map S0 via a function H that is analytic in ε. However, in general
it is not true that we can conjugate S0 to Sε via an analytic homeomorphism.
Indeed the equation

H̃ ◦ Sε = S0 ◦ H̃ (10.1.4)e10.1.4

cannot be studied with the method developed in the proof below because it
would require an expansion of H̃ in power of ψ.
(2) Clearly, in the hypotheses of proposition (10.1.2), H̃ exists and is the
inverse of H . Conversely, (10.1.4) can be solved explicitly by using the
special properties of S0. Moreover, if Sε is Anosov, the solution is a home-
omorphism and is Hölder continuous in ε, as can be directly checked from
H̃ ◦H = Id. See problems [10.1.6], [10.1.9] for a more detailed discussion.

Proof: We shall write ϕ = H(ψ) = ψ + h(ψ), ψ ∈ T
2; then the relation

(10.1.3) becomes an equation for h, namely

S0h(ψ)− h(S0ψ) = εf(ψ + h(ψ)), (10.1.5)e10.1.5

and the analogies with (8.1.12) or (9.3.4) suggest employing the same
method to solve it. Hence we look for a solution which is analytic in ε:
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h(ψ) = εh(1)(ψ) + ε2h(2)(ψ) + · · · with h(k) an ε–independent function. For
instance the equation for the first order is

S0h
(1)(ψ)− h(1)(S0ψ) = f(ψ). (10.1.6)e10.1.6

We call v+, v− the two normalized eigenvectors of S0 relative to the eigenval-

ues (1±
√
5)/2 and we call λ the inverse of the largest one (λ = (

√
5−1)/2),

so that λ+ = λ−1, λ− = −λ: although the fact that λ is the golden mean
might be intellectually nice in the following the only property that we shall
use is λ < 1.
The functions f, h can be split into two components along the vectors v±:

f(ψ) = f+(ψ)v+ + f−(ψ)v−,

h(ψ) = h+(ψ)v+ + h−(ψ)v−,
(10.1.7)

e10.1.7

and the equations (10.1.6) for h
(1)
± are

λ+h
(1)
+ (ψ)− h(1)+ (S0ψ) = f+(ψ),

λ−h
(1)
− (ψ)− h(1)− (S0ψ) = f−(ψ).

(10.1.8)e10.1.8

The equations (10.1.8) can be solved by simply setting

h(1)α (ψ) = −
∑

p∈Zα

αλ−|p+1|α
α fα(S

p
0ψ), α = ±, (10.1.9)e10.1.9

where Z+ = [0,∞)∩Z and Z− = (−∞, 0)∩Z are subsets of the integers
Z and advantage is taken of the inequality λ = λ−1

+ = |λ−| < 1 to ensure
convergence.

Therefore the equations for h
(k)
± become

h(k)α (ψ) =
∞∑

s=0

1

s!

∑

k1+···+ks=k−1, ki≥0
α1,...,αs=±

∑

p∈Zα

αλ−|p+1|α
α ·

·
( s∏

j=1

(vαj · ∂ϕ)
)
fα(S

p
0ψ)

( s∏

j=1

h(kj)αj (Sp0ψ)
)
,

(10.1.10)e10.1.10

and proceeding as in Section §8.1 we obtain a similar graphical representa-
tion

α

v
(k) =

∑

s>0
k1+...+ks=k−1

1

s! r

α, p

v

α1

αs
(ks)

(ks−1)

(k2)

(k1)

Fig.(10.1.1)F10.1.1 Graphical interpretation of (10.1.10) for k ≥ 1.
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where the l.h.s. represents h
(k)
α (ψ). Representing again, in the same way,

the graph elements that appear on the r.h.s. one obtains an expression for

h
(k)
α (ψ) in terms of trees, oriented toward the root, just like we already saw

in Section §8.1, cf. Fig.(8.2.1), (8.2.2) and (8.3.1), in the KAM theory.
A tree ϑ with k nodes will carry on the branches2 ℓ a pair of labels αℓ, pℓ,N10.1.2

with pℓ ∈ Z and αℓ ∈ {−,+}, and on the nodes v a pair of labels αv, pv,
with αv = αℓv and pv ∈ Zαv such that

p(v) ≡ pℓv =
∑

w�v
pv, (10.1.11)e10.1.11

where the sum is over the nodes following v (i.e. over the nodes along the
path connecting v to the root), ℓv denotes the branch v′v exiting from the
node v, and to each tree we shall assign a value given by

Val(ϑ) =
∏

v∈V (ϑ)

αv
sv!

λ−|pv+1|αv
αv

( sv∏

j=1

∂αvj

)
fαv(S

p(v)
0 ψ), (10.1.12)e10.1.12

where ∂α
def
= vα · ∂ϕ, V (ϑ) is the set of nodes in ϑ, the nodes v1, . . . , vsv are

the sv nodes preceding v (if v is a top node then the derivatives are simply
missing). If Θk,α denotes the set of all trees with k nodes and with label α
associated to the root line, then one has

hα(ψ) =

∞∑

k=1

εk
∑

ϑ∈Θk,α

Val(ϑ), (10.1.13)e10.1.13

and the “only” problem left is to estimate the radius of convergence of
the above formal power series. For this purpose it is convenient to study
the Fourier transform of the function hα(ψ). This is easily done graph-

ically because it is enough to attach a label νv ∈ Z
2 to each node and

define the momentum that flows on the tree branch v′v as in Section §8.1,
i.e. νℓv

def
=
∑

w�v νw, see (8.2.4).
Then (10.1.13) becomes

hα(ψ) =
∞∑

k=1

εk
∑

ν∈Z2

eiν·ψ h(k)α,ν , (10.1.14)
e10.1.14

with

h(k)α,ν =
∑

ϑ∈Θk,ν,α

∑

pv∈Zαv

( ∏

v∈V (ϑ)

αv
sv!

λ−|pv+1|αv
αv f

αv,S
−p(v)
0 ν

v

)
·

·
∏

v∈V (ϑ)

v′ 6=v0

(
− S−p(v′)

0 νv′ · vαv
)
,

(10.1.15)e10.1.15

2 We do not use the letter λ as in Section §8.1 to denote the lines in order to avoid
confusion with the parameter λ introduced after (10.1.6).
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where Θk,ν,α denotes the set of all trees with k nodes and with labels ν and
α associated with the root line.
Calling F = maxν |fν | we can estimate

∑
ν |ν|β|h

(k)
α,ν |. The only problem is

given by the presence of the factor |ν|β. In fact consider first the case β = 0:
since we are assuming that f is a trigonometric polynomial there are only

(2N + 1)2 possible choices for each νv, given pv, such that |S−pv
0 νv| ≤ N .

Hence fixed ϑ, {αv}v∈V (ϑ) and {pv}v∈V (ϑ) the remaining sum of products

in (10.1.15) is bounded by (if λ ≡ λ−1
+ ≡ −λ−)

(3N)2kNkF k
∏

v∈V (ϑ)

λ|pv |

sv!
. (10.1.16)e10.1.16

The sum over the pv is a geometric series bounded by (2/(1− λ))k.
The combinatorial problem is identical to the one discussed in Section §8.1
and in the other sections of Chapter VIII, so that the factor

∏
v(1/sv!)

becomes, after summing over all the trees, simply bounded by 23k, (22k

due to the number of trees for fixed labels, see Section §8.1, and 2k due to
the sum of labels αv), noting that in the present problem all the intricacies
due to the small divisors are just absent. In fact we have not used the
(sv!)

−1 and we have bounded them by 1: they would be necessary if we had
supposed f to be only analytic rather than a trigonometric polynomial; see
problems [10.1.3], [10.1.4] and [10.1.5], and bear in mind the problems of
Section §8.4.
Therefore for β = 0 we have proved that the conjugating function H exists

and that inside the complex domain |ε| < ε0(0)
def
= (3N)−3F−12−4(1−λ) it

is uniformly continuous and uniformly bounded with a uniformly summable
Fourier transform.
Taking β > 0 requires estimating |ν|β : we bound it by

∑
v |νv|β . Then

we can make use of the fact that |S−p(v)
0 νv| ≤ N to infer that |νv| ≤

λ−|p(v)|BN , where B ≥ 1 is a suitable constant; see problem [10.1.2]. The
sum

∑
v |νv|β is over k terms which can be estimated separately so that we

can write
∑

v |νv|β ≤ k|ν v|β where |ν v| = maxv |νv|. This can be taken
into account by multiplying (10.1.16) by an extra factor (BN)βλ−β|p( v)| ≤
BNλ−β

∑
v
|pv |. Therefore if β < 1 the bound that we found for β = 0 is

modified into
ε0(β) = (3N)−3F−1(1− λ1−β)2−5. (10.1.17)e10.1.17

This shows that H(ψ) analytic in ε in the disk with radius ε0(β). Further-

more, since in (10.1.17) we inserted (for simplicity) an extra factor 2−1 in
excess of the result obtained by the procedure described, the Hölder mod-
ulus is also uniformly bounded by a suitable function C(β) of β. Note that
ε0(β)→ 0 for β → 1.
The map H is a homeomorphism. In fact it is one-to-one because if ϕ =

ψ
i
+ h(ψ

i
) for i = 1, 2 and ψ

1
6= ψ

2
one would have Sk0ψ1

+ h(Sk0ψ1
) =

Sk0ψ2
+ h(Sk0ψ2

) for all k, which is impossible being incompatible with the
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hyperbolicity of S0 (as a matrix). Furthermore given any ϕ there is a ψ such

that H(ψ) = ϕ: this is a general property of injective maps of the torus Td

of the form ϕ = ψ+h(ψ), with h Hölder continuous. Indeed if d = 1 we see
that as ψ runs around the circle the point ϕ = ψ+h(ψ) follows and must pass
through all points of the circle as well: hence if ψ is given there is a ϕ and
a function k(ϕ) such that ψ = ϕ + k(ϕ) and the function k is continuous.
If d = 2 one repeats twice the argument: first we compute the partial
inverse of ϕ1 = ψ1 + h1(ψ1, ψ2) by fixing ψ2 and determining k′(ϕ1, ψ2)
such that ψ1 = ϕ1 + k′(ϕ1, ψ2), with k

′ continuous; then one considers the
map ϕ2 = ψ2 + h2(ϕ1 + k′(ϕ1, ψ2), ψ2) and repeats the argument obtaining
ψ2 = ϕ2+k2(ϕ1, ϕ2). One finally sets ψ1 = ϕ1+k1(ϕ1, ϕ2) with k1(ϕ1, ϕ2) =
k′(ϕ1, ϕ2 + k2(ϕ1, ϕ2)).

Problems for §10.1

[10.1.1]:Q10.1.1 (A property of the golden mean)
Prove that since λ is Diophantine the correlations of Arnold’s cat map decay superex-
ponentially. (Hint: Given two functions f and g, analytic on T

2, write the correlations

in Fourier space, S =
∑

ν
fνg−S−pν ≤ FG

∑
ν
e−κ|ν|e−κ

′|S−pν|, where F,G, κ, κ′ are

constants depending on f, g. Then use the Diophantine condition to deduce the inequal-
ity |S−pν| > Cλp/|ν|−τ , for suitable constants C and τ . If λ is the golden mean one can
take τ = 1.)

[10.1.2]:Q10.1.2 Show that if |Sp0ν| ≤ N , then there is a constant B = O(N) such that

|ν| ≤ λ−|p|B and B = N is a possible choice. (Hint: Call the eigenvectors vα, α = ±,
and let 2B = maxµ∈Z2,|µ|≤N,α=± |vα · µ|; then note that, by the spectral decomposition

of the matrix S0, one has |ν| = |S−p
0 µ| ≤ 2|λ|−|p||µ| ≤ B|λ|−|p|.)

[10.1.3]:Q10.1.3 (Alternative to the convergence proof for H)

Show without using the Fourier transform that the series for H defined by (10.1.12) con-
verges. (Hint: Bound the s-th derivatives by the maximum of F of the Fourier coefficients
of f times Ns.)

[10.1.4]:Q10.1.4 (Homeomorphism in the case of analytic f)

Show that the series for H defined by (10.1.12) converges under the only assumption that
f is analytic. (Hint: Bound the m-th derivatives by the maximum F∞ of |f(ϕ)| in a strip

|Imϕj | < ξ (for some ξ > 0) times m!ξ−mvF∞. The factorial is compensated by the
sv!’s in (10.1.12) and the estimate proceeds as in the trigonometric polynomial case.)

[10.1.5]:Q10.1.5 (Hölder continuity in the case of analytic f)

Show that the series for H defined by (10.1.12) is Hölder continuous under the only
assumption that f is analytic. (Hint: Make use of the Fourier transform and do more
carefully the same bounds.)

[10.1.6]:Q10.1.6 (The inverse conjugation H̃)

Show that the solution of (10.1.4) can be written as

h̃α(ψ) = ε
∑

p∈Zα

αλ
−|p+1|α
α fα(S

p
εψ) α = ±

where H̃(ψ) = ψ + h̃(ψ). Show that if we assume that Sε is still Anosov then H̃ is a

homeomorphism. What can you say of the regularity of H̃ as a function of ϕ and ε?

(Hint: Writing H̃(ϕ) = ϕ+ h̃(ϕ) we get that h̃(ϕ) satisfies S0h̃(ϕ) − h̃(Sε(ϕ)) = εf(ϕ).
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This equation look very much like (10.1.6) and the linearity of S0 allows us to write the

solution as in (10.1.8) with Sε in the place of S0. Invertibility of H̃(ϕ) follows from an

argument similar to the one used for H.)

[10.1.7]:Q10.1.7 (Linear part of a homeomorphism on the torus)

Consider a homeomorphism S of T2. Show that it can be written in a unique way has
S = L+ f where L is a linear homeomorphism, i.e. is given by a invertible 2× 2 matrix
with integer entries, and f is a periodic function on R

2. We call L the linear part of
S.(Hint: consider S as a function from R

2 to R
2 and use periodicity.)

[10.1.8]:Q10.1.8 (Anosov system with the same linear part are conjugated)

Show that if S1 and S2 are two Anosov homeomorphisms of T2 with the same linear part

L and L is also Anosov, then there exist Ĥ such that Ĥ ◦ S1 = S2 ◦ Ĥ. (Hint: Use the

result of problem [10.1.6] to construct H̃i such that H̃ ◦Si = L◦H̃. Then Ĥ = H̃2◦H̃−1
1 .)

[10.1.9]:Q10.1.9 (Domain of existence of H̃ and H: a simple case)

Assume that f(ϕ) = v+g(ϕ) where g is a trigonometric polynomial. Find a condition

on ε that assure that Sε = S0 + εv+g is still Anosov. This will give a condition for the

existence and invertibility of H̃ in problem [10.1.6]. Compare it with (10.1.17). (Hint:
The differential of Sε has the same eigendirections of S0. The relative eigenvalues are

λε,−(ϕ) ≡ λ− and λε,+(ϕ). If |λε,+(ϕ)| > 1 problem [10.1.6] allows us to construct H̃

and shows that it is invertible. The Anosov property for Sε follows from proposition
(4.2.1) where points (i) and (ii) are evident and point (iii) follows from the existence of

H̃.)

[10.1.10]:Q10.1.10 (Domain of existence of H̃ and H: general case)

Generalize problem [10.1.9] to a generic trigonometric polynomial f(ϕ).(Hint: The lines

defined by the two vectors c± = v+±v− split R2 in two cones Γ± with the property that

DS0Γ± is well inside Γ±, see problem [4.2.2] for a precise formulation. Write a condition
on εf(ϕ) so that DSεΓ± is still well inside Γ±. Compare it with (10.1.17).)

[10.1.11]:Q10.1.11 (Continuity of Markov pavements in d = 2)

Consider a two-dimensional Anosov map (Ω, S) and assume that it admits a fixed point
x0. Let Sε be a small perturbation of S (in class C∞) depending on a parameter ε. Show
that the map Sε admits a Markov pavement Pε = {P0ε, . . . , Pnε} with the same compat-
ibility matrix T as that of P0. (Hint: Construct a Markov pavement P = {P0, . . . , Pn}
for (Ω, S) by the method of problem [4.3.9]. Note that Sε will have a fixed point xε which
merges differentially with x0 as ε → 0 together with any finite portion of its stable and
unstable manifolds. Note that the construction of P in problem [4.3.9] is based on two
finite connected portions of the stable and of the unstable manifolds of x0.)

