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Abstract: We describe a way of interpreting the chaotic principle of [GC1] more ex-
tensively than it was meant in the original works. Mathematically the analysis is based
on the dynamical notions of Axiom A and Axiom B and on the notion of Axiom C,
that we introduce arguing that it is suggested by the results of an experiment ([BGG])
on chaotic motions. Physically we interpret a breakdown of the Anosov property of a
time reversible attractor (replaced, as a control parameter changes, by an Axiom A prop-
erty) as a spontaneous breakdown of the time reversal symmetry: the relation between
time reversal and the symmetry that remains after the breakdown is analogous to the
breakdown ofl'-invariance whilel"C P still holds.

1. Introduction

In reference [GC2] a general mechanical system in a non equilibrium situation was
considered. Calling the (compact or “finite”) phase space of the “observed events”,
1o the volume measure on it astthe map describing the time evolution (regarded as a
discrete invertible mapping of “observed events” into the “next ories"as a Poincd

map on some surface in the full phase space) a principle holding when motions have an
empirically chaotic nature was introduced:

1. Chaotic hypothesis. A chaotic many particle system in a stationary state can be
regarded, for the purpose of computing macroscopic properties, as a smooth dynamical
system with a transitive Axiom A globally attracting set. In reversible systems it can be
regarded, for the same purposes, as a smooth transitive Anosov system.

e Chaoticis an empirical qualitative notion that means that most points of the attracting
set have a stable and an unstable manifold with positive dimension. In the applications
in [GC1, GC2, G1] the use of the hypothesis, which is a natural extension of a principle
proposed by Ruelle, was based on reversibility and on transitivity.
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e An attracting setis a closed invariant set such that all points in its vicinity evolve
(in the future) tending to it and such that no subset has the same propertlyi$
“minimal”). A set isglobally attractingif it is attracting andhll points of an open dense

set evolve tending to it.

e An Axiom Aattracting set is a hyperbolic attracting Sed: an attracting set with each

of its points possessing stable and unstable manifolds depending continuously upon
the points and with contraction and expansion rates bounded uniformly away from 0.
Furthermore the periodic points are dense.

o Reversibilitymeans that there is a smooth miagf C onto itself that changes the sign

to time in the sense thas = S~1i andi? = 1. As is well known reversibility should not

be confused with the invertibility of the map (always assumed below).

e Transitivityis intended to mean that the stable and unstable manifolds of the attracting
set points are dense on it (this is not a very strong requirement in view of (7.6) in [Sm],
p. 783).

e Anosov systeris a dynamical system in which the whole phase space is hyperbolic.

Note that if the Axiom A attracting set is supposed to be also a smooth manifold
then the restriction of the dynamics to it is an Anosov system. This is the meaning that
we give, in this paper, to the second assumption in the above hypothesis (see Sect. 6 of
[BGG])).

However in the previous paper [G4] transitivity was instead intended to mean, at least
in the reversible cases, density of the stable and unstable manifolds of the attracting set
points on the entire phase space (so that the system was in fact a transitive Anosov
system). This is not always a property that one may be willing to consider as reasonable.

Itis reasonable for systems that are very close to conservative ones (as in [G4]). But
it is very likely (see [BGG], Sect. 6, Fig. 14) to be incorrect in systems that are under
strong non conservative forces, even if still evolving with a reversible dynamics. In fact
the attracting sets of such systems often evolve, as the strength of the forces increases,
from a very chaotic initial attracting set to a more ordered situation characterized by a
periodic orbit or by a very small attracting “tube” almost identical to a periodic orbit;
the evolution shows a gradual decrease of the dimension and of the phase space region
occupied by the attracting set, which therefore quite soon may become contained in a
proper closed subset of phase space (so that the system cannot have stable and unstable
manifolds with dimension half that of phase space: a necessary consequence of time
reversibility in transitive Anosov systems).

In such cases it is still reasonable, see [R1, ER], to think that the attracting set, if
chaotic, can be regarded “just” asAxiom A attracting setan assumption weaker than
assuming that the system is an Anosov system.

What can be said for such systems? Is there a suitable reformulation of the chaoticity
principle that could make it applicable even in very strongly forced (but still “chaotic”)
systems making possible an analysis similar to that leading to the fluctuation theorem
of [GC1, GC2] or to the Onsager relations of [G4]? These are the questions we address
here.

