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Abstract: We describe a way of interpreting the chaotic principle of [GC1] more ex-
tensively than it was meant in the original works. Mathematically the analysis is based
on the dynamical notions of Axiom A and Axiom B and on the notion of Axiom C,
that we introduce arguing that it is suggested by the results of an experiment ([BGG])
on chaotic motions. Physically we interpret a breakdown of the Anosov property of a
time reversible attractor (replaced, as a control parameter changes, by an Axiom A prop-
erty) as a spontaneous breakdown of the time reversal symmetry: the relation between
time reversal and the symmetry that remains after the breakdown is analogous to the
breakdown ofT -invariance whileTCP still holds.

1. Introduction

In reference [GC2] a general mechanical system in a non equilibrium situation was
considered. CallingC the (compact or “finite”) phase space of the “observed events”,
µ0 the volume measure on it andS the map describing the time evolution (regarded as a
discrete invertible mapping of “observed events” into the “next ones”,i.e.as a Poincaŕe
map on some surface in the full phase space) a principle holding when motions have an
empirically chaotic nature was introduced:

1. Chaotic hypothesis. A chaotic many particle system in a stationary state can be
regarded, for the purpose of computing macroscopic properties, as a smooth dynamical
system with a transitive Axiom A globally attracting set. In reversible systems it can be
regarded, for the same purposes, as a smooth transitive Anosov system.

• Chaoticis an empirical qualitative notion that means that most points of the attracting
set have a stable and an unstable manifold with positive dimension. In the applications
in [GC1, GC2, G1] the use of the hypothesis, which is a natural extension of a principle
proposed by Ruelle, was based on reversibility and on transitivity.
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• An attracting setis a closed invariant set such that all points in its vicinity evolve
(in the future) tending to it and such that no subset has the same property (i.e. it is
“minimal”). A set isglobally attractingif it is attracting andall points of an open dense
set evolve tending to it.
• An Axiom Aattracting set is a hyperbolic attracting set:i.e.an attracting set with each
of its points possessing stable and unstable manifolds depending continuously upon
the points and with contraction and expansion rates bounded uniformly away from 0.
Furthermore the periodic points are dense.
• Reversibilitymeans that there is a smooth mapi of C onto itself that changes the sign
to time in the sense thatiS = S−1i andi2 = 1. As is well known reversibility should not
be confused with the invertibility of the mapS (always assumed below).
• Transitivityis intended to mean that the stable and unstable manifolds of the attracting
set points are dense on it (this is not a very strong requirement in view of (7.6) in [Sm],
p. 783).
• Anosov systemis a dynamical system in which the whole phase space is hyperbolic.

Note that if the Axiom A attracting set is supposed to be also a smooth manifold
then the restriction of the dynamics to it is an Anosov system. This is the meaning that
we give, in this paper, to the second assumption in the above hypothesis (see Sect. 6 of
[BGG]).

However in the previous paper [G4] transitivity was instead intended to mean, at least
in the reversible cases, density of the stable and unstable manifolds of the attracting set
points on the entire phase space (so that the system was in fact a transitive Anosov
system). This is not always a property that one may be willing to consider as reasonable.

It is reasonable for systems that are very close to conservative ones (as in [G4]). But
it is very likely (see [BGG], Sect. 6, Fig. 14) to be incorrect in systems that are under
strong non conservative forces, even if still evolving with a reversible dynamics. In fact
the attracting sets of such systems often evolve, as the strength of the forces increases,
from a very chaotic initial attracting set to a more ordered situation characterized by a
periodic orbit or by a very small attracting “tube” almost identical to a periodic orbit;
the evolution shows a gradual decrease of the dimension and of the phase space region
occupied by the attracting set, which therefore quite soon may become contained in a
proper closed subset of phase space (so that the system cannot have stable and unstable
manifolds with dimension half that of phase space: a necessary consequence of time
reversibility in transitive Anosov systems).

In such cases it is still reasonable, see [R1, ER], to think that the attracting set, if
chaotic, can be regarded “just” as anAxiom A attracting set, an assumption weaker than
assuming that the system is an Anosov system.