[10.1.12]:Q10.1.12 (Anosov structural stability in d = 2)

In the context of problem [10.1.11] show that there is a Hölder continuous map H which
conjugates S and Sε as in (10.1.1) if ε is small enough. (Hint: Define a map of Ω into
itself by setting Hx = x′ if x′ = Xε(σ(x)) where σ(x) is the symbolic history of x on
the pavement P under the map S and Xε is the map that associates with a compatible
sequence σ a point Xε(σ) ∈ Ω, see definition (4.1.3). Hölder continuity follows from
the Hölder continuity of the correspondence between points and symbolic histories on
Markov pavements, see proposition (4.1.1), (4.1.6). In other words x, x′ are mapped into
each other by H if they have the same symbolic representation in the pavements P,Pε
under the maps S, S′ respectively.)

§10.2 Extended systems. Lattices of Arnold’s cat maps

Let Λ = [−L/2, L/2]d be the cube of side L in Z
d. If ΩΛ

def
= (T2)Λ we call
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346 §10.2: Extended systems. Lattices of Arnold’s cat maps

ϕ ∈ ΩΛ, ϕ = (ϕ
ξ
)ξ∈Λ a microstate of the lattice system ΩΛ. The microstates

ϕ are considered with periodic boundary conditions, i.e. ϕ = (ϕ
ξ
)ξ∈Zd with

ϕ
ξ+diL

= ϕ
ξ
for every ξ and i, where di is the unit vector in the direction i

in Z
d. We define a map S0 : ΩΛ←→ ΩΛ

(S0(ϕ))ξ = S0ϕξ, S0 =

(
1 1
1 0

)
, (10.2.1)e10.2.1

and we call S0 the unperturbed evolution map of the microstates.
Let f(ϕ

nn
) be a R

2
-valued function of 2d+1 arguments in T

2
: we label the

2d+1 arguments ϕ
nn

= (ϕ
0
, ϕ

1
, · · · , ϕ

2d
). We imagine that ϕ

0
is associated

with the origin in Z
d and that the remaining 2d arguments are associated

with the lattice sites which are nearest neighbors of the origin ordered in
a arbitrary way, e.g. lexicographically. We shall call nn(ξ) the set formed
by ξ and by its nearest neighbors so that f(ϕ

nn(ξ)
) make sense and depend

only on the values of the microstate ϕ at ξ and at its neighboring sites.
We shall suppose that we are given a f(ϕ

nn
) which is a trigonometric

polynomial of degree ≤ N with values in T
2, i.e.

f(ϕ
nn

) =
∑

ν
0
,ν

1
,...,ν

2d
, |ν

j
|≤N

f
ν0,ν1,...,ν2d

e
i
∑2d

j=0
νj ·ϕj . (10.2.2)e10.2.2

We shall call f a nearest neighbor interaction and define

(Sεϕ)ξ = S0ϕξ − εf(ϕnn(ξ)), (10.2.3)e10.2.3

which maps ΩΛ ←→ ΩΛ if ε is small enough. We call Sε the perturbed
evolution map.
For small ε the system will be an Anosov system by the general structural
stability theorem in proposition (10.1.1) and it will be conjugated with the
unperturbed system (ΩΛ,S0). However in order to insure that this happens
it might be necessary to take ε smaller and smaller as the infrared cutoff Λ
tends to ∞. Therefore it is important to note that it is not so: the system
remains chaotic enough no matter how spatially extended it is.

(10.2.1) Proposition:P10.2.1 (Uniform structural stability of lattices of maps)
Given a nearest neighbors interaction f as above and β ∈ (0, 1), there exist

ε0(β) > 0 and C(β) < ∞ such that for all Λ ⊂ Z
d
and for all |ε| < ε0(β)

there is a homeomorphism H : ΩΛ ←→ ΩΛ and a constant κ = κ(β, ε) such
that

H ◦ S0 = Sε ◦H, (10.2.4)e10.2.4

where H is analytic in the disk |ε| < ε0(β) and Hölder continuous with range
κ(β, ε)−1 and modulus C(β), in the sense that if ϕ, ϕ′ ∈ ΩΛ and ϕ

ξ
≡ ϕ′

ξ

for all ξ but for ξ′ then

|(H(ϕ))ξ − (H(ϕ′))ξ| ≤ C(β)e−κ|ξ−ξ
′||ϕ

ξ′
− ϕ′

ξ′
|β (10.2.5)e10.2.5

20/novembre/2011; 22:18



§10.2: Extended systems. Lattices of Arnold’s cat maps 347

for all ε in the complex disk |ε| < ε0(β). The range constant κ = κ(β, ε)
can be taken −(2d)−1 log(|ε|/2ε0(β)).
Remarks: (1) As we did in Section §10.1 we can study the equation for

H̃ = H−1 and obtain directly a solution that turns out to be invertible if
we assume that Sε is still an Anosov system, see problem [10.2.1].
(2) Using an argument similar to the one used in problem [10.1.10] one

can prove that Sε is Anosov uniformly in Λ for ε small enough so that H̃
exists and is invertible, see problem [10.2.2]. As before this construction is
not suitable to study the regularity of H as a function of ε. Moreover our
proof give us a detailed description of H that will be fundamental in the
construction of the SRB measure, see corollary (10.2.1).

Proof: The proof of this proposition is essentially a repetition of the corre-
sponding “single site” (L = 0,Λ = {0},Ω = T

2) case discussed in proposi-
tion (10.1.1). We write H as (H(ψ))ξ = ψ

ξ
+(h(ψ))ξ and decompose f

ξ
, hξ

along the eigenvectors v± of S0, see (10.1.7). The equations become

λ+h+(ψ)ξ − h+(S0ψ)ξ = f+((ψ + h(ψ))nn(ξ)),

λ−h−(ψ)ξ − h−(S0ψ)ξ = f−((ψ + h(ψ))nn(ξ)).
(10.2.6)e10.2.6

We can solve the equation (10.2.6) by power series in ε. The first order
equation has a solution similar to the corresponding (10.1.9) and the general
order recursion can also be written in a form similar to (10.1.10), namely

h
(k)
ξ,α(ψ) =

∞∑

s=0

1

s!

∑

k1+···+ks=k−1, ki≥0

α1,...,αs=±; ξ1,...,ξs∈nn(ξ)

∑

p∈Zα

αλ−|p+1|α
α ·

·
( s∏

j=1

(∂(αj ,ξj))
)
fα((S

p
0ψ)nn(ξ)) ·

( s∏

j=1

h
(kj)
ξj ,αj

(Sp0ψ)
)
,

(10.2.7)e10.2.7

where ∂(α,ξ)
def
= vα · ∂ψ

ξ
.

Therefore we can represent the complete h
(k)
ξ,α(ψ) again in terms of the same

tree graphs introduced in Section §10.1 with a few more labels attached to
the branches. Namely we must add to each node v a new label ξv with
the restriction that if the line λ = v′v emerging from v enters a node v′ ≻
v then ξv ∈ nn(ξv′) (which reflects the nearest neighbor property of the
interaction). We add also a label ξℓ to the line ℓ = v′v by setting ξℓ = ξv.
Hence the value of a tree ϑ will be given, see (10.1.12) for comparison, by

Val(ϑ) =
∏

v∈V (ϑ)

αv
sv!

λ−|pv+1|αv
αv

( sv∏

j=1

∂(αvj ,ξvj )

)
fαv ((S

p(v)
0 ψ)nn(ξv)),

(10.2.8)e10.2.8

and it will be a contribution to h
(k)
ξ,α if α, ξ are the labels attached to the

root branch of ϑ and k is the number of nodes of ϑ.

20/novembre/2011; 22:18
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Remark: By construction the sets nn(ξv) must all intersect nn(ξv′) if v′

is the node immediately following v. Hence the set ∪vnn(ξv) is connected
(by nearest neighbors) and, in fact, its connectivity reflects that of the tree
to which it is associated.

The estimates are done as in Section §10.1 provided that one takes care of
the fact that for each site ξ there are 2d + 1 points in nn(ξ) rather than
just 1 as in the case of Section §10.1. This gives an extra factor (2N +
1)2(2d+1)k(2d + 1)k, that we shall bound (for simplicity) by (3Ne)2(2d+1)k,
so that, in Fourier space,

∑

ϑ∈Θk,ν,α

∑

v∈V (ϑ)

|νv|β |Val(ϑ)| ≤

≤ (3Ne)2(2d+1)kNkF k(2/(1− λ1−β))k23k
(10.2.9)

e10.2.9

will be a bound on the sum of the values of the trees of order k (i.e. with k
nodes): in fact the combinatorics is again the same as in Section §10.1 and
it is accounted by the last factor 23k.
We have obtained a rather explicit expression for h which can be expressed
as

hξ,α(ψ) =
∑

X∋ξ
ΦX,α(ψX), (10.2.10)e10.2.10

where X is a subset, connected by nearest neighbors, of Λ, and ΦX is a
function of ψ

X
which is translation invariant in the sense that ΦX,α(ψX) =

ΦX+η,α(ψX) for all η ∈ Z
d
(the translations must be considered modulo

L of course, because of the periodic boundary conditions on Λ). This is
because (10.2.8) has the structure of (10.2.10) if X = ∪v∈V (ϑ)nn(ξv).
By the estimate in (10.2.9) we conclude that the functions ΦX,α(ψX) are
analytic in ε in the complex disk with radius twice the quantity

ε0(β) = (3Ne)−2(2d+1)N−1F−1(1 − λ1−β)2−5, (10.2.11)e10.2.11

and that they verify the bounds

max
|ε|≤ε0(β), X, ψ

X

|ΦX,α(ψX)| < B(β), (10.2.12)e10.2.12

max
|ε|≤ε0(β), X, ψ

X\ξ′

|ΦX,α(ψX)− ΦX,α(ψ
′
X
)| < B(β) |ψ

ξ′
− ψ′

ξ′
|β ,

if ψ
X
, ψ′

X
coincide at all points but at ξ′ ∈ Λ, with B(β) finite because of

the extra factor 1/2 we inserted in (10.2.11).1N10.2.1

1 Note that (10.2.9) says that the analyticity disk can be taken to be the r.h.s. of (10.2.11)
with 2−4 instead of 2−5: it is convenient to give up a factor 2 in the size of ε0(β) in
order to have uniform bounds in the disk of radius ε0(β).
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A further key remark, that follows immediately from the formula (10.2.8)
and from the remark on connectivity following it, is that the Taylor coeffi-

cient Φ
(k)
X,α(ψX) of order k in ε of ΦX,α(ψX) verifies

Φ
(k)
X,α(ψX) ≡ 0 if k ≤ δ(X)/2d, (10.2.13)e10.2.13

where δ(X) is the tree length of the set X , see definition (7.1.3); therefore
if κ(β, ε) = −(2d)−1 log(|ε|/2ε0) the bound (10.2.12) can be improved into

max
|ε|≤ε0(β), ψ

X

|ΦX,α(ψX)| < B(β) e−κ(β,ε)δ(X) (10.2.14)e10.2.14

max
|ε|≤ε0(β), ψ

X\ξ′

|ΦX,α(ψX)− ΦX,α(ψ
′
X
)| < B(β) e−κ(β,ε)δ(X) |ψ

ξ′
− ψ′

ξ′
|β,

as a consequence of the maximum principle for holomorphic functions. Since
κ(β, ε)→ 0 for |ε| → ε0(β) in order to obtain the result stated in the propo-
sition we have to reduce by an extra factor 2 the value of ε0(β) obtained in
(10.2.11) to obtain the quantity named ε0(β) in the statement of proposition
(10.2.1).

The above analysis has led to a result that it is convenient to state sepa-
rately.

(10.2.1) Corollary:C10.2.1 (Conjugation potentials) In the context of proposition
(10.1.1) the homeomorphism H can be written as

H(ψ)ξ = ψ
ξ
+
∑

X∋ξ
ΦX(ψ

X
), (10.2.15)e10.2.15

where the sum is over connected sets X, and ΦX(ψ
X
) are translation in-

variant functions (i.e. ΦX(ψ
X
) = ΦX+η(ψX) for η ∈ Λ) analytic in ε in

the complex disk |ε| < ε0(β) and verifying, for a suitably chosen constant
B(β), the bounds

max
|ε|≤ε0(β), ψ

X

|ΦX(ψ
X
)| < B(β)

( |ε|
2ε0(β)

) δ(X)
2d

, (10.2.16)e10.2.16

max
|ε|≤ε0(β), ψ

X\ξ

|ΦX(ψ
X
)− ΦX(ψ′

X
)| < B(β)

( |ε|
2ε0(β)

) δ(X)
2d |ψ

ξ
− ψ′

ξ
|β ,

if ψ′
X

differs from ψ
X

only at the site ξ and δ(X) is the tree length of X,
for all X (cf. definition (7.1.3)).

Remarks: (1) We can summarize the above analysis by saying that the
lattice of coupled maps remains an Anosov system if the perturbation is
small enough and the allowed maximum size of ε does not depend on the
size of the lattice Λ “containing” the system (proposition (10.2.1)).
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(2) The result of corollary (10.2.1) falls short of exhibiting a key property
of the conjugation. Suppose that instead of the sequence {ψ

ξ
}ξ∈Λ we repre-

sent each coordinate ψ
ξ
by an infinite symbolic sequence σξ,t, ξ ∈ Λ, t ∈ Z

where {σξ,t}t∈Z,ξ∈Zd is the symbolic sequence that represents H−1(ψ
ξ
) on

a Markovian pavement of S0. Then we can use the corollary to obtain a
representation of H in terms of the symbolic dynamics {σξ,t}t∈Z represent-
ing ψ as a sequence on a space–time lattice, see also section §(10.4) above
proposition (10.4.2) for more details on this contraction. By following the
“telescopic” procedure to express a Hölder continuous function in terms of
potentials, cf. proposition (4.3.1), we find easily that H can be written

H(ψ)ξ − ψξ =
∑

Z
d+1⊃X∋(ξ,0)

ΦX(σX), (10.2.17)e10.2.17

where the summation is restricted to sets X which are rectangles on the (d+
1)–dimensional lattice and there are constants F, κ such that |ΦX(σX)| ≤
Fe−κdiam(X). We see that H can be expressed in this way in terms of
potentials which however do not decay exponentially as the tree length
but “only” as the diameter. This would eventually create unsurmountable
difficulties when we shall try to derive analyticity of the SRB distribution.
(3) However one can get a much better representation of the form (10.2.17)
in which sets more general than rectangles appear in the sum, but the decay
rate will be exponential in the tree length δ(X) rather than in the diameter.
This is in fact implicit in the expression (10.2.8) and one just has to read
it out: see the proof of proposition (10.4.2), where this is discussed and
needed.

The above results will allow us to define a Markov pavement for the ex-
tended system quite easily, as we shall show in Section §(10.4), and a de-
tailed construction of the SRB distribution. We proceed to perform the
construction by first considering the case of a perturbation of a single map.

Problems for §10.2

[10.2.1]:Q10.2.1 (The inverse conjugation in d ≥ 1)

Show that the equation Sε ◦ H̃ = H̃ ◦ Sε can be solved uniformly in L if one assumes
that Sε is Anosov uniformly in Λ. (Hint: See problem [10.1.6].)

[10.2.2]:Q10.2.2 (Anosov property for slow decaying interaction)

Give a condition on ε and f such that Sε is Anosov uniformly in Λ. (Hint: Let w

be a tangent vector to ΩΛ. Define |w|+ = supξ |(wξ, v+)| and |w|− = supξ |(wξ, v−)|
and |w|∞ = max{|w|+, |w|−}. Proceed like in problem [10.1.10] using the cones Γ+ =
{w | |w|− ≤ α|w|+} and Γ− = {w | |w|+ ≤ α|w|−} with α < 1. Show that if |Dfw|∞ ≤
C|w|∞, where Df is the differential of f , then it is possible to find ε such that DSεΓ+

is well inside Γ+ and similarly for Γ−.)

[10.2.3]:Q10.2.3 (Homeomorphism in the case of analytic f)

Show that the series for H defined by (10.2.7) converges under the only assumption that
f is analytic. In particular show that corollary (10.2.1) is still valid. (Hint: See [10.1.4]).

[10.2.4]:Q10.2.4 (Exponential decay for f)
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Let f be a bounded function from (T2)Z
d

in T
2 that can be extended to a bounded

analytic function on the complex neighbor of (T2)Z
d
defined by |Imϕ

ξ
| < γeω|ξ|. Show

that for such an f the series for H defined by (10.2.7) converges. Is corollary (10.2.1) still

valid? (Hint: : Use Cauchy estimate to bound the derivatives of f with respect to ϕ
ξ
).