2. A Distinction Between Anosov and Axiom A Properties. Statistics. Axioms B
and C

We shall try to adopt the notations used in the well known paper by Smale, [Sm].
Furthermore in this paper, as in [GC1, GC2], a distinction will be made between an
attractor and its closure that we call more properly attracting set this is often a
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rather confusing point because some authors identify an attractor with its closure. Here
we shall not. Thus, recalling thap denotes the volume measure@mwe shall formally
say that:

Definition 1. A pointz € C admits a statistics if there is a probability distribution in
phase space such that:

1 M-1 ]
m 5 3 Fs) = | P 1)

for all continuous functiong” on phase spacg.,
and:

Definition 2. An attractor is a sef” enjoying the properties: (a) itis invariantand dense
in an attracting set, (b)o—almost all points in its vicinity admit the same statisficand
1(C) = 1, (c) it has minimal Hausdorff dimension and (d) it is minimh@n attracting

set verifies Axiom A if it has the properties: (i) each of its points is hyperbolic, (ii) the
periodic points are dense on it, (iii) it contains a dense orbit.

With this definition one has to live with the fact that there will be several essentially
identical attractors: if the distribution gives, for instance, 0 probability to individual
points on the attractof' then any subset of obtained by removing the orbis of a
countable number of points will still be an attractor (of course with the same closure as
C itself). This is the main reason why it is wise to distinguish the notions of attractor
and of attracting set; in the cases met in this paper it will be appropriate to call the latter
anattracting basic sefsee below).

Itis useful to recall some more general definitions and properties:

e a dynamical systemerifies Axiom Af each point in the sef2 of “nonwandering
points” (i.e. in the set of all “recurrent points”) is “hyperbolici.e. each nonwandering
point admits stable and unstable manifolds, continuously dependent on the point and
with expansion and contraction rates uniformly bounded away from 0; furthermore the
periodic points are dense @& [Sm], p.777. The closure of an attractor for an Axiom

A system is an Axiom A attracting set in the above sense.

e Axiom A systems have a rather simple structure as the sets of their nonwandering
points consist of a finite number of closed invariant indecomposable topologically tran-
sitive sets, callethasic setssee [Sm], p.777.

e A basic set that is the closure of an attractor is called an attracting basic set, likewise
one defines a repelling basic Set.

e Another interesting class of dynamical systems is the clagxinim B system&ee

[Sm.] p 778): they are the dynamical systems verifying Axiom A and the further mild
transversality properfythat if Q;, Q; are a pair of basic sets such that the stable set

1 This means that any other set with the same properties has a closure that contains the clogljre clos(

2 Topologically transitive, [Sm] p.776, means that they contain a point with a dense orbit. Note that this
is weaker than transitive in the sense of Sect. 1. Indecomposable means that they contain no subset with the
same properties. The basic sets arelthiéding pieces (or the “bases”) of the part of phase space where the
dynamics is non trivial. Transitive Anosov systems are simply Axiom A systems with a (unique) basic set
coinciding with the whole phase space.

3 Thus a basic set for an Axiom A system can be regarded as a dynamical system in itself: in this case it
may fail to be Anosov only because in general it is not a smooth manifold but just a closed set.

4 Mild because of Theorem (6.7), p. 779, in [Sm].
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W#(€;) and the unstable sév*(Q2;) intersectthenthey intersect transversally (see
below).

¢ The stable (resp. unstable) sefnf(resp£2;) is the union of the stable (resp. unstable)
manifolds of all its points (see [Sm], p. 777). The intersection betw&eé(<2,) and
W*(€2;) is transversaif the stable manifold¥ ¢(p) and the unstable manifolld ™ (q)

of any twoperiodic pointsp € ©; andg € ©2; have a point of transversal intersection
(see [Sm], p. 783). Finally two manifolds intersect transversally at a point if their tangent
planes span the full tangent plane (see [Sm], p. 752).

We also need to recall that, particularly in the numerical experiments, for dynamical
systems with “chaotic behavior” it is usually also assumed that, after the “obvious”
conservation laws and symmetries are taken into accounghbke phase spa@dmits
a statistics, in the sense that almost all points (with respect to the volume measure) admit
a statistics, the same for all of them. This is usually calledz#ré" law, [UF]:

Extended zerd" law: A dynamical syster, S) describing a many particle system (or
a continuum such as a fluid) generates motions that admit a statjsticgthe sense
that, given any (smooth) macroscopic observabigefined on the points of the phase
spaceC, the time average aof exists for alluo—randomly—chosen initial data and is
given by:

M—-1

. 1 ] — ! /
Jim ]; F(S7z) = /C p(daVF(z') (2.2)

with u being aS—invariant probability distribution or€.