What can be said for such systems? Is there a suitable reformulation of the chaoticity
principle that could make it applicable even in very strongly forced (but still “chaotic”)
systems making possible an analysis similar to that leading to the fluctuation theorem
of [GC1, GC2] or to the Onsager relations of [G4]? These are the questions we address
here.

2. A Distinction Between Anosov and Axiom A Properties. Statistics. Axioms B
and C

We shall try to adopt the notations used in the well known paper by Smale, [Sm].
Furthermore in this paper, as in [GC1, GC2], a distinction will be made between an
attractor and its closure that we call more properly anattracting set: this is often a
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rather confusing point because some authors identify an attractor with its closure. Here
we shall not. Thus, recalling thatµ0 denotes the volume measure onC, we shall formally
say that:

Definition 1. A pointx ∈ C admits a statistics if there is a probability distribution in
phase space such that:

lim
M→∞

1
M

M−1∑
j=0

F (Sjx) =
∫

C
F (y)µ(dy) (2.1)

for all continuous functionsF on phase spaceC.,

and:

Definition 2. An attractor is a setC enjoying the properties: (a) it is invariant and dense
in an attracting set, (b)µ0–almost all points in its vicinity admit the same statisticsµ and
µ(C) = 1, (c) it has minimal Hausdorff dimension and (d) it is minimal.1 An attracting
set verifies Axiom A if it has the properties: (i) each of its points is hyperbolic, (ii) the
periodic points are dense on it, (iii) it contains a dense orbit.

With this definition one has to live with the fact that there will be several essentially
identical attractors: if the distributionµ gives, for instance, 0 probability to individual
points on the attractorC then any subset ofC obtained by removing the orbis of a
countable number of points will still be an attractor (of course with the same closure as
C itself). This is the main reason why it is wise to distinguish the notions of attractor
and of attracting set; in the cases met in this paper it will be appropriate to call the latter
anattracting basic set(see below).

It is useful to recall some more general definitions and properties:
• a dynamical systemverifies Axiom Aif each point in the set� of “nonwandering
points” (i.e. in the set of all “recurrent points”) is “hyperbolic”,i.e.each nonwandering
point admits stable and unstable manifolds, continuously dependent on the point and
with expansion and contraction rates uniformly bounded away from 0; furthermore the
periodic points are dense on�, [Sm], p.777. The closure of an attractor for an Axiom
A system is an Axiom A attracting set in the above sense.
• Axiom A systems have a rather simple structure as the sets of their nonwandering
points consist of a finite number of closed invariant indecomposable topologically tran-
sitive sets, calledbasic sets, see [Sm], p.777.2

• A basic set that is the closure of an attractor is called an attracting basic set, likewise
one defines a repelling basic set.3

• Another interesting class of dynamical systems is the class ofAxiom B systems(see
[Sm.] p 778): they are the dynamical systems verifying Axiom A and the further mild
transversality property4 that if �i, �j are a pair of basic sets such that the stable set

1 This means that any other set with the same properties has a closure that contains the closure clos(C).
2 Topologically transitive, [Sm] p.776, means that they contain a point with a dense orbit. Note that this

is weaker than transitive in the sense of Sect. 1. Indecomposable means that they contain no subset with the
same properties. The basic sets are thebuilding pieces (or the “bases”) of the part of phase space where the
dynamics is non trivial. Transitive Anosov systems are simply Axiom A systems with a (unique) basic set
coinciding with the whole phase space.

3 Thus a basic set for an Axiom A system can be regarded as a dynamical system in itself: in this case it
may fail to be Anosov only because in general it is not a smooth manifold but just a closed set.

4 Mild because of Theorem (6.7), p. 779, in [Sm].
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W s(�i) and the unstable setWu(�j) intersectthen they intersect transversally (see
below).
• The stable (resp. unstable) set of�i (resp.�j) is the union of the stable (resp. unstable)
manifolds of all its points (see [Sm], p. 777). The intersection betweenW s(�i) and
Wu(�j) is transversalif the stable manifoldW s(p) and the unstable manifoldWu(q)
of any twoperiodic pointsp ∈ �i andq ∈ �j have a point of transversal intersection
(see [Sm], p. 783). Finally two manifolds intersect transversally at a point if their tangent
planes span the full tangent plane (see [Sm], p. 752).