[10.2.5]:Q10.2.5 (Tree decay for f)

Consider a function f from (T2)Z
d
in T

2 that can be written as

f(ϕ) =
∑

X∋0

f
X
(ϕ
X
),

with the functions f
X
(ϕ
X
) analytic in the complex neighbor of (T2)X defined by

|Imϕ
ξ
| < γeωδ(X) and there bounded by a common constant C. Show that for such

an f the series for H defined by (10.2.7) converges and that H can still be written as

in (10.2.10) and ΦX satisfy (10.2.14) with a suitable decay rate κ. (Hint: Use Cauchy
estimate to bound the derivatives of f

X
with respect to ϕ

ξ
).

§10.3 Chaos in time: an SRB distribution

We shall use the notations of Section §10.1, where we have constructed the
conjugation H that transforms a perturbed cat map Sε of the torus T

2
into

a “free” cat map S0. The conjugation is not differentiable (in general) and
we could only prove that it can be taken to be Hölder continuous with a
prefixed exponent β < 1 for a perturbation strength that is suitably small.
In spite of the lack of regularity we can still use the homeomorphism ϕ =
H(ψ) to construct the dynamics as well as the stable and unstable manifolds
of each point. If ϕ = H(ψ) the latter manifolds are given by parametric
equations of the form

ϕ(t) = H(ψ + tvα) t ∈ R, α = ±, (10.3.1)e10.3.1

where t → ψ + t vα is the unstable or stable manifold for the unperturbed
map S0 through ψ if α = + or α = −.
However the above parameterization is not very useful because the function
H(ψ+ tvα) is not regular as a function of t. This can be seen already from
the fact that the first order term in its expansion in powers of ε cannot be
(in general) differentiated with respect to t at t = 0. Indeed we see from

(10.1.9) that the component h
(1)
− (ψ) can be differentiated in the direction

v+ because term by term differentiation enhances convergence since p < 0;

on the other hand the component h
(1)
+ (ψ) cannot be differentiated in the

direction v+ (unless special cancellations occur) because the convergence

factor λ
−(p+1)
+ in (10.1.9) is compensated by the λp+ that the differentiation

along v+ brings out since p ≥ 0. To second order in ε not even the t–

derivative of the component h
(2)
− (ψ + v+t) can be shown to exist.
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To construct the stable and unstable manifolds as well as the other nec-
essary ingredients to define the SRB distribution we apply once more the
technique discussed in the previous two sections. Calling Ω̂ the (non com-
pact) space T

2 ×R
2
we define the dynamical system1

N10.3.1

Ŝ0(ϕ, v) = (S0ϕ, S0v). (10.3.2)e10.3.2

This is a system that fails to be an Anosov system because the phase space
is not compact. We can nevertheless consider its perturbation

Ŝε(ϕ, v) = (S0ϕ+ εf(ϕ), S0v + ε(v
˜
· ∂ϕ
˜
)f(ϕ)), (10.3.3)e10.3.3

and we can attempt at finding an isomorphism between Ŝε and Ŝ0 or, since
this turns out to be in general impossible (as it will be implicit in what

follows), between Ŝε and Ŝ0,ε defined by

Ŝ0,ε(ϕ, v) = (S0ϕ, (S0 + Γε(ϕ))v), (10.3.4)e10.3.4 .

with Γε(ϕ) a matrix diagonal on the basis v± (on which S0 is diagonal too).

Therefore we look for a map Ĥ of a simple form and such that Ŝε ◦ Ĥ =
Ĥ ◦ Ŝ0,ε, i.e.

Ĥ : (ψ,w)←→ (ϕ, v) = (ψ + h(ψ), w +K(ψ)w), (10.3.5)e10.3.5

as we already know how to conjugate Sε with S0, from the analysis of Section
§10.1.
Remarks: (1) Let Kε(ϕ) = 1 +K(ϕ) and Lε(ϕ) = S0 + Γε(ϕ), the above
conjugation is equivalent to the following equation

DSε(H(ϕ))Kε(ϕ)v = Kε(Sεϕ)Lε(ϕ)v. (10.3.6)e10.3.6

This implies that the vector w±(ϕ) = Kε(ϕ)v± satisfies:

DSε(H(ϕ))w±(ϕ) = λ±(ϕ)w±(Sεϕ) (10.3.7)e10.3.7

where λ±(ϕ) are the diagonal element of Lε(ϕ).
(2) A naive attempt to construct the stable and unstable directions for Sε
would lead to the equation:

DSε(ϕ)w̃±(ϕ) = λ̃±(ϕ)w̃±(Sεϕ) (10.3.8)e10.3.8

Indeed (10.3.8) can be considered as a definition of the stable and unstable
directions.
(3) From the general theory we know that w̃±(ϕ) are, in general, only

1 Note that, by allowing the space to be non compact, we are using a definition of dy-
namical system slightly more general of that given in Section §1.2 and used so far.
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Hölder continuous as function of ϕ, so that the solution of (10.3.8) cannot
be analytic in ε, unless special cancellations occur. On the other hand,
if w̃±(ϕ) is a solution of (10.3.8) then w±(ϕ) = w̃±(H(ϕ)) is a solution
of (10.3.7) and is, as we shall see shortly, analytic in ε. In conclusion we
can say that the conjugation defined in (10.3.5) is the right one to look
at the stable and unstable directions and its solution give the stable and
unstable directions as functions of the “unperturbed” point H−1(ϕ), cf. the
corresponding remarks to proposition (10.1.1).
(4) Equation (10.3.7) does not determine Γε(ϕ) and K(ψ) uniquely. Indeed,
if l(ϕ) is a non zero function from T

2 to R and λ±(ϕ), w±(Sεϕ) solve

(10.3.7), then also λ̄±(ϕ) =
l(Sεϕ)

l(ϕ) λ±(ϕ) and v̄±(ϕ) = l(ϕ)w±(ϕ) solve it.2
N10.3.2

To fix this ambiguity we will require that the diagonal elements of K(ϕ), on
the basis v±, are equal to 1, i.e. the matrix K(ϕ) is completely off diagonal.

The equation that the matrix K(ψ) has to verify is

(S0K(ψ)−K(S0ψ)S0)ij = −ε∂ϕjfi(ψ + h(ψ))−
− ε∂ϕsfi(ψ + h(ψ))K(ψ)sj + Γε(ψ)ij + (K(S0ψ)Γε(ψ))ij ,

(10.3.9)e10.3.9

where ∂ϕ denotes a derivative of f with respect to its original argument and

repeated indices mean implicit summation (to abridge notations).
We write the above matrix equation on the basis in which S0 and Γε are
diagonal, i.e. on the basis formed by the two eigenvectors v± of S0 in which
the matrices K,Γ have been assumed to take the form

Γ(ψ) =

(
γ+(ψ) 0

0 γ−(ψ)

)
, K(ψ) =

(
0 k+(ψ)

k−(ψ) 0

)
. (10.3.10)e10.3.10

If α = ± and β = −α (10.3.9) becomes, by setting ∂α = vα · ∂ϕ,

0 = −ε∂αfα(ϕ)− εKβα(ψ)∂βfα(ϕ) + γα(ψ),

(λαKαβ(ψ)− λβKαβ(S0ψ)) =

= −ε∂βfα(ϕ)− εKαβ(ψ)∂αfα(ϕ) +Kαβ(S0ψ)γβ(ψ),

(10.3.11)e10.3.11

where ϕ means ψ + h(ψ), λ+ = λ−1, λ− = −λ are the eigenvalues of S0

(with λ = (
√
5− 1)/2), and γα(ψ) = vα · Γ(ψ)vα.

Calling kα(ψ) = Kαβ(ψ), with α = ± and β = −α, we can rewrite the
equations (10.3.11) as

γα(ψ) = ε ∂αfα(ϕ) + ε kβ(ψ)∂βfα(ϕ),

kα(ψ) + λ2kα(S
α
0 ψ) = (10.3.12)e10.3.12

αλ
(
− ε∂βfα(ϕα)− εkα(ψα)∂αfα(ϕα) + kα(S0ψ

α)γβ(ψ
α)
)
,

2 l(ϕ) is sometime called a cocycle. Observe that the expansion coefficient on the unstable

manifold with respect to the parameterization defined by w̄+ is linked to that of w+ by

l(ϕ)(w+(ϕ) · ∂)Snε (ϕ) = (w̄+(ϕ) · ∂)Snε (ϕ)l(Snε (ϕ)).
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where α = ± and ϕ must be thought of as denoting ψ + h(ψ) (hence S−1
ε ϕ

means S−1
0 ψ + h(S−1

0 ψ)), and we have set ψα = S
−(1−α)/2
0 ψ and likewise

ϕα = S
−(1−α)/2
ε ϕ. These equations are in a form suitable for a recursive

solution in powers of ε. For instance the first order is

γ(1)α (ψ) = ∂αfα(ψ), α = ±,
k
(1)
+ (ψ) + λ2k

(1)
+ (S0ψ) = −λ∂−f+(ψ),

k
(1)
− (ψ) + λ2k

(1)
− (S−1

0 ψ) = λ∂+f−(S
−1
0 ψ),

(10.3.13)e10.3.13

which has the solution

γ(1)α (ψ) = ∂αfα(ψ) α = ±

k
(1)
+ (ψ) = −λ

∞∑

n=0

(−1)nλ2n∂−f+(Sn0 ψ),

k
(1)
− (ψ) = λ

∞∑

n=0

(−1)nλ2n∂+f−(S−(n+1)
0 ψ).

(10.3.14)e10.3.14

The equations (10.3.12) can be represented in graph form by suitably mod-

ifying the similar representation derived for h(k) in Section §10.1:

α

α

α

α

αα

βα α

α

β

α

αα

βα

β

α

α

=

=

+

+ +

(k)

(k) (k−1)

(k−1)

(p)

(k−1−p)

(p)

(k−1−p)

(p)

(k−p)

Fig.(10.3.1)F10.3.1 Here α = ± and β = −α. All the lines have to imagined to carry

arrows (not drawn) pointing toward the root. The line carrying a label α and emerging

from a circle or a square with label k denotes γ
(k)
α or k

(k)
α , respectively. The wavy line

emerging from a bullet with label p, with 1 ≤ p < k − 1, carrying a pair of labels γ, δ,
represents [∂γfδ]

(p), the p-th order in the power expansion in ε of ∂γfδ (evaluated at a
point dependent on ε, see below). The small circle or square in the the last node (i.e. in

the node closest to the root) expresses that ϕ (circle) or Sq̃αε ϕα (square) is the argument

in which the functions ∂γfδ are computed, with q̃ = q if δ = + and q̃ = q + 1 if δ = −,
or it expresses that ψ (circle) or Sq̃α0 ψα (square) is the argument in which the functions

γα, kα are computed, with q̃ = q if α = + and q̃ = q+1 if α = − (for the square in the last

graph contributing to k
(k−1−p)
α (ψ) there is an extra S0 in the argument). Furthermore

a summation over q = 0, 1, . . . and a multiplication by −α(−1)qλ1+2q is understood to
be performed over the nodes represented as small squares.

The representation is drawn in figure (10.3.1) and the symbols are explained
in the corresponding caption: the reader will recognize in them a pictorial
rewriting of (10.3.12).
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In this case too we can continue the expansion until in the r.h.s. of (10.3.9)
all endpoints of the graph are either squares or circles carrying a label (1)
(i.e. they represent a first order contribution to Γ or to K (circle or square)

bullets representing either ∂αfβ(ϕ) or ∂αfβ(S
q̃α
0 ϕα). Of course the latter

quantities can themselves be represented by the tree expansion discussed in
Section §10.1: if we do so then we obtain a full expansion in powers of ε in
which the wavy lines with label p are replaced by a tree with p nodes.
The rule to construct the value of each tree graph is easily read from
(10.3.9) and from the rules discussed above and in Section §10.1 to build
the value of trees representing h.
The estimate of the k–th order contribution is given by (10.1.16) with an
extra factor Nk to take into account the extra derivatives due to the lines
with two labels. Also the counting of the trees has to be modified but at
the end result will be that K is expressed by a convergent series in ε for
|ε| < ε0(β), where ε0(β) can be taken of the form (10.1.17) with a different
numerical factor and with N replaced by N2. The above analysis yields the
following result.

(10.3.1) Proposition:P10.3.1 (Symbolic representation of the expansion rate)

Given a Markovian pavement P0 = {P1, . . . , Pn} of T2 for S0, let σ be the
symbolic representation with respect to the Markov partition Pε = H(P0) of
a point ϕ = Xε(σ). There exists ε0(β) such that the expansion rate λu(σ)
of Sε along the unstable manifold of ϕ, see definition (4.3.2), is defined and
holomorphic in ε in the disk |ε| < ε0(β). As a function of σ it is Hölder
continuous of exponent β and modulus C(β).

Proof: One just notes that if ϕ = H(ψ) then the unstable direction at ϕ
will be w+(ψ) = v+ + K(ψ)v+. Furthermore a Markov pavement for Sε
will be the image of a Markov pavement for S0 under the map ψ → H(ψ);
therefore ψ evolved with S0 and ϕ evolved with Sε will have the same
symbolic history σ on such pavements. Hence Xε(σ) = ϕ and X0(σ) = ψ
if ϕ = ψ + h(ψ). The expansion rate along the unstable manifold will be,

following the notations of definition (4.3.2), λu(σ) = eAu(σ) with

Au(τσ) = log

((
λ+ + γ+(ψ)

) |w+(S0ψ)|
|w+(ψ)|

)
(10.3.15)e10.3.15

where |w+(ψ)| =
√

1 + k+(ψ)2. The functions γ+, k+ are analytic in ε and
Hölder continuous in ψ with a uniformly bounded modulus C(β) if β < 1
and ε is small enough and since σ fixed means ψ fixed (because σ is the
history of a point ψ on a Markov pavement for the ε–independent map S0)
we see that Au(σ) is analytic in ε at fixed σ and Hölder continuous in σ
as well as in ψ and therefore in ϕ. Hence the function Au(σ) generates a
potential of Fisher type (cf. (4.3.16) and propositions (4.3.1) and (4.3.2)
apply).

Remark: The above proposition allows us to conclude that the SRB distri-
bution µε will be a Gibbs state for the energy function Au(σ) and, therefore,
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it will mix at an exponential rate any pair of Hölder continuous function.
Observe that if G is a Hölder continuous function then G ◦H−1 has a rep-
resentation on the Markov pavement Pε that is independent of ε. Moreover
Gibbs states with exponentially decaying Fisher potential have the property
that the expectation values of observables depend analytically on the pa-
rameters on which the potential itself depends analytically, cf. proposition
(7.3.1) ([CO81]). This can be summarized in the following corollary.

(10.3.1) Corollary:C10.3.1 (Mixing for SRB distributions)

Let F and G be two Hölder continuous “observables” (i.e. functions on T
2).

Then if µε denotes the SRB distribution for Sε the following properties
hold.
(i) The expectation values µε(F ) and µε(G) are defined and Hölder contin-
uous in ε. Moreover the expectation values µε(F ◦H−1) and µε(G ◦H−1)
are analytic function in ε for |ε| ≤ ε0, with ε0 independent of F or G.
(ii) If F is an analytic observable then the expectation value µε(F ) is ana-
lytic in ε for ε ≤ εF , with εF dependent on F .
(iii) The functions F,G mix at an exponential rate in the sense that the
difference between the l.h.s. and the r.h.s. of

µε((S
n
ε F )G) ≡

∫
µε(dϕ)F (S

nϕ)G(ϕ)−−−−−→n→±∞ µε(F )µε(G) (10.3.16)e10.3.16

tends to 0 bounded by a constant (depending of F,G) times e−κF,Gn, for a
suitable constant κF,G > 0.
(iv) The volume distribution µ0(dϕ) = dϕ/(2π)2 “mixes with the SRB dis-
tribution” exponentially fast in the sense that given the functions F,G the
difference between the l.h.s. and the r.h.s. of

µ0((S
n
ε F )G) ≡

∫
µ0(dϕ)F (S

nϕ)G(ϕ)−−−−−→n→+∞ µε(F )µ0(G) (10.3.17)e10.3.17

tends to 0 bounded by a constant (depending of F,G) times e−κF,Gn.
The latter limit has, in general, a different value if n → −∞ and one has
to replace the SRB distribution µε with the one for S−1

ε (which essentially
has the same properties as µε).

We can therefore appreciate the power of the perturbation expansion
method which allows us to obtain rather detailed and precise informations
about the Markov partition (which of course can be defined as the H–image
of the trivial partition for Arnold’s cat map S0); and, what is more impor-
tant, it provides us with an analytic description of the SRB distribution (in
the considered small perturbation problem).