It is important to note the physical meaning of the above law: in fact, among other
things, itimplies that the dynamical systef §) cannot have more than one attracting
basic setWe shall say that a system for which the property described by the above “law”
holdsverifies the zerd law.

For our purposes only systems verifying at least Axiom B will be relevant. For such
systems the notion aliagramof a dynamical system, see [Sm] p. 754, allows us to
interpret the zer® law as saying that the diagram of the system is a partially ordered
set with unique top and bottom points.

In this paper we shall deal with reversible dynamical systémS) verifying Axiom
B and the zer8: hence with a unique attracting basic €stand a unique repelling basic
setQ_. Furthermore the attracting set will be assumed transitive in the sense that the
stable and unstable manifolds of each of its points are dense on it.

The Axiom B and the zetblaw could be reasonably taken as definitions of models
for globally “chaotic” or “globally hyperbolic systems”.

However the problem that we pose in the next section suggests that the appropriate
notion for “globally hyperbolic” or “globally chaotic” dynamical systems is somewhat
stronger. Its definition has been suggested by our effort to interpret the results of the
experiment [BGG] and we allowed ourselves to give the nam&xidm C systemto
systems verifying a stronger property; to describe it we introduce the notion of distance
of a pointz to the basic seté2;} of an Axiom A system as:

&(x) = min {min de (v) min dQ’(S%)} 7 (2.3)

do 7j, —oo<n<+oo do
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wheredy is the diameter of the phase spatel,, () is the distance of the pointfrom
the basic se®;, the minimum ovei runs over the attracting or repelling basic sets and
the minimum oveyj runs over the othet > 0 basic sets.

We can then define th&xiom Csystems as:

Definition 3. A smooth dynamical systgi@, S) verifies Axiom C if it is Anosov or if it
verifies Axiom A and:

(1) among the basic sets there are a unique attracting and a unique repelling basic sets,
denoted?., Q2_ respectively, with (open) full volume dense basins that we call the poles
of the system (future or attracting and past or repelling poles, respectively).

(2) for everyz € C the tangent spacg, admits a Hlder—continuousdecomposition

as a direct sum of three subspad&s, T2, T such that:

a) dsTy =T%,, a=u,s,m,
b) [dS"w| < Ce *|wl|, weTs n>0,
c) |dST"w| < Ce ]|, weTk n>0,
d) [dS"w| < C8(x) te A |w), w € TJ" Vn,
where the dimensions @, 777, 77" are > 0 andé(x) is defined in (2.3).

(3) if = is on the attracting basic s&?. thenTs @ T, is tangent to the stable manifold
in x; viceversa ifz is on the repelling basic se&2_ thenT & T, is tangent to the
unstable manifold irx.

AlthoughT}* andT are not uniquely determined the pla€ss T andTv & T,
are uniquely determined far € Q. and, respectively; € Q_.

Itis clear that an Axiom C system is necessarily also an Axiom B system verifying
the zerd' law (as it follows from [R2]). We do not know an example of an Axiom B
system with a unique attracting and a unique repelling basic set which is not at the same
time an Axiom C system.

Apart from property (1) that is meant to imply the validity of the Zelaw, one
can also say that (“at most”) the real difference between an Axiom B and an Axiom C
system is that the latter has a stronger, and more global, hyperbolicity property.

Namely, if Q. and Q2_ are the two poles of the system the stable manifold of a
periodic pointp € Q. and the unstable manifold of a periodic poinE 2_ not only
have a point of transversal intersection, but they intersect transveadidtye wayon a
manifold connecting2. to Q2_; the unstable manifold of a point f@_ will accumulate
on ., without winding around it

In fact one can “attach” t&V¢(p), p € Q.+, points on2_ as follows: we say that a
pointz € Q_ isattachedo W*(p) ifitis an accumulation point fol¢(p) and there is a
curvewith finite lengtHinking a pointzo € W*#(p) to z andentirely lying oni*(p), with
the exeption of the endpoint A drawing helps understanding this simple geometrical
construction, slightly unusual because of the density/6{p) on2_,.

We callTV” (p) the set of the pointsither oni¥*(p) or just attached td¥*(p) on the
system basic sets (the 3&t’ (p) should not be confused with the closure clds(p)),
which is the whole space, see [Sm], p. 783). If a system verifies Axiom C th€ g
intersect€2_ on a stable manifold, by 2) in the above definition.