We also need to recall that, particularly in the numerical experiments, for dynamical
systems with “chaotic behavior” it is usually also assumed that, after the “obvious”
conservation laws and symmetries are taken into account, thewhole phase spaceadmits
a statistics, in the sense that almost all points (with respect to the volume measure) admit
a statistics, the same for all of them. This is usually called thezeroth law, [UF]:

Extended zeroth law: A dynamical system(C, S) describing a many particle system (or
a continuum such as a fluid) generates motions that admit a statisticsµ in the sense
that, given any (smooth) macroscopic observableF defined on the pointsx of the phase
spaceC, the time average ofF exists for allµ0–randomly–chosen initial datax and is
given by:

lim
M→∞

1
M

M−1∑
k=0

F (Sjx) =
∫

C
µ(dx′)F (x′) (2.2)

with µ being aS–invariant probability distribution onC.

It is important to note the physical meaning of the above law: in fact, among other
things, it implies that the dynamical system (C, S) cannot have more than one attracting
basic set. We shall say that a system for which the property described by the above “law”
holdsverifies the zeroth law.

For our purposes only systems verifying at least Axiom B will be relevant. For such
systems the notion ofdiagramof a dynamical system, see [Sm] p. 754, allows us to
interpret the zeroth law as saying that the diagram of the system is a partially ordered
set with unique top and bottom points.

In this paper we shall deal with reversible dynamical systems (C, S) verifying Axiom
B and the zeroth: hence with a unique attracting basic set�+ and a unique repelling basic
set�−. Furthermore the attracting set will be assumed transitive in the sense that the
stable and unstable manifolds of each of its points are dense on it.

The Axiom B and the zeroth law could be reasonably taken as definitions of models
for globally “chaotic” or “globally hyperbolic systems”.

However the problem that we pose in the next section suggests that the appropriate
notion for “globally hyperbolic” or “globally chaotic” dynamical systems is somewhat
stronger. Its definition has been suggested by our effort to interpret the results of the
experiment [BGG] and we allowed ourselves to give the name ofAxiom C systemsto
systems verifying a stronger property; to describe it we introduce the notion of distance
of a pointx to the basic sets{�i} of an Axiom A system as:

δ(x) = min

{
min

i

d�i
(x)

d0
, min
j, −∞<n<+∞

d�j (Snx)

d0

}
, (2.3)
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whered0 is the diameter of the phase spaceC, d�i (x) is the distance of the pointx from
the basic set�i, the minimum overi runs over the attracting or repelling basic sets and
the minimum overj runs over the otherk ≥ 0 basic sets.

We can then define theAxiom Csystems as:

Definition 3. A smooth dynamical system(C, S) verifies Axiom C if it is Anosov or if it
verifies Axiom A and:
(1) among the basic sets there are a unique attracting and a unique repelling basic sets,
denoted�+, �− respectively, with (open) full volume dense basins that we call the poles
of the system (future or attracting and past or repelling poles, respectively).
(2) for everyx ∈ C the tangent spaceTx admits a Ḧolder–continuous5 decomposition
as a direct sum of three subspacesTu

x , T s
x , Tm

x such that:
a) dS Tα

x = Tα
Sx , α = u, s, m ,

b) |dSnw| ≤ Ce−λn|w| , w ∈ T s
x , n ≥ 0,

c) |dS−nw| ≤ Ce−λn|w| , w ∈ Tu
x , n ≥ 0,

d) |dSnw| ≤ Cδ(x)−1e−λ|n||w|, w ∈ Tm
x ∀n,

where the dimensions ofTu
x , T s

x , Tm
x are> 0 andδ(x) is defined in (2.3).

(3) if x is on the attracting basic set�+ thenT s
x ⊕ Tm

x is tangent to the stable manifold
in x; viceversa ifx is on the repelling basic set�− thenTu

x ⊕ Tm
x is tangent to the

unstable manifold inx.

AlthoughTu
x andT s

x are not uniquely determined the planesT s
x ⊕Tm

x andTu
x ⊕Tm

x

are uniquely determined forx ∈ �+ and, respectively,x ∈ �−.
It is clear that an Axiom C system is necessarily also an Axiom B system verifying

the zeroth law (as it follows from [R2]). We do not know an example of an Axiom B
system with a unique attracting and a unique repelling basic set which is not at the same
time an Axiom C system.