In particular it is interesting to compute the derivatives of µε(F ) for ε =

0. Since µε = limN→∞ µ
(N)
ε , with µ

(N)
ε being the finite volume Gibbs

distribution in volume ΛN = [−N,N ] with potential energy function A(σ) =
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λu(σ), cf. (6.1.15), with ∆ΛN chosen to correspond to periodic boundary

conditions; then the derivative at ε = 0 of µ
(N)
ε (F ) is

µ
(N)
0 (∂F · h(1))− λ+

N∑

k=−N
(µ

(N)
0 (−(∂+f+) ◦ Sk0F )−

− µ(N)
0 (−(∂+f+) ◦ Sk0 )µ(N)

0 (F )),

(10.3.18)e10.3.18

because the first order of the derivative of λu(σ) is (in the ψ coordi-

nates ∂+f+(ψ) (cf. (10.3.12))). But µ
(N)
0 (−(∂+f+) ◦ Sk0 )−−−−→N→∞ 0 because

µ0(∂+f+) ≡ 0. Hence, up to an interchange of limits which it is not

difficult to justify, the derivative of µε(F ) is given by µ0(h
(1) · ∂F ) +

λ+
∑∞

k=−∞ µ0(∂+f+F ◦ Sk0 ). Note that

µ0(h
(1) · ∂F ) =

k=0∑

−∞
µ0(λ

k−1
+ f+∂+F ◦ Sk0 )−

∞∑

k=1

µ0(λ
k−1
− f−∂−F ◦ Sk0 )

=

k=−1∑

−∞
µ0(f+ ◦ S−1

0 ∂+(F ◦ Sk0 ))−

∞∑

k=0

µ0(f− ◦ S−1
0 ∂−(F ◦ Sk0 ))

(10.3.19)e10.3.19
We can now write

∑∞
k=−∞ µ0(∂+f+F ◦ Sk0 ) =

∑∞
k=−∞ µ0(∂+(f+F ◦

Sk0 )) −
∑∞
k=−∞ µ0(f+∂+(F ◦ Sk0 )). After further elaboration and tak-

ing into account that µ0(∂+G) = 0 for every differentiable G, we get
λ+
∑∞

k=−∞ µ0(∂+f+F ◦ Sk0 ) =
∑∞
k=−∞ µ0(f+ ◦ S−1

0 ∂+(F ◦ Sk0 )) so that

∂εµε(F )
∣∣
ε=0

= −
∞∑

k=0

µ0(∂(F ◦ Sk0 ) · f ◦ S−1
0 ). (10.3.20)e10.3.20

This formula was proved, in a much more general setting, by Ruelle, see
[Ru97], and is very interesting for applications because it closely resembles
the standard Green-Kubo formula.[GR97]

Remark: We note that once w+(ϕ) is known we can construct the unstable
manifold of a point ϕ

0
solving the differential equation

{
Ẋ (t, ϕ

0
) = w̃+(X (t, ϕ0

)) = w+(H
−1(X (t, ϕ

0
))),

X (0, ϕ
0
) = ϕ

0
,

(10.3.21)e10.3.21

where X (t, ϕ
0
) is a parameterization of the unstable manifold Wu(ϕ

0
).

Clearly this parameterization is differentiable in t. From Section §4.2 we
know that Wu(ϕ

0
) is at least a C∞ manifold so that it should be possible

to find a parameterization much smoother than the one given by (10.3.21).
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Moreover (10.3.21) does not allow us to discuss the smoothness of X (t, ϕ)
as a function of ε.
A general theory for X (t, ϕ) on the lines developed in this section can be
achieved by generalizing equation (10.3.4) or (10.3.7), see problem [10.3.6].

Problems for §10.3

[10.3.1]:Q10.3.1 (Regularity of the SRB measure for analytic f .)

Extend the result of this section to the case of an analytic f . (Hint: See problem [10.1.4]).

[10.3.2]:Q10.3.2 (Generalization of (10.3.5) to the nonlinear part of W+(ψ): an attempt.) Let

S̃ε be defined on T
2 × R

2 by

S̃ε(ϕ, v) = (Sε(ϕ), Sε(ϕ+ v)− Sε(ϕ))

and Ŝ0,ε by (10.3.4). We can look for a conjugation H̃ of the form

H̃ : (ψ,w)←→ (ϕ, v) = (ψ + h(ψ),X (ψ,w)). (∗)

Show that, if H̃ satisfies H̃ ◦ Ŝ0,ε = S̃ε ◦ H̃ then, ∂X (ψ, 0)w = w +K(ψ)w with K(ψ)

defined by (10.3.5).

[10.3.3]:Q10.3.3 (Failure of the attempt in problem [10.3.2].)

Write an equation for the n+1-order tensor ∂nX (ψ, 0) for n = 2, 3. Expand this equation

in series of ε and consider the equation for ∂nX (0)(ψ, 0). Are these equations solvable?
(Hint: Check the equation for ∂2+∂−X+(ψ, 0).)

[10.3.4]:Q10.3.4 (Tree expansion for the nonlinear part of W+(ψ).)

Let S0,ε be the restriction of S̃ε to T
2 × Rv+, i.e.

S0,ε(ϕ, t) = (S0(ϕ), (λ+ + γ+(ϕ))t)

and analogously
H(ψ, t) = (ψ + h(ψ),X (ψ, t)),

where we want that
H ◦ S0,ε = S̃ε ◦H.

Note that both sides of the equation represent a function from T
2 × Rv+ to T

2 × R
2.

Assume that

X (ψ, t) =

∞∑

n=1

∞∑

k=0

X (n,k)(ψ)tnεk.

Write a tree expansion for X (n,k)(ψ) and prove that X (ψ, t) is Hölder continuous of

exponent β in ψ and analytic in t and ε for |t| ≤ t0 and |ε| ≤ ε(β).( Hint: We have that

X (ψ, t) satisfies the equation:

Sε(H(ψ) + X (ψ, t)) = H(S0(ψ)) + X (S0(ψ), λ+,ε(ψ)t).

Expanding in serie of ε and t we get:

λmX (m,k)(ψ)− X (m,k)(S0(ψ)) =

λm
∑

i

Dif(ψ)

i!

∑

m1+m2+···+mi=m
k1+k2+···+ki=k−1

X (m1,k1)(ψ)X (m2,k2)(ψ) · · · X (mi,ki)(ψ)+

+
∑

q≤m

λq
∑

p

X (m,k−p)(ψ)
∑

p1+p2+···+pq=p

λ
(p1)
+ (ψ)λ

(p1)
+ (ψ) · · · λ(pq)+ (ψ)
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where ki ≥ 1, mi ≥ 0, pi ≥ 0. Finally λ
(0)
+ (ψ) = λ+ and X (0,k)(ψ) = h(k)(ψ). Moreover

a proper contraction of the index of the tensor Dif(ψ) with the component of X (mi,ki)(ψ)

in understood. This can be represented graphically as in the following figure.

= +
(k,m)

(k1,m1)

(k3,m3)

(k2 ,m2)

(ki,mi)

...

(k1,m)

(p2)

(p1)

(pq)

...

Fig.(10.3.2)F10.3.2 Graphical representation of the expansion for X (m,k)(ψ). We call the
second graphical element on the right hand side a counterterm vertex.

The representation for λ
(p)
+ is similar to the one in figure (10.3.1) where we must replace

the bullet with label p with a square with label (p, 0), the wavy line with a line and the
square as to be considered with label (p, 1).
We can immagine that the small square in the vertex carry a label m equal to the sum
of the m labels of the square entering in it. With this convention the line exiting from a
small square with label m 6= 1 represent the operator λm(T−1

m ) where

TmX (m)(ψ) = λmX (m)(ψ)−X (m)(S0(ψ))

The inverse of Tm for m = 0 was computed while studying the conjugation H while
the cases m ≥ 2 can be easily solved and do not require to divide X (m) in its + and −
components.
The case m = 1 need a particular treatment. In this case the line exiting from a small

square with label 1 represent the operator λT−1
1 P+ where P+ is the projection on the

+ direction. In the same way the line exiting from a small circe (that has necessarily a
label 1) represent λP−, see figure (10.3.1). We can now iterate the graphical equation of
figure (10.3.2) untill all square have label (m, 1) or all circle have label 1. The value of
the square with label (m, 1) for m = 0,1 and for the circle with p = 1 has already been
computed. For m ≥ 2 it easy to find that

X (m,1)(ψ) =

∞∑

n=0

λmnSn0 ∂
m
+ f(S

−n−1
0 (ψ)).

The analysis of the convergence goes has in the case of the conjugation. Note that the
a counterterm vertex has no ε factor associated but does not contribute a Cqq! to the
estimates because it bear no derivative of f . Moreover the number of operator T−1

m

associated with a tree is equal to the number of vertex with a small square plus the
number of final points, i.e. it is equal to k if the tree contributes to X (m,k). Finally it

is easy to check that ‖T−1
m ‖ ≤ CKm for suitable constant C and K. The only thing

left is to estimate the number of tree that contributes to X (m,k). To do this one can
immagine that to every final point with label (m, 1) are attached m incoming lines with
a final points with label (1, 0). This reduces the estimates on the number of tree to the
case already studied.)

[10.3.5]:Q10.3.5 Show that equation (∗) in problem [10.3.2] is equivalent to the equation

Sε(H(ϕ) + X (ϕ, t)) = H(S0ϕ) + X (S0ϕ, λ+(ϕ)t), (∗∗)

where λ+(ϕ) = λ+ + γ+(ϕ). A natural definition of the unstable manifold would be

given by

Sε(ϕ+ X̃ (ϕ, t)) = S0ϕ+ X (S0ϕ, λ̃+(ϕ)t).
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What is the relation between X̃ (ϕ, t) and X (ϕ, t)?

[10.3.6]:Q10.3.6 (Extension of the parametrization of W+(ψ).)

Use equation (∗∗) of problem [10.3.5] to show that X (ϕ, t) can be extended to an analytic

function of t in a complex strip around the real axis. How large is this strip? (Hint: Use
(∗∗) to extend the domain of analyticity of X (ϕ, t) by a factor λ+(ϕ). Note that X (ϕ, t)

should be in the domain of analyticity of f(ϕ).)

§10.4 Chaos in space–time and SRB distributions

The theory of Section §10.2 can be extended along the lines of Section §10.3
to lattices of “coupled maps” thereby answering various natural questions.
Adopting the notations of Section §10.2 we consider a lattice of Arnold’s cat
maps. Following the method of Section §10.3 we can construct the unstable
manifold by studying the dynamical system (on a noncompact phase space

Ω̃Λ = (T2 ×R
2)Λ, see footnote 1)

(Sε(ϕ, v))ξ =
(
S0ϕξ − εf(ϕnn(ξ)), S0vξ − εv˜ξ

· ∂ϕ
˜ξ
f(ϕ

nn(ξ)
)
)
. (10.4.1)e10.4.1

Therefore a point ϕ in (T2)Λ can be identified by assigning for each ξ ∈ Λ

a pair of coordinates ϕ
ξ
labeled by ξ which identify a point in T

2; and a

vector w in (R2)Λ can be identifies by assigning |Λ| two-component vectors
wξ labeled by a point in Λ.
We construct functions h(ψ) and K(ψ) so that

ϕ
ξ
=ψ

ξ
+ hξ(ψ)

def
= Hξ(ψ),

vξ =wξ + (K(ψ)w)ξ
(10.4.2)e10.4.2

defines a map H̃ of Ω̃Λ into itself, where now h(ψ) is a function defined on

(T2)Λ with values in (T2)Λ and K is defined on (T2)Λ with values in the
2|Λ|×2|Λ| matrices mapping (R

2
)Λ into itself. The construction is achieved

by imposing that the map H̃ transforms S̃ε into S̃0,ε, i.e.

S̃ε ◦ H̃ = H̃ ◦ S̃0,ε, with

S̃0,ε(ψ,w)ξ =
(
S0ψξ, S0wξ + (Γ(ψ)w)ξ

)
,

(10.4.3)e10.4.3

with Γ(ψ) depending on ε. Let B be the basis formed by the vectors

(0, . . . , v±, . . . , 0) in the 2|Λ|–dimensional space (R2)Λ. We suppose that, in
the basis B, the matrix K(ψ)ξi,ηj has vanishing matrix elements except for

Kξ+,η−(ψ)
def
= kξη,+(ψ) and Kξ−,η+(ψ)

def
= kξη,−(ψ). The matrix Γ will be

supposed to have zero matrix elements except for Γξα,ηα(ψ) = γξη,α, α = ±.
This implies that
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(K(ψ)w)ξ,± =
∑

η

kξη,±(ψ)wη,∓

(Γ(ψ)w)ξ,± =
∑

η

γξη,±(ψ)wη,±,
(10.4.4)e10.4.4

i.e. for each ξ, η, Γ is an ε–dependent diagonal matrix on the basis v± of
the eigenvectors of S0 and K is an ε–dependent off-diagonal matrix on the
same basis. Inspired by the results of Section §10.3 we shall also try to show
that H̃(ψ) be expressible as

hξ(ψ) =
∑

X∋ξ
ΦX(ψ

X
),

(K(ψ)w)ξ,± =
∑

ξ′

∑

X∋ξ, ξ′
γX,±(ψX)(w)ξ′,±

(K(ψ)w)ξ,± =
∑

ξ′

∑

X∋ξ, ξ′
kX,±(ψX)(w)ξ′,∓,

(10.4.5)e10.4.5

where, of course, we have already determined h in Section §10.2. The equa-
tions that should be obeyed by H̃ become, cf. (10.3.9),

(S0K(ψ)−K(S0ψ)S0)ξi,ηj = −ε∂ϕη,jfi(ϕnn(ξ))−
− ε∂ϕ

ρ,s
fi(ϕnn(ξ))K(ψ)ρs,ηj + Γ(ψ)ξi,ηj + (K(S0ψ)Γ(ψ))ξi,ηj ,

(10.4.6)e10.4.6

where ϕ = ψ + h(ψ) and summation over the repeated indices ρ, s is un-
derstood. The labels i, j have values ± as we imagine that the equation is
written in the basis B.
The equations can be solved by writing them by components; defining

ψ(α) def= S−(1−α)/2
0 ψ, ψ′(α) = S(1+α)/20 ψ, α = ±,

ϕ(α) = S−(1−α)/2
ε ϕ, α = ±,

(10.4.7)e10.4.7

one finds, for α = ±, β = −α,

γξη,α(ψ) =ε∂ϕ
η,α
fα(ϕnn(ξ)) + ε∂ϕ

ρ,β
fα(ϕnn(ρ))kρη,β(ψ),

kξη,α(ψ) =− λ2kξη,α(Sα0 ψ)− αλ
[
ε∂ϕη,βfα(ϕ

(α)
nn(ξ))+

+ kξρ,α(ψ
′(α))γρη,β(ψ

(α))+

+ εkρη,β(ψ
(α))∂ϕρ,βfα(ϕ

(α)
nn(ξ))

]
,

(10.4.8)e10.4.8

where λ = λ−1
+ = −λ− = (

√
5 − 1)/2 < 1. Here the derivatives of f are

meant to be performed with respect to the argument ϕ of f (i.e. to be
precise one should everywhere write (∂ϕ

ξ,α
fα′) rather than writing ∂ϕ

ξ,α
fα′

without the parentheses). This has the consequence that values γξη, kξη will
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be of order O(ε|ξ−η|), because the recursion for γ, k involves only nearest
neighbors.

Proceeding as in Section §10.3 we can interpret (10.4.8) in terms of suitable
tree graphs by simply adding a few more labels to the graphs in Fig. (10.3.1)
and we obtain the following result.

(10.4.1) Proposition:P10.4.1 (Stable and unstable planes for lattices of cat
maps)
Given a nearest neighbors interaction f as above and 0 < β < 1 there exist
ε0(β) > 0, C(β) <∞ and κ(β) > 0 as in proposition (10.2.1), and functions
ΦX with values in (T2)Λ and γX,α, kX,α with values in the 2|Λ| × 2|Λ|
matrices such that defining h, K and Γ by (10.4.5) and therefore H̃ by
(10.4.2) the following results hold.

(i) Equation (10.4.3) holds, i.e. H̃ conjugates S̃ε with S̃0.
(ii) The functions ΦX verify the bounds in (10.2.16) and the functions γX,α
and kX,α verify, if κX,α is either γX,α or kX,α:

max
|ε|≤ε0(β)

ψ
X

|κX,α(ψX)| < B(β)
( |ε|
2ε0(β)

) δ(X)
2d

, (10.4.9)e10.4.9

max
|ε|≤ε0(β),ψ

X\ξ

|κX(ψ
X
)− κX(ψ′

X
)| < B(β)

( |ε|
2ε0(β)

) δ(X)
2d |ψ

ξ
− ψ′

ξ
|β ,

where ψ
X
, ψ′

X
differ only in the site ξ ∈ X and δ(X) denotes the tree length

of the set X.