The definition ofW“(q), q € Q_, is defined symmetrically by exchangiy with
Q_. Furthermore if a system verifies Axiom C apds Q., g € Q_ are two periodic
points, on the attracting basic set and on the repelling basic set of the system respectively,

5 One might prefer to require real smoothnesg, CP with 1 < p < oo: but this would be too much for
rather trivial reasons. On the other handléier continuity might be equivalent to simpl&@—continuity as in
the case of Anosov systems, see [AA, Sm].
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thenW”(p) and W " (¢) have a dense set of points . and2_, respectively. Note
that W’ (p) N W"(q) is dense inC as well as inQ, and2_. This follows from the
density ofW#(p) andW*(q) on 2, and2_ respectively and from the continuity 8.
Furthermore it: € Q. is suchthat € W' (p)NW " (¢) then the surfac® " (p) "W (q)
intersect€2_ in a unique point = 7z which can be reached by the shortest smooth path
on W’ (p) N W " (q) linking z to 2_ (the path is on the surface obtained as the envelope
of the tangent plan€B™, but it is in general not unique evertif, has dimension 1, see
the example in Sect. 4 below).

The map; as a map of2, U Q_ into itself, commutes with botk andi, squares to
the identity and will play a key role in the following analysis.

We conjecture that the Axiom C systems &estable in the sense of Smale, [Sm]
p. 749 @dded on revision: this follows from Robbin’s theoresee [R3], p. 170).

3. Axiom A, B, C and Time Reversibility: The Problem

If one considers the closufe, = clos(C) of an attractoC' verifying Axiom A then the
action of the dynamics$ on it fails to be an Anosov system only because dfstight
be a fractal set rather than a smooth surface.

In nonequilibrium statistical mechanics the dimensionality of the attractors is usually
very large so that their fractality is likely to be irrelevant. This is part of the hypothesis
thatthe system can be regarded as an Anosov systahe purpose of studying averages
of relevant quantitiesAnd in fact the Anosov property is used in the above references
only to obtain a representation of the SRB distributiaa,of the distribution describing
the averages of observables.

The same representation holds for the SRB distribution on an Axiom A attracting
set. For this reason the fractality of an attractor was regarded in [GC2] as “an unfortunate
accident”.

Therefore theeally non trivial hypothesign the mentioned applications is the-
versibility of the motion on the attracting s&uch reversibility is of course implied
by the reversibility of the motion on the whole phase space if the attracting set and the
whole phase space coincide: in the above references this was taken as a consequence of
the chaoticity hypothesis.

However one may wish to see how far this is justified in the cases in which the
attractorC is really smaller than the whole phase space. We shall refer to such cases as
the cases in which the attracting set verifies Axiom A: we therefore include under the
latter denomination also the case in which the attracting set is a smooth surface (and
could therefore be said to be an Anosov system). The possible fractality of the closure
of the attractor or its smoothness play no role in the following.

Suppose that theeversiblemechanical system under consideration verifies Axiom
C (a stronger notion than Axiom B, and a kind of “global hyperbolicity” condition as
discussed in Sect. 2). Suppose that the attracting @ele clos(C) is notthe whole
phase spac€. Can one then conclude that the fluctuation theorem of [GC1] holds? or
at least some modification of it?

We “answer” this in the affirmative by noting that the global time reversal iap
a priori assumed to exist, induces on the pfle = clos(C) of the system a natural
“smooth” (i.e. Holder continuous) magF which verifies:

i*S = SY¥, (*)? =1 (3.1)
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In fact since the map Commutes withS' and maps the attracting pafe, onto the
repelling pole2_ we can set* = 77 and define a map @®.. into themselves verifying:

i*S=7i18=78"ti=8"1¢. (3.2)

Hencei* is a time reversal on the future attracting $édte thati* is not the restriction
of i to the future attracting sefThis map will be thdocal time reversalOne should
stress that sincei$ defined only o2, alsoi* hasonly a meaningas a map of such
sets onto themselves

Its existence immediately implies the validity of a fluctuation theorem ([GC1, GC2,
G3]) for systems that are globally reversible and chaotic in the sense that they verify
Axiom C (and hence verify the zefdaw and have an Axiom A attracting set), with
the only difference that the theorem applies to the phase space contraction that occur on
Q. rather than to the phase space contraction occurring in the whole phas€ gpaee
Sect. 6, (b), for a discussion). Moreover itimplies also that the chaotic hypothesis can be
conceptually simplified. Curiously enough this does not even require a modification of
its formulation, but it allows for a broader intrepretation of it as the word “Anosov” can
be essentially replaced by “reversible Axiom A attracting set” and this covers explicitly
the cases in which the attracting set is not dense on phase space.