It is now immediate to define a basis of tangent vectors to the unstable
manifold at a point ϕ = ψ + h(ψ). If vξ,+ = (v+δξ′ξ)ξ′∈Λ is, as ξ varies in
Λ, a basis of vectors for the unstable manifold of the unperturbed system
then a basis for the perturbed system will be given by the |Λ| vectors

(wξ,+(ψ))ξ′ = v+δξξ′ + (K(ψ)vξ,+)ξ′ , ξ ∈ Λ. (10.4.10)e10.4.10

The situation is similar to the one discussed in Section §10.3: a Markovian
pavement is constructed as the H–image of a fixed Markovian pavement for
S0. The latter is simply obtained by fixing a generating Markov pavement
P for the simple Arnold’s cat map (see Section §4.2) and then defining the
pavement PΛ obtained as “product” of copies of the pavement P on each
factor of the product (T

2
)Λ. If ϕ = ψ + h(ψ) then ϕ and ψ have symbolic

histories Xε(ϕ) and X0(ψ) which coincide, by construction:

ϕ = Xε(σ), ψ = X0(σ), ϕ = ψ + h(ψ). (10.4.11)e10.4.11

Therefore it is now interesting to evaluate the volume of the parallelepiped
spanned by the |Λ| vectors wξ,+(ψ) as ξ varies in Λ. The latter is

D(ψ) = |Vol(wξ1,+(ψ), . . . , wξ|Λ|,+
(ψ))| = det

(
(1 +K++)(1 +KT

++)
) 1

2

,

(10.4.12)e10.4.12
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where K++ denotes the linear operator K(ψ) regarded as a map between
the linear space spanned by the vectors vξ,+, i.e. the tangent plane P+ to

the unstable manifold of S0 and its image 1 +K(ψ))P+, and K
T
++ denotes

its adjoint.
The volume of the image under S̃ε of the latter plane P+ is by (10.4.3)

the volume D′(ψ) of the parallelepiped spanned by the vectors w′
ξ,+

def
= (1+

K(S0ψ))(λ+ + Γ+(ψ))vξ,+, hence
1

N10.4.1

D′(ψ) = |Vol(w′
ξ1,+(ψ), . . . , w

′
ξ|Λ|,+

(ψ))| =

= D(S0ψ) det
(
(λ+ + ΓT+(ψ))(λ+ + Γ+(ψ))

) 1
2

,
(10.4.13)e10.4.13

where ΓT+(ψ) is the transpose of Γ+(ψ) defined as the restriction to the
plane P+ of the matrix Γ(ψ) (quite simple as the latter matrix is Γξα,ηβ =

Γξ,η,αδαβ (i.e. diagonal in the local label α = ±) so that S0+ΓT is a |Λ|×|Λ|
matrix. The matrix M̃ = ((1 + λ−1

+ ΓT )((1 + λ−1
+ Γ))

1
2 has the form, as it is

implied by (10.4.9),

M̃ξ,ξ′(ψ) =
∑

X⊂Λ : ξ,ξ′∈X
m̃X(ψ), (10.4.14)e10.4.14

with the functions mX(ψ) admitting the bounds (10.4.9) with kX replaced
with mX .
By construction the differential of Sε(ψ + h(ψ))) on the bases generated
by wξ,+(ψ) and wξ,+(S0ψ) is given by λ+ + Γ+(ψ) so that the expansion
coefficient of the surface area of the unstable manifold is given by

λ
|Λ|
+

D(S0ψ)
D(ψ)

D0(ψ). (10.4.15)e10.4.15

where D0(ψ) = det M̃(ψ) ≡ det(1 + Γ̃+(ψ)), and Γ̃+(ψ) can be written in
a form analogous to (10.4.14).
For the purpose of constructing the SRB distribution we can ignore the

“cocycle” ratio
D(S0ψ)

D(ψ) and the potential energy for the SRB distribution

is simply A(ψ) = − log det(1 + Γ̃+(ψ)). Equations (10.4.9) imply that the
determinant D0(ψ) can be expressed as

exp
( ∑

X⊂Λ

pX(ψ
X
)
)
. (10.4.16)e10.4.16

Moreover pX(ψ
X
) still verify the bounds (10.4.9) with κX replaced by

pX(ψX). This follows from the form of the matrices K, Γ in (10.4.14) and
from the following lemma.

1 Here we note that the n–dimensional volume of the parallelepiped generated by n vectors
w1, . . . , wn in R

m, m ≥ n, is the square root of the determinant of the matrix (wi ·
wj), i, j = 1, . . . , n.
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(10.4.1) Lemma:L10.4.1 (Cluster expansion of a determinant)
Let mX(ψ

X
) be a 2|Λ| × 2|Λ| matrix verifying the bounds (10.4.9) with mX

replacing κX . Then if M =
∑

X⊂ΛmX(ψ
X
) there exist scalars nX(ψ

X
)

such that
det(1 +M) = exp

(∑

X⊂Λ

nX(ψ
X
)
)
, (10.4.17)e10.4.17

and the functions nX(ψX) verify the same bounds with a different constant
B′ instead of B.

Remark: To check this property note that the determinant of 1 +M can
be written

det(1 +M) = eTr log(1+M) = e
∑∞

k=1

(−1)k+1

k TrMk

, (10.4.18)
e10.4.18

and TrMk =
∑

X1,...,Xk
Tr(mX1 · · ·mXk) has the desired form provided one

collects together all terms whose Xj ’s form a connected set X and consider
the result as a contribution to the value of nX . The sum over k gives no
problem because the terms of order k that arise in this way and which have
the same X have size bounded at least by (B′′|ε|)k for a suitable B′′ because
of the bounds (10.4.9).
Note that the sum in the exponent (10.4.17) is to be expected to be of
size of the order of |Λ| in spite of the bounds on nX . And the matrix M is
also to be expected to have large size. Since the (10.4.18) is a power series
expansion one may be worried that the expression (10.4.17) is only formal
and that it is affected by convergence problems. Imagine that instead of
det(1+M) we consider det(1 +ϑM) with ϑ a parameter. Then for ϑ small
enough (at Λ fixed) the above formal calculation applied to det(1 + ϑM) is
certainly correct and nX will become ϑ–dependent remaining bounded by
2δ(X) times the same quantities in (10.4.9) (with a B′ replacing B) not only
for ϑ small but also for |ϑ| ≤ 2 and complex. Hence the relation (10.4.17)
equates a polynomial in ϑ to the exponential of a function which is analytic
for |ϑ| < 2: therefore setting ϑ = 1 we see that (10.4.17) is rigorously
established.

We now have all the ingredients to discuss the SRB distribution for the
coupled system. If P = {P1, . . . , Pn} is a Markov pavement for the map
S0 then we can construct a Markov partition for S0 simply considering,

for every τ ∈ {1, . . . , n}Z
d

, the square Qτ = ×ξ∈ZdPτξ . Associated with

this Markov partition Q there is a symbolic representation X(σ) where now

σ can be naturally thought as a point in {0, . . . , n}Zd+1

. We indicate the

coordinate on Zd+1 with (ξ, t) and call the ξ coordinates spatial or horizontal
and the t coordinate temporal or vertical. As in the single map case the
pavementH(Q) is a Markov pavement for Sε with a symbolic representation
given by Xε(σ) = H(X(σ)). As an energy for the SRB distribution we can
use λu(ψ) given by (10.4.15). Note that because of proposition (6.4.1) we
can use also λu(ψ) = D0(ψ).
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We obtain the following key result (for more elementary statements,
see[BK95], or alternative ones, see [JP99], can be found in the literature;
see also problems [10.4.1], [10.4.2]).

(10.4.2) Proposition:P10.4.2 (SRB distribution potential for lattices of cat
maps)
Fixed Λ for all β ∈ (0, 1) there exist a Λ–independent constant ε0(β) > 0 and
a Markovian pavement Q = {Qτ}τ∈Zd of Ω such that, for |ε| < ε0(β), the
expansion rate λu(σ) of Sε along the unstable manifold of a point x = Xε(σ)
that has a symbolic representation σ is Hölder continuous in σ and has the
form

λu(σ) =
∑

X∈Λ

ΦX(σX), (10.4.19)e10.4.19

where X are sets in Z
d+1

and ΦX(σX) is holomorphic in ε in the disk
|ε| < ε0(β). The potential Φ verifies the bound

|ΦX(σX)| < C
( |ε|
ε0(β)

) 1
2 δ⊥(X)+ 1

2n(X)

e−κδ‖(X), (10.4.20)e10.4.20

where δ‖(X), δ⊥(X) denote the tree length of the projection of the set X
on the horizontal plane t = 0 and, respectively, the sum of the tree lengths
of the intersections of X with the vertical lines; n(X) denotes the number
of the timelike intervals whose union is X (cf. remarks to definition (7.3.3)
and equation (7.3.26)). The constant C is Λ–independent. Furthermore ΦX
is translation invariant. Note that the 1

2 in the exponent of (10.4.20) arises
because by construction the number n(X) of vertical intervals building X is
necessarily n(X) ≥ δ⊥(X) so that the natural bound would be the stronger

one with |ε|
ε0(β)

) 1
2 δ⊥(X)+ 1

2n(X)

replaced by |ε|
ε0(β)

)δ⊥(X)

.

The SRB distribution µε is a Gibbs state for a system on a (d + 1)-
dimensional lattice with a nearest neighbor hard core interaction in the di-
rection of “time” and a longer range exponentially decreasing “many-body”
potential Φ with ||Φ||κ, cf. (7.2.6), small with ε.

Proof: For simplicity we shall give the proof by supposing that the lattice
(i.e. spatial) dimension is d = 1.
In the present case the representation in (10.2.8) yields a representation of
h with the desired properties.
One starts from (10.2.8) in order to obtain a representation of h in terms
of potentials. Proceeding as in the proof of propositions (10.4.1) and lemma
(10.4.1) one represents, with the same technique, the conjugating map h(ψ)
(see below), the stable and unstable planes which split the tangent plane,
cf. proposition (4.2.1), then the determinant of the map along the unstable
manifold and then its logarithm. At each step the above quantities are
expressed as functions of the d + 1–dimensional symbolic representations
σ of the points ψ in the form analogous to (10.4.19) together with bounds
like (10.4.20). We discuss only the representation of the map h leaving the
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remaining analogous representations of the stable and unstable planes and
of the determinant of the map along the unstable manifold.
Consider a single tree: its value is given by (10.2.8). We represent the
quantity

∏
j ∂(αvj ,ξvj )fαv(ψnn(ξv)

) via the symbols σξ,s as a sum of “po-

tentials” Φx

v ({σξ,t}) =
∑∞

t=0 ϕ
x

t ({σξ,s}ξ∈nn(ξv),|s|<t) by means of the tele-
scopic method used several times (e.g. to derive (4.3.8), see (4.3.10)). Here
bfx = {(αi, ξi)} indicates the derivative of the function f we are considering.
The potentials ϕ will be bounded by Cve

−κt where κ can be taken 1
2 log λ

−1

(because the symbols sequences determine the corresponding points ψ “at
rate” λ in the cat map we consider) and Cv is a constant.

Therefore we can represent λ
−|pv+1|αv
αv

∏sv
j=1 ∂(αvj ,ξvj )f(S

p(v)
0 ψ

nn(ξv)
) as a

sum of
λ−|pv+1|αv
αv ϕx

tv ({σξ,s}ξ∈nn(ξv),|s−p(v)|<tv) (10.4.21)e10.4.21

over tv. Repeating the same considerations for the other nodes v of the
tree we represent the value of the tree ϑ of order k in (10.2.8) as a product
of factors like (10.4.21) and, after properly multiplying it by εk, we can
interpret it as a contribution to the total potential for the representation
(10.2.10) of the conjugating function relative to the space–time set

X = ({ξv0} × {0}) ∪ ∪v∈V (ϑ)\v0
(
nn(ξv)× [p(v)− tv, p(v) + tv]

)
, (10.4.22)e10.4.22

if v0 is the first node of the tree ϑ. The contribution is bounded by

εk Ckλ−
∑

v
(tv+p(v)) for a suitable C > 0 (note that the supv Cv can be

bounded uniformly in all the labels attached to the node v because f con-
tains only finitely many Fourier modes). Although this might seem awk-
ward, it happens that ({ξv0} × {0}) ∈ X , with the above definition, but
ΦX(σX) does not necessarily depend on σ(ξ0,0).
Since k ≥ cδ‖(X) because the interaction involves only nearest neighbors
this is a bound of the type (10.4.20). The convergence of the summation
over the tree values implies that the bound holds, with different constants,
also for the total potential ΦX . Note that the set X has a rather arbitrary
shape, unlike the simpler shapes that are considered in [BS88], [JM96],
[BK94], [BK96], [BK97] and [JP99].
The expansion illustrated in Fig.(10.3.1) shows that the same represen-
tation can be given to the planes tangent to the unstable (and to the
stable) manifolds. And continuing with the same arguments one gets,
from (10.4.12) and from (10.4.18), the representation of λu(σ) in the form
(10.4.20).
This leads (after decimation to eliminate the hard core in the time direction
by proposition (7.3.3) and in the remarks preceding and following it) to the
analyticity result. We omit further details (for which we refer to [BFG03]).

Remarks: (1) The potentials ΦX in (10.4.19) are “space–time” potentials

because X is now a subset Zd+1.
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(2) The representation of h in terms of potentials is not unique: proceeding
more naively one obtains a potential in which the sets X are space–time
“rectangles” which are therefore simpler: however the potentials decay less
fast, essentially with the diameter rather than with the tree length (see
problem [10.4.2]). This is not really useful if one looks for analyticity re-
sults, but it is already sufficient to get smoothness results ([JM96], [BK95],
[BK96] and [BK97]).
(3) In our case aside from the hard core the unperturbed potential is ex-
actly 0 so that the potentials can be made as small as wished and with range
as short as wished, as shown by the bounds (10.4.9),(10.4.20), by taking ε
small. Nevertheless we cannot apply the results of Section §7.2 immediately.
In fact our potentials still contain a hard core so that proposition (7.2.3)
cannot be applied. In absence of hard cores, however, it would solve the
problem.
(4) Therefore one has first to eliminate the hard core by a decimation pro-
cedure. In fact by the above remark (3) the assumptions of proposition
(7.3.3) can be satisfied with κ growing arbitrarily large for ε → 0 (one can
in fact take κ = O(log log ε−1)). The decimation argument, i.e. the propo-
sition (7.3.3), implies several consequences: we explicitly list some among
them because they are the conclusion of the theory of lattices of Arnold’s
cat maps envisaged in this book.

(10.4.1) Corollary:C10.4.1 (Regularity of SRB distributions) Let F and G be two

Hölder continuous “observables” (i.e. functions on Ω = (T2)Λ) and suppose
that they depend on ϕ only through the ϕ

ξ
with ξ in a finite region V . If

µΛ
ε denotes the SRB distribution for Sε the following properties hold.

(i) The expectation values µΛ
ε (F ) is well defined and Hölder continuous in

ε for |ε| small enough, uniformly in Λ, V . Moreover the expectation values
µΛ
ε (F ◦H−1) is analytic in ε for |ε| small enough, uniformly in Λ, V .

(ii) If F is an analytic observable the expectation values µΛ
ε (F ) is analytic

in ε for |ε| ≤ εF

(iii) Any two functions F,G mix at an exponential rate, i.e. there exists
two positive constants κ and ℓ0, depending on F and G, such that, if

µΛ
ε ((Snε F )G)

def
=
∫
µΛ
ε (dϕ)F (Snε ϕ)G(ϕ) and ‖F‖, ‖G‖ denote the maximum

modulus of F,G, one has

|µΛ
ε ((Snε F )G)− µΛ

ε (F )µ
Λ
ε (G)| ≤ ‖F‖ ‖G‖e−κF,G(n−ℓ0) (10.4.23)e10.4.23

for all Λ, V and, therefore, for the limit µε as Λ→∞ of µΛ
ε .

(iv) The volume distribution µ0(dϕ) = dϕ/(2π)2 “mixes with the SRB
distribution” exponentially fast the functions F,G in the sense that

µ0((Snε F )G)
def
=
∫
µ0(dϕ)F (Snε ϕ)G(ϕ) verifies, for all Λ,

|µ0((Snε F )G)−µΛ
ε (F )µ0(G)| ≤ ‖F‖ ‖G‖e−κF,G(n−ℓ0), n > 0. (10.4.24)e10.4.24

20/novembre/2011; 22:18



368 §10.4: Chaos in space–time and SRB distributions

For n < 0, in general, (10.4.23) and (10.4.24) hold with a different distri-
bution µ′

ε, which is the SRB distribution for S−1
ε (which essentially has the

same properties as µε).