It is important to note here that the existence’ofs not trivial: becausé* cannot
be(unlessC = Q., i.e. unless the future pole of the system is the whole phase space so
that the system is actually an Anosov system) the restricti@n.tof the time reversal
maps, as one would naively surmise.

In fact reversible systems with Axiom A attractors usually have attracterand
C_ for the forward motion and for the backward motions which disginct [S1], in
the sense tha®. N 2_ = clos(C;) N clos(C_) = @. In such cases the time reversal
maps2. into _ and viceversa. Therefore although the global time reveérsak the
propertySi = iS~1 it does not leave invariant the attracting basic®et= clos(C.).

The mapi* is aneffective time reversalcting on the closure of the attractar =
clos(C;) for the future motion. Its existence could be expected on philosophical grounds:
if a system is reversible there should be no way of knowing whether one is moving on
thefuture pole2, or on thepastpole2_ . In particular we should be able to see that the
motion is reversible without ever even knowing about the existence of the past attractor
C_. Hence we expect that there islacal time reversdl i* on both the future and the
past attractors: and the problem is to find a way to construct, at least in prin¢iple,

The reader will notice the analogy between the above picture and the spontaneous
symmetry breaking: when the attractor dimension decreases (because some Lyapunov
exponent changes sign as a parameter changes) the time reversal symmetry is no longer
valid, but some other symmetry survives which still has the effect of changing the sign
to time: a well known example is the breakingBfsymmetry in relativistic quantum
mechanics, with th&'C' P-symmetry remaining valid.

In Sect. 4 we present a model in whi¢h can be constructed and provides the
paradigm of a reversible Axiom C system. In Sect. 5 we discuss the meaning in symbolic
dynamics of the map*. On the mathematical side there are various points that would
require closer investigation. But the discussion seems to indicate that the scenario for
the construction of* should work rather generally, as we think it is quite naturally
suggested by the results of the experiment in [BGG].
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4. An Example

We give here an example in whi¢h, the local time reversal, arising in the applications
can be easily constructed. The example illustrates what we think is a typical situation.
The polex2, closures of an attracta@r, and respectively of a repelléf_, will be two
compact regular surfaces, identical in the sense that they will be mapped into each other
by the time reversal defined below.

If zis a pointinM, = Q. = clos(C.) the generic point of the phase space will be
determined by a pair z), wherez € M, andz is a set of transversal coordinates that
tell us how far we are from the attractor. The coordinatakes two well defined values
on . and2_ that we can denote, andz_ respectively.

The coordinate identifies a point on the compact manifdlf,. on which areversible
transitive Anosov map,. acts (see [G3]). And the mapon phase space is defined by:

S(z, 2) = (Syz, Sz2), (4.1)

whereS is a map acting on the coordinate (marking a point on a compact manifold)
which is an evolution leading from an unstable fixed paintto a stable fixed point
z+. For instancer could consist of a pair of coordinatesw with v? + w? = 1 (i.e. z

is a point on a circle) and an evolution ofw could be governed by the equation
v = —av, w=FE — aw with « = Fw. If we setSz to be the time 1 evolution (under
the latter differential equations) ef= (v, w) we see that such evolution sends- 0
andw — +1 ast — +oo and the latter are non marginal fixed points for

Thus if we setS(x, z) = (S.z, Sz) we see that our system is hyperbolic on the basic
setsQy = M, x {z1} and the future pol€. = clos(C.) is the set of pointsa, z.) with
x € M,; while the past pol&2_ = clos(C_) is the set of pointsi, z_) with x € M.,.

Clearly the two poles are mapped into each other by theifaap.) = (i*x, z).

But on each attractor a “local time reversal” acts: namely theih@pz4) = (i*x, z4).

The system is “chaotic” as it has an Axiom A attracting set with closure consisting
of the points having the forme( z.) for the motion towards the future and a different
Axiom A attracting set with closure consisting of the points having the farm () for
the motion towards the past. In fact the dynamical systémsg) and €2_, S) obtained
by restricting$ to the future or past attracting sets are Anosov systems befauaee
regular manifolds.

We may think that in the reversible cases the situation is always the above: namely
there is an “irrelevant” set of coordinateshat describes the departure from the future
and past attractors. The future and past attractors are copies (via the global time reversal
1) of each other and on each of them is defined a imaghich inverts the time arrow,
leaving the attractor invariantsuch map will be naturally called thecal time reversal

In the above case the mépand the coordinates:(z) are “obvious”. The problem
is to see that they are defined quite generally under the only assumption that the system
is reversible and has unique future and unique past attractors that verify the Axiom A.
This is a problem that is naturally solved in general when the system verifies the Axiom
C of Sect. 2 (see Sect. 3, (3.1) above).

Inthe following section we shall describe the interpretatioif @f terms of symbolic
dynamics when the system verifies Axiom C: as one may expect the construction is
simple but it is deeply related to the properties of hyperbolic systems such as their
Markov partitions.



Reversibility, Coarse Graining and Chaoticity Principle 271

5. Local Time Reversal and Markov Partitions

In this section we discuss the properties of the rifagnd its relation with the Markov
partitions and the symbolic dynamics.

We assume the reader is familiar with the notion of Markov partition: in any event
the results of this paper logically follow those of [GC1, GC2 and G2, G3] and we can
expect that only readers familiar with those papers can have any interest in the present
one.

In [GC1] we mention that a transitive Anosov reversible system admits a Markov
partition P = {Q. }, which is invariant under time reversaf = P. This means that
for every elemen€) € P one can find an eleme}’ € P such that@ = Q'.

If the dynamical system only has a transitive Axiom A attracting set we can still
construct a Markov partitio? = i but it will not have a transitive transition matrix.
The transition matrix is in fact defined by settifig,» = 1 if SQ, Nint(Q,/) # 0 (here
int(Q) are the interior points ap relativelyto the closure of the attractor) afig ,» = 0
otherwise. And transitivity means that there is a powef 7" such that’’* _, > 0 for
all o, o’ (see comments after tlohaotic hypothesiSect. 1 and footnote 2).

The lack of transitivity in the above sense is simply due to the fact that the Markov
partition P really splits into two transitive Markov partitions, one, denofd paving
the closure2; = clos(C,) of the future attractor and one, denotfd, paving the
closure2_ = clos(C_) of the past attractar’_. And of course there is no possibility of
a transition from one to the other under the actioy @fs the two ar&s-invariant sets.

But for Axiom C systems the Markov partition can be built in a special way that
takes into account more deeply the global time reversal symmetry of the system. Let in
factO be a fixed point o on Q. (if no fixed point exists) can, for the purposes of the
following discussion, be replaced by a point on one of the periodic orbif3.gmecall
that by the Axiom A property the periodic orbits are densexr).

We shall assume, for simplicity, th&, (hence2_) are smooth surfaces: then we
consider the stable manifold @1. The latter is dense of2, because of the assumed
transitivity of the attractor and it has a part that is not contained on the attracting set
(because we are supposing that the attractooislense in phase space).

If ng is the dimension of the pol. andn, is the dimension of the part of the
stable manifoldiW, lying on . then the dimension of the stable manifold will be
ng +n for somen > 1. The manifoldW§ will intersect the poleR_: otherwise it
would lead to another repelling basic set, violating the assumption that there are only
two poles {.e. only one attractor for the future motion and one for the backward motion
as expressed by the z&rtaw above, see 3) in the definition of Axiom C).

The pole2_ has (by the time reversal symmetry) the same dimensjaf the pole
Q. and its intersection WitWSO will be ang-dimensional manifold iff2_, an unstable
manifold for the mags—1, dense o2_. Likewise we can consider the poiit® € Q_
and perform the same construction by using the unstable mamifgiio= i\ of <O. It
will have a part of dimension,, = n, lying onQ_ and its dimension will be,,, +n. The
manifoldsW§ andW}, intersect densely oft. and each intersection poiate Q. is
on an-dimensional manifold which has one point& Q_ onQ_.

Itis clear that the densely defined mapf 2, «—— ©Q_ commutes withS and it can
be extended by continuity to a map @f, to Q_. If P, is a Markov partition ofQ2.
thensP, = P_ is a Markov partition of2_. This is just another way of looking at the
construction of the map hence of*, see (3.2).