Remarks: (1) One could make the statements above without introducing
the constant ℓ0 and writing (10.4.23) and (10.4.24) with an extra positive
constant B in front of the right hand sides and with no ℓ0 in the exponent,
provided that n is chosen large enough. Of course the two formulations are
quite equivalent.
(2) Statement (iii) requires a new analysis based on the representation for
the volume distribution µ0 for Anosov systems discussed in Section §4.3.
We saw, in fact, that in a single Anosov system the SRB distribution µ
and the volume µ0 are related because the restriction of µ0 to the functions
depending only on the symbols with time label ≥ 0 is absolutely continuous
with respect to the restriction of µ to the same functions. For lattices of
Anosov systems this is still true but the ratio dµ0/dµ is not uniformly finite,

away from 0 and∞, in the spatial size |Λ| of the lattice Λ ⊂ Z
d
. However a

careful examination of the above proofs implies that if one further restricts
the distributions µ, µ0 to functions which are spatially local in a region V
and depend only on the symbols with positive time label then one gets two
probability distributions µ+,V , µ+,V

0 which are absolutely continuous with

respect to each other. And dµ+,V
0 /dµ+,V = ρ(σ) is a Hölder continuous

function so that the statement (iii) follows from (ii).
(3) The study the SRB distribution for S−1

ε is not immediate due to the fact
that S−1

ε in general is not given by a nearest neighbor perturbation of S−1
0 .

A very simple way to solve this problem is to observe that the expansion
rate on the unstable manifold for S−1

ε is the inverse of the contraction
rate on the stable manifold for Sε, that has a representation similar to the
one discussed in the proof of proposition (10.4.2). Moreover the Markov
partition and the symbolic code for S−1

ε are strictly related to those for for
Sε. One can also prove this directly constructing S−1

ε as a perturbation of
S−1
0 with a perturbation that still decay fast enough in space and time, see

problem [10.4.3].

In the above analysis the potentials mX(ψ
X
) do depend on Λ. However

from the trees expansion formulae we see that the dependence of ΦX , GX
and therefore all the other potentials we have introduced, in particular nX ,
consists of a term which is Λ independent as soon as Λ ⊃ X plus a small cor-
rection that while verifying uniformly in Λ the general bounds like (10.4.9)
contains corrections of size of order e−constL. In our situation in which
Gibbs states depend continuously on the potential this implies not only the
mentioned existence of the thermodynamic limit for the SRB distribution
but also a wealth of results that can be derived from the well established
theory of Gibbs states with weak coupling. Here we mention only the fol-
lowing.

(10.4.3) Proposition:P10.4.3 (Space-time chaos in cat maps lattices) Let µΛ
ε be
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the SRB distribution for the lattice of Arnold’s cat maps considered above.
For all F (ϕ) defined on (T2)Λ which are analytic and dependent only on the
microstates ϕ

ξ
with ξ ∈ Λ0 where Λ0 is a finite region, the limit

µε(F ) = lim
Λ→∞

µΛ
ε (F ) (10.4.25)e10.4.25

exists and is analytic in ε for |ε| < εF . Functions F which depend only
on the microstates ϕ

ξ
with ξ contained in a given finite region are called

spatially local.
(ii) If F,G are two smooth enough (e.g. Hölder continuous with some expo-
nent β > 0) functions which are local in space then

µε((τ
ξStεF )G)−−−−−−−→|ξ|+|t|→∞ µε(F )µε(G), (10.4.26)e10.4.26

where τξ denotes the lattice translation by ξ ∈ Z
d and the limit is on t or

on ξ or both.

(iii) If F,G are two smooth enough (e.g. Hölder continuous with some ex-
ponent β > 0) functions which are local in space then

µ0((StεF )G)−−−→t→∞ µε(F )µ0(G), (10.4.27)
e10.4.27

where τξ denotes the lattice translation by ξ ∈ Z
d
.

(iv) If F is a smooth enough observable (e.g. Hölder continuous with some
exponent β > 0) which is local in space then

lim
t→+∞

1

t

t∑

j=0

F (Sjεϕ) =
∫
F (ϕ)µε(dϕ) (10.4.28)e10.4.28

for µ0(dϕ)–almost all ϕ ∈ (T2)Z
d

.

Remarks: (1) The above result is sometimes read as saying “lattices of
Anosov maps weakly coupled via short range interactions” show spatio–
temporal chaos.
(2) The method of proof followed here can be made very elementary in the

case of weakly interacting lattices Λ ⊂ Z
d
of expansive maps S0 of the in-

terval like the ones considered in proposition (5.4.1) (strictly expansive and
surjective) or of expansive maps of the circle: the theory is very similar but
the lattice spin system that they generate is a seminfinite lattice system
with spins located on Λ × Z

d
+. The great simplification is that there is no

hard core in the spin interactions because of the Markovian assumption of
strict surjectivity. In this case proposition (7.4.1) immediately applies and
gives smoothness as well as mixing, cf. [BK95] and problem [10.4.1]. It does
not however show the analyticity that follows from an (equally immediate)
application of proposition (7.3.2).
(3) Smoothness in the case of lattices of cat maps can also be proved by a
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method close to the one presented here (although it does not yield analyt-
icity), cf. [JP99].

Problems for §10.4

[10.4.1]:Q10.4.1 (Nonanalytic proof of regularity of SRB distributions for lattices of circle

maps, from [BK95].)
Consider a chain of circle maps or of interval maps instead of Arnold cats small perturba-
tion of independent maps S0 acting on each site variable. Assume the expansiveness for
S0 in the sense of Section §5.4 in the interval case and assume that S0ϕξ = 2ϕξ for ξ ∈ Λ
in the case of circle maps (for simplicity). Check that in this case one can transform
the problem of determining a SRB distribution into a problem of a lattice spin system
on a semi-infinite lattice Λ × Z+ without hard core conditions. Check that the general
uniqueness and smoothness results of Section §7.4 applies immediately, given the result
of proposition (10.4.2), (10.4.20), to obtain the results of corollary (10.4.1) with analyt-
icity replacing smoothness. The advantage of this approach is that it is elementary and
one does not need the cluster expansion theory of Chapter VII. (Hint: The proposition
(7.4.1) applies directly because of lack of hard cores. The seminfinite lattice is due to
the fact that the maps in question are described symbolically by semiinfinite sequences
of symbols, being not invertible).

[10.4.2]:Q10.4.2 (Alternative potentials)

Potentials ΦX(σX) can be immediately derived from the potentials nX(ψ
X
) of (10.4.17)

by the method of Section §10.3: for fixed X we consider the sequence σX correspond-
ing to ψ

X
on the Markov pavement and call σX,h the sequence obtained from σX by

truncating σX beyond the heights [−h,h] and replacing the deleted σξ,t with |t| > h by
standard compatible sequences as done in the proof of proposition (4.3.1). Check that

the potentials thus obtained are not zero only for sets of the form H0 × I with H0 ⊂ Z
d

and I ⊂ Z. Check that the bounds on nX(ψ
X
), X ∈ Z

d and the Hölder continuity of

nX(ψ
X
) imply bounds on the potential that decays exponentially as e−κδ(H0)+|I|, i.e. if

d = 2 as the diameters of the sets H = H0 × I.
[10.4.3]:Q10.4.3 (Tree expansion for S−1

ε .)

Show that S−1
ε (ψ) can be written as S−1

0 (ψ) + εg(ε, ψ) where

gξ(ε, ψ) =
∑

X∋ξ

ΨX(ψ
X
)

where X is a connected set in Z
d

and ΨX is of order ε
δ(X)
2d . (Hint: write an series

expansion for g(ε, ψ) as a function of ε and use S−1
ε ◦ Sε(ψ) = ψ to compute recursively

the coefficients. The decay follows from an argument very similar to the one used for H.)

[10.4.4]:Q10.4.4 Extend the result of problem [10.2.5] to the construction of the unstable
direction and of the expansion rate on the unstable direction.

[10.4.5]:Q10.4.5 Refine the result of problem [10.4.3] to show that the symbolic representation

g̃(σ) of g(ε, ψ) can be written as

g̃ξ(σ) =
∑

X∋ξ

Ψ̃X(σX)

where now X is a set in Z
d+1 such that its projection on the temporal coordinate is

connected and the intersection of X with any vertical line is a segment centered at 0.
Moreover we have:

|Ψ̃X(σX)| ≤ Ce−κ0δ⊥(X)e−κ1δ‖(X).

(Hint: simply write ϕ as a sum of potential in the expansion studied in problem [10.4.3].
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[10.4.6]:Q10.4.6 Show that this is enough to obtain again estimate (10.4.20) for the potential

of the SRB distribution of S−1
ε .

Bibliographical note §10.4
The theory of Sections §10.2 and §10.4 was initiated by [BS88]. The main
technical tool in our approach is the cluster expansion discussed in Chap-
ter VII in the form introduced for the decimation problem in [CO82]. The
advantage over the original approaches to spatio–temporal chaos theory
started in [BS88], and essentially completed in [JM96] is that here one ob-
tains analyticity instead of infinite differentiability of the SRB distribution.
Subsequent papers eliminated technical restrictions present in [JM96], at
first at the price of restricting the theory to lattices of coupled expanding
maps of the circle (which exhibit the important simplification of having a
symbolic dynamics representation without hard cores, see [BK95], [BK96]
and [BK97]). Later the restriction to expanding maps has been eliminated,
[JP99], [BK96] and [JP99], by further developing the ideas in [JM96]. The
approach discussed in Section §10.4, due to [BFG03], goes a little beyond
the results in the just quoted papers as it also gives analyticity in the de-
pendence of the Gibbs distribution on the perturbation size. The latter
result is discussed in [BFG03] where also the theory of Sections §10.1 and
§10.3 were developed. For an example of application of the above results
see [Ga99].

§10.5 Isomorphisms

We can ask in which cases two Gibbs states µ and µ′, one on {0, . . . , n}ZT
and the other on {0, . . . , n′}ZT , with respective potentials Φ and Φ′ are iso-

morphic in the sense that the dynamical systems ({0, . . . , n}ZT , τ, µ) and

(0, . . . , n′)ZT , τ, µ
′) are isomorphic mod 0.

(10.5.1) Proposition:P10.5.1 (Isomorphims of Gibbs distributions with fast
decreasin potential)
If T and T ′ are two mixing compatibility matrices, (n+1)×(n+1) and (n′+
1)× (n′+1) respectively, and if Φ and Φ′ are two potentials for {0, . . . , n}ZT
and for {0, . . . , n′}ZT such that

∑

X∋0

1 + diam(X)

|X | ‖ΨX‖ < +∞, if Ψ = Φ or Φ′, (10.5.1)e10.5.1

with ‖ΦX‖ = supσX ‖ΦX(σX)‖, then the dynamical systems ({0, . . . , n}ZT , τ,
µ) and ({0, . . . , n}ZT , τ, µ) are isomorphic mod 0 if and only if their en-
tropies are equal: s(µ) = s(µ′).

Remarks: (i) The average entropy is therefore a complete invariant for the
isomorphisms mod 0 in a rather wide class of dynamical systems.
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(ii) The proof of this theorem reaches already its maximal difficulty in the
case in which Φ = Φ′ = 0, Tσσ′ = T ′

σσ = 1: this is the case of the Bernoulli
schemes.

(iii) The problem of the isomorphisms between Bernoulli schemes is a famous
problem solved at the end of the 1960’s by Ornstein who also established new
techniques to attack and solve the problem of the isomorphism between large
classes of dynamical systems. Proposition (10.5.1) gives us an example of a
problem that can be solved with the ideas and the techniques of Ornstein.

Ornstein’s theorem was preceded by another important result of Sinai that
established the weak equivalence mod 0 (see below for a precise definition)
between two Bernoulli schemes of equal entropy. It was followed by several
deep explicit constructions of the codes that realize the isomorphisms. The
first one, due to Monroy and Russo, [MR75], concerned a very special case,
but it introduced, in that case, some new ideas: such a construction has
been improved by the constructions of Keane and Smorodinski, who, with
the use of new and deep ideas, explicitly realized the code of the isomor-
phism between two isentropic Bernoulli schemes, see [KS79]. Such codes
are “constructive” in the sense that it is possible to construct an arbitrarily
prefixed number of values of the elements of the sequence σ′ image, in the
isomorphism in question, of a sequence σ by making use of an algorithm
that can be implemented on a computer, so that it requires a finite time for
almost all the sequences σ (randomly chosen with respect to the measure
of one of the two Bernoulli schemes).

From a practical point of view the description of the algorithm of Keane
and Smorodinski is certainly the fastest way to achieve the proof of the iso-
morphism between isoentropic Bernoulli schemes. Nevertheless Ornstein’s
proof remains a monument and an instrument for whoever wants to study in
more detail the abstract and conceptual aspects of the isomorphism theory
and of the meaning of entropy. Furthermore it provides us with the means
to deal with isomorphism problems between dynamical systems that until
now, were not otherwise soluble.

(iv) We shall not discuss here the proof of Ornstein’s theorem, and the
reader should consult for this purpose the book by Ornstein, [Or74], and
then meditate on the codes of Monroy-Russo and Keane-Smorodinski. It
seems difficult to present Ornstein’s theory in a more compact or simpler
way than the one he himself chose and likewise it is difficult to present the
constructions of Monroy-Russo and of Kean-Smorodinski without repeating
word for word the relatively short and brilliant original works.

For completeness it is convenient to give a precise definition of weak iso-
morphism mod 0 and to state the theorem of Sinai.

(10.5.1) Definition:D10.5.1 (Weak isomorphism)

If ({0, . . . , n}Z, τ, µ) and ({0, . . . , n′}Z, τ, µ′) are two ergodic metric dynam-
ical systems, they will be said to be weakly isomorphic mod 0 if there is
a measurable partition P = {P0, . . . , Pn′} of {0, . . . , n}Z and a measurable
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partition P ′ = {P ′
0, . . . , P

′
n} of {0, . . . , n′}Z such that

µ(C0...M
σ0...σM ) = µ′(P ′0...M

σ0...σM ) for all M ≥ 0, σ ∈ {0, . . . , n}M+1,

µ′(C0...M
σ′
0...σ

′
M
) = µ(P 0...M

σ′
0...σ

′
M
) for all M ≥ 0, σ′ ∈ {0, . . . , n′}M+1,

(10.5.2)e10.5.2
where P ′0...M

σ0...σM = ∩Mj=0τ
−jP ′

σj and P 0...M
σ′
0...σ

′
M

= ∩Mj=0τ
−jPσ′

j
. This means that

the “two dynamical systems are weakly isomorphic if each contains a copy
of the other”.

An important result (due to Sinai) is the following one.

(10.5.2) Proposition:P10.5.2 (Sinai’s theorem)

Let ({0, . . . , n}Z, τ, µ) and ({0, . . . n′}PZ, τ, µ′} be two Bernoulli schemes of
equal entropy. Then they are weakly isomorphic mod 0.

We conclude this very brief introduction to the isomorphisms theory with
a comment and an interesting definition.
One of the key remarks in Ornstein’s theory is the importance of the notion
of finite determination of a dynamical system ({0, . . . , }Z, τ, µ). From a
mathematical point of view the interest of this notion lies in the fact that,
as shown by Ornstein, a system that enjoys this property is isomorphic mod
0 to a Bernoulli scheme and vice versa. From a“physical“ point of view it
is a property that has a very interesting interpretation that we illustrate
after giving the precise notion of finite determination (due to Ornstein, see
[Or74]).

(10.5.2) Definition:D10.5.2 (Finitely determined systems)

A dynamical system ({0, . . . , n}Z, τ, µ) is finitely determined if, given
ε > 0, there exist δε, Nε such that every other ergodic dynamical system
({0, . . . , n}Z, τ, µ′), for which

∑

σ0...σNε

|µ(C0...Nε
σ0...σNε

)− µ′(C0...Nε
σ0...σNε

)| < δε,

|s(µ)− s(µ′)| < ε,

(10.5.3)e10.5.3

is such that we can construct a code Iε : {0, . . . , n}Z ←→ {0, . . . , n}Z such
that µ(Iε(E)) = µ′(E) for all µ′–measurable set E ⊂ {0, . . . , n}Z with the
property

lim sup
N→∞

(2N)−1
N−1∑

i=−N
|Iε(σ)i−σi|,≤ ε µ′− almost everywhere. (10.5.4)e10.5.4

We shall say, briefly, that µ is finitely determined if ({0, . . . , n}Z, τ, µ) is
such.