This also shows that we can establish a natural correspondenees between
labels of elements dP such that)s =7Q),. Note that ifQ), € P+ thenQs € Px.
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Note that the map* has a very simple and natural symbolic dynamics interpretation.
Given an allowed sequence = {o,} we setg = {G_,}; sinceT,, = 1 means
SQ, Nint(Qs) # 0, we deduce that it means als&Q, N iint(Q,/) ¥ ?, hence
S7LiQ,Niint(Q,+) # 0. Sothat int(Q,)NS i Q. # 0, hence*Q, NS i* iNt(Q,) 7 0:

Ta,a’ =1l Q& N Sint(Qﬁ") 7 (Z)a (51)

ie. Ty, o = 1is equivalent td’s 5 = 1.

This means thatitr = {0} is an allowed sequence of symbols for a pairan the
pole Q. (i.e.it is the historyon P of a pointx € . in the sense that’x € Q,, for
all j) thenalso g = {5_,} is an allowed sequence aiitk is the (unique) point on the
pole2_ that has{c_;} as the history undes.

6. Markov Partitions, Coarse Graining and Trajectory Segments. Extended
Liouville Measure

a) We first discuss the notion of coarse graining, making precise some ideas that were
advanced in [G1]. We show that Anosov systems with Axiom A attracting sets admit, in
spite of the chaoticity of the motions that they describe, a rather natural decomposition
of phase space into cells so that the time evolution can be naturally representedias a
permutatiorand the SRB distribution can be naturally interpreted as the distribution that
givesequal weight to each of the cells

This may look surprising and contradictory with the property of hyperbolicity and
chaoticity of the system. Therefore itis a particularly interesting (rather elementary) fea-
ture of the SRB distribution which makes it even more analogous to the microcanonical
distribution in equilibrium.

Imagine thatP is a Markov partition for a transitive Axiom A attracting set. We use
it to set up a symbolic dynamic description of the attractor.

Let T be large andPr = \/j%:_ZSjP. Then it is well known, [S1,R1] (see also

[G2]), that we can represent the SRB distribution as a limit of probability distributions
obtained by assigning to the eleme@tss Pr a weight:

A7 (@q), (6.1)
whereA. r(z) is the expansion rate.€. the modulus of the jacobian determinant) of

the mapS” as a map of the unstable manifold®f”/2z to that of S7/2z, andz is a
(suitable, see [GC2, G3]) point Q.

Then we can imagine to partition ea¢h< Pr into boxes so that the number of
boxes, that we catlells in Q) is proportional to (6.1). In this way we find a representation
for the SRB distribution in which each cell of phase spacdlmasame weighThe SRB
distribution thus appears as the uniform distribution on the attracting set (thus partitioned)
and the time evolution can be rather faithfully represented simply as a permutation of
the cells, in spite of the hyperbolicity.

This also shows that one has to be careful in saying that “it is obvious that the
SRB distribution is obtained by attributing the weights (6.1) to points on the attractor”,
sometimes erroneously called the “trajectory segment method”; this is right only if the
points are identified with the cells of a Markov partitiBg, refinement of a fixed Markov
partition. This means that (6.1) is correct only if a suitable coarse graining of the phase
space is made, and incorrect otherwise.
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If the points are chosen differently then the weight to give to each may wekiye
dlfferent as in the latter case in which itégjualfor all cells, no matter what the value of
A‘T is in each of them. And in some sense the latter representation is the most natural
one, and it realizes in general the Boltzmann idea that all points in phase space are
equivalent and the dynamics is just a one cycle permutation of the cells, [G2].

One can say that if the system admits an Axiom A attracting set then it is possible to
define a coarse graining of phase space such that the dynamigsnigiallyjust a one
cycle cell permutationgven thouglthe evolution may be non volume preserving): the
SRB distribution appears then as tliform distributionon the relevant phase space
part (.e.the attracting set). In other words the chaotic hypothesis can be regarded as
a natural version of the original viewpoint of Boltzmann, [G1], on time evolution and
ergodicity.

In general the attracting set will suppbsto stationary distributions: one, coinciding
with u+, which describes the statistics of the data that are chosen randomlye
attracting setwith a distribution proportional to the area elements of the set itaedf,

a second ondescribing the statistics of the same data evolving backward in time. The

latter statistics can be denotgg and it isdifferentfrom the statistics of the data that

are chosen randomly with distribution proportional to the full phase space volume (the
latter is in fact concentrated “elsewhere”, on the set obtained from the attracting set by
the global time reversal).

A representation of the above dynamical properties in terms of “coarse grain” cells
is also easy to set up.

We can imagine to partitioeach@ € Py into boxes of type + and boxes of type
so that the number of boxes of type +¢his proportional toA T(xQ) and the number
of boxes of type— in @) is proportional toA . r(x¢), where this is the modulus of the
jacobian determinant &f” restricted to part of the stable manifold$bn the attracting
set, regarded (locally) as a submanifold of the attracting set (that we are supposing to be
a manifold).

One can define the forward evolution on the attracting set as a one cycle permutation
of the + cells and the backward evolution as a one cycle permutation ef tledls. The
local time reversal* can now be represented as a one to one transformation of the +
cells into the— cells.

The “wandering” points could also be represented as cells of a third type, but they
are not interesting for the description of the statistical properties of the motions on the
attracting set. The representation of the dynamics in terms of two “compenetrated” sets
of coarse grain cells gives a clear idea of how it is possible that the forward and backward
evolutions have different statistics related by the same time reversal operatit is
the basis of the proof of the fluctuation theorem.

b) Consider an Axiom C system. Then we can define a local time revérsal the

future pole. This means that a fluctuation theorem holds for the statistics of the Liouville
distributionup onC. The formulation of the fluctuation theorem is unchanged provided

one defines the entropy production rate as the contraction of the surface area on the
attracting set. This is to be expected to be a rather difficult quantity to evaluate in concrete
cases because we cannot expect to have a precise knowledge of the geometric structure of
the attracting set. In this respect one can remark that the system may have other properties
that nevertheless allow us to establish a relationship between the contraction rate of the
Liouville measure (directly accessible from the measurement of the divergence of the
equations of motion) and the contraction rate of the surface measute attracting



274 F. Bonetto, G. Gallavotti

set an interesting instance of this has been found in [BGG], Se(it) where the extra
property used was thgairing rule that held in that case, (see [ECM1, DM]).

In general on the pol&. one can define a probability distributigr that is the
natural extension of the Liouville distribution in the equilibrium case and for which
the fluctuation theorem holds in the same form that it has in the Anosov case. It is the
probability distribution that is defined in the symbolic dynamics representation by the
Gibbs distribution [D, LR, R2], with non translationally invariant potentiagiven by
the formal energy function:

-1 oo
H(g)= Y h-(0"a)+ ) h(9"2), (6.2)

k=—o0 k=0

where ¢ is the symbolic sequence corresponding to a poioh Q2. evaluated on a
Markov partition, see Sect. 57 is the shift of the sequence; and we have set:

h_(g)=—logA{(X(2)), h+(g)=logA.(X(2)), (6.3)

andA?}, A, are the jacobian determinants of the nfagestrictedto the intersections of
the stable or, respectively, unstable manifolds with

In the Anosov case (6.2) defines a distribution equivalent to the ordinary Liouville
distribution, see [G3, G2]. In the Axiom C case it defines a distributioRemvhich is
absolutely continuous with respect to the surface are@.owhen the poles are smooth
manifolds (because in such a case the system §) is a Anosov system). But if the
pole . is just an Axiom A attracting set which is not a smooth manifold théris not

properly defined as a jacobian determinant (because the interséjc;i(mW; N, is
not a manifold). Neverthelessdan be definedly usingi* via:

Af(z) = AN ), (6.4)

and this is our proposal for a natural extension of the definition of the Liouville measure
on the attracting basic s&t.. It is a distribution that may have several further properties
that it seems worth investigating.

c¢) Finally, with reference to Sect. 1 above, we note that in a system like the one studied in
[BGG]itis possible that while aforcing parameter grows the Lyapunov spectrum changes
nature because some exponents initially positive continuously evolve into negative ones
as the forcing increases. Everytime one “positive” exponent “becomes” negative the
dimension of the future pole diminishes (usually by 2 units when the pairing rule is
verified, see [BGG]). At this “bifurcation” the future pole splits into two basic sets, one
will be the new pole and the other will be it§ image. Of course the above analysis
implies that there will be a new local time reversal on the new future pole. The

image of the future pole, however, wilbt be the past pole: one can easily see that the
latter is more stable than thieimage of the future pole: hence the past pole will be the
full time reversal of the future pole, no matter how many intermediate bifurcations took
place.

The picture in terms of diagrams, see [Sm] p. 754, is quite suggestive and is that
aftern =0, 1,... “positive” Lyapunov exponents have “become” negative the diagram
of the system consists of'2oints totally ordered starting from the past pole and going
straight down to the future pole. During the evolution of the bifurcations1 time
reversals are define] = i3, ..., and thek' time reversal; leaves invariant the
set of nodes in the diagram with label®]. .., 2" % k=0,....
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