Remarks: (i) This means that if µ is a finitely determined every measure
µ′ ∈M({0, . . . , n}Z) “close to it in entropy and in distribution” (cf. problem
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[3.3.9])) produces “the same set of typical configurations up to errors that
occur with a small density in time”.

(ii) It is easy to construct ergodic distributions that have preassigned prob-
ability distributions for the cylinders of preassigned base length and having,
furthermore, preassigned entropy (within a preassigned approximation), (cf.
problem [3.3.9]). We then see that if µ is finitely determined such “approx-
imate models” of µ can be used to generate sequences (via random extrac-
tions) that differ from those that one would obtain by using µ itself only in
a fraction ε of sites. In other words by examining the statistics of short se-
quences it is possible to infer properties of infinitely long sequences, if such
sequences are generated at random with a finitely determined distribution.

(iii) If µΦ is a Gibbs state with a potential Φ and if Φ varies in an open region
Σ ⊂ B where there are no phase transitions (i.e. for all Φ ∈ Σ, G(Φ) contains
a single element) then, from the variational principle (corollary (6.1.1)),
from the convexity and continuity of P (Φ) and from the interpretation of
µΦ as tangent plane to the graph of P , it follows that both s(µΦ) and µΦ vary
with continuity (with respect to the weak topology for the distributions).
This means that as Φ varies in Σ the Gibbs state changes by a small amount
in distribution and entropy if Φ changes by little.

Therefore if every Gibbs process µΦ with Φ ∈ B was finitely determined it
would follow, from this observation, that also the typical configurations vary
“with continuity”: note that for the validity of such a property in general
the continuity of µΦ in Φ would not be enough if the distributions µΦ were
not finitely determined.

(iv) it appears difficult to think that there can exist Gibbs states with
potential Φ ∈ B that are not finitely determined, because of the physical
meaning of this property, that emerges from the remarks (iii) and (ii).

Hence we see the interest of proposition (10.5.1) that goes in the direction
of a confirming the latter idea. And we also understand the interest of
studying what happens in the case in which Φ ∈ B but it does not verify
(10.5.1).

In reality no examples of Gibbs states that are not finitely determined (with
Φ ∈ B) are known; and in some cases in which one could perhaps have of
doubts and that refer to the analogous problems for systems on lattices
of dimension ≥ 2 finite determinacy has been established (an unpublished
work of Ornstein-Weiss shows the finite determination of the Gibbs state
for the 2–dimensional Ising model at the critical point).

(v) The property of finite determination allows us to speak of certain global
properties of typical configurations in terms of local properties. It can there-
fore be used to formulate in a mathematically precise way various notions
of physical nature that concern global properties of typical (i.e. randomly
chosen) configurations. This fact han not until now been really exploited in
the Physics literature. An example of an attempt to exploit this idea can
be found in [EG73] in connection with a probabilistic interpretation of the
“approximate symmetries”.
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Bibliographical note

Ornstein’s theory is exposed in [Sh73] and in the book by D. Ornstein,
[Or74]. Proposition (10.5.1) is based on the derivation of certain estimates
needed to check a sufficient criterion in order that a dynamical system is
isomorphic to a Bernoulli scheme and it can be found in [Ga73], [Le73]. The
code of Monroy-Russo is found in [MR75]; the code of Kean-Smorodinski is
found in [KM79]. The quoted work D. of Ornstein and B. Weiss is unfortu-
nately still unpublished, [OW74].
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Appendix: Nonequilibrium thermodynamics ?
twentyseven comments

Here one of us (Gi.G.) adds a few (personal) comments on the physical
meaning of entropy which appeared in november 2002, stimulated by con-
tinuous heated discussions held at Rutgers University in the course of the
last few years: involving, among many others, in particular S.Goldstein,
J.Lebowitz, D.Ruelle. The twenty-seven comments (marked by a (•)) on
the Second Law and nonequilibrium systems are related particularly to the
contents of Chapter X and give a very personal (and apparently contro-
versial) outlook on the role of entropy in nonequilibrium thermodynamics.
Appropriate extensions of the SRB distributions, cf. definition (6.2.2), seem
to be the correct generalization of the equilibrium distributions (Gibbs dis-
tributions) to describe the statistics of the motions of stationary nonequi-
librium states: here the view is held that attempting an extension of the
definition of entropy to stationary nonequilibrium systems may not be the
right direction to proceed. The discussion that follows suggests that the
connection between the entropy notion that is useful in ergodic theory and
information theory (as employed in this book) may be related to entropy in
macroscopic Thermodynamics in a subtle way: and possibly not really iden-
tifiable with it. The problem becomes particularly evident when one tries to
extend entropy to nonequilibrium Thermodynamics understood as the study
of general properties of transformations in which a system evolves through
a sequence of stationary states (while classical Thermodynamis deals with
evolutions through sequences of equilibrium states). A stationary state can
be an equilibrium state, when the system is controlled by conservative forces,
or a nonequilibrium state, when the system is subject to nonconservative
forces and can reach a stationary state only if the work done by the exter-
nal forces is appropriately dissipated by “thermostats”: as in the case of a
constant electromotive field on closed conducting wire. In the following dis-
cussion one should carefully distinguish between the transient phenomena
that occur while a system approaches a stationary state and the phenomena
associated with the stationary state itself: the distinction is exemplified by
an analysis of the Joule’s expanding gas experiment.

Definitions.

The purpose, in the present discussion, is investigating the possibility of
an extension of Thermodynamics to systems which are in a stationary state
but are subject to the action of conservative and nonconservative positional
forces f

pos
and (therefore) also to the action of the forces ϑ necessary to
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take away the heat thus generated.
We first consider systems for which a finite microscopic mechanical model
exists and are, therefore, described by equations of the form

mẍ = f
pos

(x) + ϑ(x, ẋ)
def
= F (x, ẋ)

and x is a point in an appropriate finite dimensional phase space (typically
of very large dimension). If the force f

pos
is conservative then no thermostat

is needed and we suppose ϑ = 0 (for simplicity). In general we call the force
law ϑ a mechanical thermostat.

(•) A key notion will be the phase space contraction rate σ(ẋ, x) which is
defined as minus the divergence of the equations of motion:

σ(ẋ, x) = −
3N∑

α=1

∂ẋαFα(ẋ, x)

(•) An equilibrium state will be a stationary probability distribution given
by a density (one says a stationary “absolutely continuous” distribution) on
the phase space of a system which is subject only to conservative forces. We
also identify the distribution with any point which is typical with respect
to it: by typical we mean that the time averages of observables evaluated
on the trajectory of the point are the same as the averages with respect to
the distribution.

(•) We suppose (loosely called an “ergodicity assumption”) that the time
averages of observables (just of the few physically relevant for macroscopic
Physics) are computable from any of the (equivalent) statistical ensembles:
like the microcanonical ensemble. Hence an equilibrium state is identified
with a probability distribution on phase space. A “typical” microscopic
configuration, i.e. an initial datum in phase space which is not in a set of
“unlucky cases” which, however, form a zero volume set and are therefore
(believed to be)1 unobservable, will evolve in time so that the time averagesNA1

of the observables (at least the few relevant for macroscopic Physics) are
computable by means of the equilibrium state which has the correct values
of the macroscopic parameters: e.g. in the microcanonical case the energy
U and the container volume V . When we speak of properties of a single

1 This means that “typical” is any initial state chosen with a probability distribution
absolutely continuous with respect to the volume on phase space. This is is not to be
taken for granted, even though it is very often considered so: here I do not enter into
discussing this mysterious assumption (as I have nothing to say). For instance an initial
state chosen with a probability distribution which is uniform on the energy surface of
energy U of a system that occupies half of a volume V is typical for the gas enclosed
in the full box V because the configurations which occupy half the box have positive
probability among the ones allowed to occupy the full box: see below. Of course the
statistics of the configurations just considered is completely different if there is a physical
wall separating the two halves of the box or if it is absent.
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(typical) point in phase space, like of its “entropy”, we always mean the
same property of the equilibrium state for which the datum is a typical one.

Remarks: This already might be controversial: in fact the above (admit-
tedly unconventional) definition of entropy has the following implications. A
rarefied gas which initially happens to have all molecules located in the left
half of a container, because a separation wall has just been removed, setting
the gas in macroscopic motion and out of the previous equilibrium state,
will be an initial datum in phase space whose entropy is that of the same gas
occupying the entire container and at the same temperature2 (the differenceNA2

residing only in the different dynamics that follows the removal the wall in
the middle of the container). Since a physicist would apply the Boltzmann
equation to describe the evolution, the question arises about which is the
place here of Boltzmann’s H–function, which is different if evaluated for the
initial datum or for a datum into which the initial one evolves after a mod-
erately large time (and in both cases it equals the classical thermodynamic
entropy of the initial and final equilibria).

(•) In trying to study nonequilibrium cases a conceptual difficulty must be
met: if a system is subject to external non conservative forces then the ther-
mostatting forces will have a non zero divergence and volume in phase space
will not be preserved. The key idea (due to Ruelle) [Ru95] is that in this
case (extending, and including, the previous case) the nonequilibrium states
will be the stationary states which are generated by time averaging of initial
states that have a density or more satisfactorily, perhaps, by time averaging
on the evolution of initial data that are typical for probability distributions
given by some (arbitrary) density. The latter states are called SRB distribu-
tions (Sinai,Ruelle,Bowen, [Ru95],[Ru99],[Ga00],[Ga02]). Their appearance
is natural since there will be no state (i.e. no probability distribution) which
is stationary and at the same time is also given by a density. As in the equi-
librium state we shall attribute to each individual point in phase space the
macroscopic properties of the stationary state which allows us to compute
the averages of macroscopic observables on the motion of the given point.

Remark: Systems that are chaotic in a mathematical sense (hyperbolic sys-
tems) can be shown, on rather general grounds, to have the property that
there is only one SRB distribution (with the correct values of the macro-
scopic parameters), [Ru95],[Ru99],[Ga02]. Therefore such systems, the only
ones for which the above definition has a strict mathematical sharpness,
verify an extension of the ergodic hypothesis: adopting the latter definition
means believing that the system is chaotic enough so that typical initial
data generate a unique stationary distribution with several features of the

2 Assuming the gas to be ideal or the temperature would not be the same: we think
here of Joule’s experiment. In the following the temperature will have the dimension of
energy, i.e. we call temperature T what is usually called kBT with kB being Boltzmann’s
constant
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SRB distributions for hyperbolic systems: the assumption has been called
chaotic hypothesis,[GC95], and it represents (in our analysis) the nonequi-
librium analogue of the classical ergodic hypothesis.

(•) Given an initial state (a typical point or a distribution on phase space)
it might be possible to define a function of it that, at least if the state
is evolved with an equation which is a good approximation for very long
times, will monotonically increase to a limit value which is the same for
almost all data sampled with a distribution with a density on phase space
(i.e. absolutely continuous). Since Boltzmann’s H–function is an example
of such a function we shall call H–functions all such functions: among
them one should also mention the “Resibois’ H function” for systems
described by Enskog’s equation (hard sphere systems) and the “(Boltz-
mann) entropy” for systems in local thermal equilibrium [Re78],[GL03].
We recall that Boltzmann’s H–function is defined by a coarse graining
of phase space into “macrostates” determined by the occupation num-
bers f(p, q)d3pd3q of phase space cells d3pd3q around p, q and by defining
H = −

∫
f(p, q) log f(p, q) d3pd3q. Clearly here the cells size affects by an

additive constant the actual value of H , which therefore should have no
significance (at least in the classical mechanics context in which we are
working) and only the variations of H can be meaningful. In a rarefied gas
the Boltzmann equation applies approximately (and even exactly within the
Grad’s approximation, [Ga00]): so that in the latter cases the function just
defined is a nontrivial example of an H–function. See also [Ru03].

(•) Here we propose that even in the case of rarefied gases it is neither
necessary nor useful that the H–function is identified with the entropy: we
want to consider it as a Lyapunov function whose role is to indicate which
will be the final equilibrium state of an initial datum in phase space. This
does not change, nor it affects, the importance of Boltzmann’s discovery
that, in rarefied gases, the H–function can be identified with the physical
entropy whenever the latter is defined (i.e. in equilibria). Suppose that the
initial state is chosen randomly with respect to a Gibbs distribution which is
not the one that pertains to the given parameters that describe the system
(e.g. volume V and energy U) but to other values: for instance it is chosen
randomly with a Gibbs distribution µU,V/2 that has the same energy but
occupies half of the volume, as in Joule’s experiment. Then the initial and
final values of theH–function happen to coincide with the physical entropies
of the Gibbs states µU,V and µU,V/2 (at least in a rarefied gas) which are
given by the Gibbs’ entropy.3NA3

3 One should note that in the whole Boltzmann’s work he has been really concerned
with the approach to equilibrium: in our terminology he has been concerned with the
problem of determining the stationary equilibrium distribution to which a given initial
datum gives rise at large time: restricting consideration only to such cases one could
well call the Boltzmann’s H–function the “entropy” of the state as it evolves towards
equilibrium. And, whatever name we give it, it remains true that H is a measure of the
disorder in the system. Our analysis here is intended to say that such an interpretation
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(•) The latter property could possibly be used to attempt a definition of
entropy for states which are neither equilibrium nor stationary states, [Le93]
however such a definition would be useful only in the special situations in
which an H-theorem could be proved. That seems effectively to reduce the
cases in which the notion would be useful to the ones in which an initial
equilibrium state identified by some parameters (like U, V ) evolves towards
a final one identified by other values of the parameters. And even in such
cases it is severely restricted to the rarefied gases evolutions in which the H–
theorem can be proved: a proposed model independent, universal, extension
of the above H–function would have to be proved to have a monotonicity
property, at least at a heuristic level and within approximations in which
exceedingly long times are involved, to avoid that its assumed monotonicity
becomes an a priori law of nature.

(•) In general I would think that there will always be a Lyapunov func-
tion which describes the evolution of an initial state and is maximal on the
stationary state that its evolution will eventually reach: however such a
Lyapunov function may not have a universal form (unlike the H–function
in the rarefied gases cases) and it may depend on the particular way the
system is driven by the external forces. After all the SRB distribution veri-
fies, cf. Section §6.2, a variational principle (Ruelle), [Ru95],[Ru99],[Ga02],
which remarkably has the same form both in equilibrium and nonequilirium
systems and one may imagine that in general it will be possible to define
(on a case by case basis, I am afraid) a quantity that, within a good approx-
imation, will tend in a short time to a maximum reached on the eventual
stationary state. This picture seems to me simpler than trying to guess a
(possibly nonexistent) general definition of a quantity that would play the
role of Boltzmann’s H .

Entropy creation.

The second law of Thermodynamics, in classical Thermodynamic treatises,
states:

It is impossible to construct a device that, operating in a cycle, will produce
no effect other than the transfer of heat from a cooler to a hotter body

Of course this will be assumed to be a law of nature (Clausius), [Ze68].

(•) The law implies that one can define an entropy function S on all equilib-
rium states of a given system (characterized in simple bodies by energy U
and available volume V ) and if an equilibrium state 1 can be transformed
into another equilibrium state 2 then

is not tenable when the system evolves towards a stationary nonequilibrium state. It
must also to be said that even the H-theorem is not general because it applies only to
rarefied gases, and even there it is an approximation (in which exceedingly long times
are not considered): to extend it to general situations, even when one only deals with
approach to equilibrium, is a profound statement which should be substantiated by
appropriate arguments.
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S2 − S1 ≥
∫ 2

1

6dQ
T

using notations familiar from Thermodynamics: here the integral is over
the transformation followed by the system in going from 1 to 2 and the
6dQ is the heat that the system absorbs at temperature T from the outside
reservoirs with which it happens to be in contact. The equality sign holds
if the path followed is a reversible one.

(•) One should note that the principle really says that the
∫ 2

1
6dQ
T does

not depend on the path followed, if the path is a reversible sequence of
equilibrium states; and its maximum value is reached along such paths.

Existence of a path connecting 1 with 2 with S2 − S1 <
∫ 2

1
6dQ
T would lead

to a violation of the second law.

(•) Is there an extension of the S2−S1 ≥
∫ 2

1
6dQ
T relation to nonequilibrium

Thermodynamics?4 Since there seems to be no agreement on the definitionNA4

of entropy of a system which is in a stationary nonequilibrium and since
there seems to be no necessity in Physics of such a notion, at least I see
none, I shall not define entropy of stationary nonequilibrium systems (in
fact the analysis that follows indicates that if one really insisted in defining
it then its natural value could, perhaps, be −∞!).

(•) In Thermodynamics one interprets −
∫ 2

1
6dQ
T as the entropy creation in

the process leading from 1 to 2, be it reversible or not or through intermedi-
ate stationary states or not. The name is chosen because it is thought as the
entropy increase of the heat reservoirs with which the system is in contact
and which are supposed to be systems in thermal equilibrium: so that their
entropy variations are, in principle, well defined because they fall in the
domain of equilibrium thermodynamics. In a general transformation from
a state 1 to a state 2, both of which are stationary (non)equilibrium states,
following a path of (non)equilibrium stationary states µ(t) and in contact
with purely mechanical thermostats one could consider the contribution to
the entropy creation due to irreversibility in the process leading from 1 to
2 during a time interval [0,Θ] to be

∆ = c

∫ Θ

0

〈σ(x, ẋ)〉µ(t)dt = c

∫ Θ

0

σt dt

where σt
def
= 〈σ(x, ẋ)〉µ(t) is the average phase space contraction computed

in the state µ(t). This follows a recently proposed identification of σ(x, ẋ)
as proportional to the entropy creation rate (here c is a proportionality con-
stant), [EM90]. The quantity ∆ is for mechanical thermostats the analogue

of −
∫ 2

1
6dQ
T for the generic phenomenological thermostats characterized by

a temperature T .

4 Which in a sense is tantamount of asking “is there a nonequilibrium Thermodynamics?”
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(•) In considering macroscopic systems one may imagine situations in which
a system is partially thermostatted by mechanical forces for which a model
considered physically reasonable is available5 and partially by phenomeno-NA5

logically defined “heat reservoirs” characterized by a temperature T and
able to cede to the system quantities 6dQ of heat (6dQ can have either sign
or vanish).
In such more general settings a system in contact with several thermostats
of which a few are modeled by mechanical equations and a few others are
unspecified and are just assumed to exchange quantities of heat 6dQ at
temperature T the second principle will be extended as

−∆+

∫ 2

1

6dQ
T
≤ 0

assuming that the cyclic path leading from 1 to 2 consists entirely of nonequi-
librium stationary states and that it lasts a time interval [0,Θ] (i.e. 1 and 2
differ only because their times are different). Regarding the external ther-
mostats as thermodynamic equilibrium systems − 6dQ

T is the entropy increase
of the reservoirs at temperature T and ∆ = c

∫
〈σ〉t is interpreted as the en-

tropy increase of the mechanical reservoir: if this interpretation is accepted
the above relation becomes the ordinary second law for the external reser-
voirs and could be read as “the entropy of the rest of the universe does not

decrease” (because ∆−
∫ 2

1
6dQ
T ≥ 0), where “universe” is not the astronomi-

cal Universe but rather the collection of physical systems whose interaction
with the system under study cannot be neglected.
If a system is a in a stationary state in which σt = 〈σ〉 > 0 (t–independent)
this essentially forces us to say that its entropy, if one insisted in defining it
at the time t0 of observation, could only be −

∫ t0
−∞〈σ〉 dt = −∞ as hinted

above.6NA6

(•) Since the quantity σt is ≥ 0 (Ruelle), [Ru99], under very general con-
ditions (in fact always if the chaotic hypothesis is assumed to hold true)
∆ ≥ 0 and the proposed extension is compatible with the main conse-
quences of the second law. The constant c will be taken 1 because the
factor 1 can be computed by studying the expression of σ(x, ẋ) in special
models: at the moment, however, I see no immediate physical implications
of the “universality” of this choice of c and for the purposes of what follows
c could be any constant, even non universal.

(•) The above implies again that we shall not be able to define an entropy
function unless σt ≡ 0. The latter is the condition under which equilibrium

5 Typically these are models of friction, as in the Navier–Stokes equation case in which
the viscosity plays the role of a thermostat. Or in granular matter where the restitution
coefficient in the collisions produces energy dissipation. Another well known example is
in Drude’s theory of electrical conduction.

6 If we imagine possible to replace a mechanical thermostat with a phenomenological
thermostat at temperature T then the left hand side of the relation above remains
unchanged but a part of −∆ becomes a contribution to the second addend.
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Thermodynamics is set up: so that if one studies only transformations from
equilibrium states to other equilibrium states it is possible to define not only
the creation of entropy but the entropy itself (up to an additive constant).
In other words transformations between equilibrium states play the role for
entropy that isochoric transformations play for heat: if we only consider
adiabatic transformations between equilibrium states then heat is a function
of state, likewise if we restrict to equilibrium states then entropy is a function
of state; for more general (stationary) states and their trasformations neith
is a function of state but still it makes sense to talk about their creation.

(•) A number of compatibility questions arise: suppose that the system
evolves between 1 and 2 under the action of a thermostat which is modeled
by forces that act on the system. For instance we can imagine a container
with periodic boundary conditions, we call it a closed wire, containing a
lattice of obstacles, which we call a crystal, and N particles, which we
call electrons, interacting between each other and with the lattice via hard
core interactions (say) and subject also to a constant force, which we call
electromotive force, of intensity E; furthermore the particles will be subject
to a thermostat force of Gaussian type7 (as it is essentially the case inNA7

Drude’s theory as described in classical electromagnetism treatises, [Be64])
which forces the particles to have an energy U = u(E) which is an assigned
function of E. Suppose that the value of E changes in time (very slowly
compared to the microscopic time scales) following a profile E(t) as drawn
in Fig.1

E(t)

Θ

Fig.A1

In this case the wire performs a cycle which is irreversible and the integral∫ 2

1
6dQ
T is 0 because the system is adiabatically isolated (the thermostat

being only of mechanical nature). The entropy variation of the system is
defined because the initial and final state are equilibria and, since they are
the same, it is 0: but there has been entropy creation ∆ > 0.

(•) It is (perhaps) natural to define the “temperature” of a mechanical ther-
mostat by remarking that in the models studied in the literature it turns
out that σt is proportional to the work per unit time that the mechanical
forces perform, the proportionality constant being in general a function of
the point in phase space. Therefore we can call T−1

0 the time average of
the proportionality constant between σ and the work W per unit time that
the mechanical thermostatting forces perform: in this way σt = W

T0
and∫ Θ

0
σt dt =

∫ 6dQ0

T0
where 6dQ0 is the total work performed by the mechani-

cal forces which we can (naturally) call the heat absorbed by the mechanical

7 This is not the appropriate place to remind the Gauss’ least constraint principle: it can
be easily found in the literature, [Ga00].
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reservoir.

(•) If one imagines that the above conducting wire model at the same time
exchanges heat with two sources, absorbing Q2 at temperature T2 and ced-
ing Q1 at temperature T1 via some unspecified mechanism, and assuming
that the profile of E(t) is as in Fig.2

E(t)

E0

Θ

Fig.A2

where the value of E0 corresponds to a temperature T0 in the above sense.

The inequality −∆+
∫ 2

1
6dQ
T ≤ 0 becomes

−
∫ Θ

0

σt dt +
Q2

T2
− Q1

T1
≡ −Q0

T0
+
Q2

T2
− Q1

T1
≤ 0

For instance, we see that if T1 = T2 = T0 we have realized a cycle which is
irreversible. In it a quantity of heat Q2 − Q1 − L, with L = Q0 = T0∆ =

T0
∫ Θ

0
σt dt is absorbed at a single temperature T = T0 and is transformed

into the amount Q2 −Q1 − L of work: however the inequality forbids this
to be positive, as expected.

Mechanical and stochastic models.

A definition in Physics is interesting (only) if it is useful to describe prop-
erties of the systems in which we are interested. Therefore having set the
above definitions one should expect to be asked why all the work was made.
In this case the whole matter was originated by efforts to interpret results
that started to appear in the late 1970’s concerning numerical experiments
in molecular dynamics, [EM90].

(•) It is obvious that in numerical experiments one needs to deal with a
finite system (and even not too large): hence various models of thermostats
were devised for the purpose of obtaining equations that could be trans-
formed into numerical codes and studied on electronic machines. This was
a theoretical innovation with respect to previous models which either relied
on stochastic boundary conditions or, in the more sophisticated cases, with
(poorly understood) systems with infinitely many particles. And it opened
the way to import the knowledge in the theory of dynamical systems that
had been being developed in the two preceding decades or so.
The novelty with respect to stochastic thermostats was more conceptual
than numerical. Given the number of particles a stochastic code is often
only mildly more complex (and it could even be simpler) at least in the
cases in which the noise is uncorrelated in time and acts on one particle at
a time. This means that the resulting code does not require a longer running
time than a deterministic one: a fact that can also be seen by noting that
a stochastic system can be regarded as a deterministic system with more
degrees of freedom (i.e. the ones needed to describe the random numbers
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generators that one has to use and which, as it is well known, are simply
suitably chaotic dynamical systems themselves).
From the point of view of code writing this amounts at adding a few more
particles to the system.8NA8

(•) It is by no means clear that by using mechanical thermostats one can ob-
tain physically realistic models nor, assuming that the stochastic dynamic
models are more realistic, models behaving in as complex a way as the
stochastic ones (typically consisting in boundary collision laws in which the
particles emerge with a Maxwellian velocity distribution with suitable vari-
ance, i.e. suitable temperature). Understandably the matter is controversial
but quite a few researchers think that this has been positively demonstrated
by large amounts of work done in the last thirty years.
Since stochastic models are just models with more degrees of freedom it is
tautological that there is equivalence between all possible stochastic models
and all deterministic ones. The real question is whether the rather simple
deterministic thermostats models that have been used are able to simulate
accurately the stochastic models believed to be more realistic.

(•) In my view it is likely that vast classes of thermostats, deterministic
and stochastic as well, are equivalent in the sense that they produce mo-
tions which although very different when compared at equal initial condi-
tions and at each time have, nevertheless, the same statistical properties,
[Ga00],[Ga02]. And in my opinion there is already evidence that it is indeed
possible to simulate the same system with simple deterministic thermostats
or with some corresponding stochastic ones.
Here the equivalence is intended in a sense that is familiar in the theory of
equilibrium ensembles: if one fixes suitably certain parameters then ensem-
bles (i.e. time invariant probability distributions in phase space) that are
apparently very different (e.g. microcanonical and canonical) give, neverthe-
less, the same statistical properties to vast (not all) classes of observables.
If one fixes the energy U and the volume V in a microcanonical ensemble
or the inverse temperature β and the volume V in the canonical ensemble
then one obtains that local observables have the same statistical distribu-
tion in the two cases provided the value of β is chosen such that the average
canonical energy is precisely U .
One among the most striking examples of such equivalence (She,Jackson),
[SJ93], is the equivalence between the dissipative Navier–Stokes fluid and
the Euler fluid in which the energy content of each shell of wave numbers is
fixed (via Gauss’ least constraint principle) to be equal to the value that Kol-
mogorov’s theory predicts to be the energy content of each shell at a given
(large) Reynolds number. Here one compares two very different mechani-
cal thermostats. A more general view on the equivalence between different

8 For instance if the stochastic thermostat is defined by requiring that upon collision with
the boundary a particle rebounds with a Maxwellian velocity distribution with dispersion
(temperature) depending only on the boundary point hit then one needs three Gaussian
random number generators, i.e. essentially three more degrees of freedom.
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thermostats has been developed since. In fact many instances in which
Physicists say that “an approximation is reasonable” really correspond to
equivalence statements about certain properties of different theories (and in
the best cases the statements can be translated into proper mathematical
conjectures).

(•) Coming therefore to consider more closely mechanical thermostat models
the phase space contraction has turned out in many cases to be an inter-
esting quantity often interpretable as the ratio between the work done by
the thermostats on the systems and some kinetic energy average: this led
since the beginning to identify the phase space contraction rate with the
entropy creation rate. The above “philosophical” considerations have been
developed to give some background interpretation to the vast phenomenol-
ogy generated by the new electronic machines used as tools to investigate
complex systems evolutions.
A collision between the previously held views, masterfully summarized by
the book of De Groot–Mazur, [DGM84], based on continuum mechanics
and the new approaches based on transistors, chips and dynamical systems
theory ensued: often showing that the two communities give the impression
of not really meditating on each other arguments.

(•) Setting aside controversies it is interesting that the mechanical ther-
mostats approach has nevertheless led to a new perspective and to a few new
results. Here I mention the fluctuation relation: the phase space contraction
σ(x(t), ẋ(t)) which in various models has interesting physical meaning (like
being related to conductivity or viscosity) is a fluctuating quantity as time
goes on. Its average value in a time interval of size τ divided by its infinite
time average in the future 〈σ〉 is a quantity p that still fluctuates. Of course
it fluctuates less and less the larger is τ and its probability distribution (eas-
ily analyzable by observing it for a long time and by dividing the time into
intervals of size τ and forming a histogram of the values thus observed) is
expected on rather general grounds to be proportional to eτζ(p) for τ large
with ζ(p) being a function with a maximum at p = 1 (i.e. at the average,
hence most probable, value of p) provided 〈σ〉 > 0, i.e. provided there is
dissipation in the system and the system is, therefore, out of equilibrium.
If the dynamical equations are reversible, i.e. if there is an isometry I
of phase space which anticommutes with the time evolution (x, ẋ) →
St(x, ẋ) ≡ (x(t), ẋ(t)) in the sense that ISt = S−tI and furthermore I2 = 1
then, provided the system motion is “very chaotic”, it follows that

ζ(−p) = ζ(p) − p〈σ〉

This is a parameter free symmetry relation that was discovered in a nu-
merical experiment (Evans, Cohen, Morriss), [ECM93], and which has been
checked in many cases. By very chaotic one means that the motion of the
system can be assimilated to that of a suitable Anosov flow whose trajecto-
ries fill densely phase space (transitive Anosov flow).
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(•) Indeed for transitive reversible Anosov systems the above relation holds
as a theorem, [GC95]. Since models of physical systems are not Anosov
systems from a strict mathematical point of view the above relation can-
not be applied, not even to cases in which the model is reversible and the
trajectories are dense on the allowed phase space: the chaotic hypothesis
says that the fact that the system is not mathematically an Anosov sys-
tem is not relevant for physical observations, in most cases. This is similar
to the statement that in equilibrium systems the lack of ergodicity of mo-
tions is irrelevant in most cases and averages can be computed by assuming
ergodicity (i.e. by using the microcanonical distribution).

If this is correct the above relation should hold: a non trivial fact to check
due to the difficulty of observing such large fluctuations and to the lack of
free parameters to fit the data, once they have been laboriously obtained.

(•) When the forcing of the system is let to 0 the above relation degenerates:
not only 〈σ〉 → 0 but also p itself becomes ill defined as its definition
involves division by 〈σ〉. Nevertheless by extracting the leading behavior
of both sides the fluctuation relation leads to relations between average
values of derivatives of dynamical quantities with respect to the intensity of
the forcing, evaluated at zero forcing, and such relations can be interpreted
as Onsager reciprocity relations and Green–Kubo expressions for suitably
defined transport coefficients, [Ga02].

(•) Clearly a reversibility assumption on thermostats is a strong assumption
and so is the chaotic hypothesis. Nevertheless the results are interesting and
they seem to be among the few that can be obtained in a field which is well
known for its imperviousness. The philosophical framework developed in
Sections 1,2 helps keeping a unified view on a subject that is being devel-
oped although, strictly speaking, one could dispense with the philosophical
view and concentrate on obtaining results that can be drily stated without
appealing to entropy, entropy creation, thermostats etc.

(•) And one can go beyond various assumptions via the use of equivalence
conjectures between different thermostats: for instance Drude’s thermo-
stat model which strictly speaking is not reversible is conjectured to be
equivalent to a Gaussian thermostat which is reversible. The Navier–Stokes
equation for incompressible fluids, clearly irreversible, is conjectured to be
equivalent to a similar reversible equation, [Ga02], as the quoted experi-
ment, [SJ93], shows and as other successive experiments seem to confirm,
[GRS02]. The research along the just mentioned lines seems to go quite far
and to lead not only to new perspectives but also to new results or confirma-
tions (i.e. non contradictions) of the general views in Sections 1,2. Doubts
about the whole approach can be legitimately raised, and have been raised,
on the grounds that the results are too few and too meager to be really
interesting: for instance one can hold against their consideration that they
are not even sufficient to give some hint at a derivation of “elementary”
relations like Fourier’s law or Ohm’s law. One can only say that time is not
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yet ripe to see whether the new methods and ideas lead really anywhere or
at least to a better understanding of some of the problems that also the old
ones have not been able to tackle, so far, (like the heat conduction laws or
the electric conduction laws) in spite of intense research efforts.
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Gauthiers–Villars, Paris 1893.
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