Apart from property (1) that is meant to imply the validity of the zeroth law, one
can also say that (“at most”) the real difference between an Axiom B and an Axiom C
system is that the latter has a stronger, and more global, hyperbolicity property.

Namely, if �+ and�− are the two poles of the system the stable manifold of a
periodic pointp ∈ �+ and the unstable manifold of a periodic pointq ∈ �− not only
have a point of transversal intersection, but they intersect transversallyall the wayon a
manifold connecting�+ to �−; the unstable manifold of a point in�− will accumulate
on�+ without winding around it.

In fact one can “attach” toW s(p), p ∈ �+, points on�− as follows: we say that a
pointz ∈ �− isattachedtoW s(p) if it is an accumulation point forW s(p) and there is a
curvewith finite lengthlinking a pointz0 ∈ W s(p) toz andentirely lying onW s(p), with
the exeption of the endpointz. A drawing helps understanding this simple geometrical
construction, slightly unusual because of the density ofW s(p) on�−,.

We callW
s
(p) the set of the pointseither onW s(p) or just attached toW s(p) on the

system basic sets (the setW
s
(p) should not be confused with the closure clos(W s(p)),

which is the whole space, see [Sm], p. 783). If a system verifies Axiom C the setW
s
(p)

intersects�− on a stable manifold, by 2) in the above definition.
The definition ofW

u
(q), q ∈ �−, is defined symmetrically by exchanging�+ with

�−. Furthermore if a system verifies Axiom C andp ∈ �+, q ∈ �− are two periodic
points, on the attracting basic set and on the repelling basic set of the system respectively,

5 One might prefer to require real smoothness,e.g.Cp with 1 ≤ p ≤ ∞: but this would be too much for
rather trivial reasons. On the other hand Hölder continuity might be equivalent to simpleC0–continuity as in
the case of Anosov systems, see [AA, Sm].
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thenW
s
(p) andW

u
(q) have a dense set of points in�+ and�−, respectively. Note

that W
s
(p) ∩ W

u
(q) is dense inC as well as in�+ and�−. This follows from the

density ofW s(p) andWu(q) on�+ and�− respectively and from the continuity ofTm
x .

Furthermore ifz ∈ �+ is such thatz ∈ W
s
(p)∩W

u
(q) then the surfaceW

s
(p)∩W

u
(q)

intersects�− in a unique point ˜z ≡ ı̃z which can be reached by the shortest smooth path
onW

s
(p) ∩ W

u
(q) linking z to �− (the path is on the surface obtained as the envelope

of the tangent planesTm, but it is in general not unique even ifTm has dimension 1, see
the example in Sect. 4 below).

The map ˜ı, as a map of�+ ∪ �− into itself, commutes with bothS andi, squares to
the identity and will play a key role in the following analysis.

We conjecture that the Axiom C systems are�–stable in the sense of Smale, [Sm]
p. 749 (added on revision: this follows from Robbin’s theorem, see [R3], p. 170).

3. Axiom A, B, C and Time Reversibility: The Problem

If one considers the closure�+ = clos(C) of an attractorC verifying Axiom A then the
action of the dynamicsS on it fails to be an Anosov system only because clos(C) might
be a fractal set rather than a smooth surface.

In nonequilibrium statistical mechanics the dimensionality of the attractors is usually
very large so that their fractality is likely to be irrelevant. This is part of the hypothesis
that the system can be regarded as an Anosov systemfor the purpose of studying averages
of relevant quantities. And in fact the Anosov property is used in the above references
only to obtain a representation of the SRB distribution,i.e.of the distribution describing
the averages of observables.

The same representation holds for the SRB distribution on an Axiom A attracting
set. For this reason the fractality of an attractor was regarded in [GC2] as “an unfortunate
accident”.

Therefore thereally non trivial hypothesisin the mentioned applications is there-
versibility of the motion on the attracting set. Such reversibility is of course implied
by the reversibility of the motion on the whole phase space if the attracting set and the
whole phase space coincide: in the above references this was taken as a consequence of
the chaoticity hypothesis.

However one may wish to see how far this is justified in the cases in which the
attractorC is really smaller than the whole phase space. We shall refer to such cases as
the cases in which the attracting set verifies Axiom A: we therefore include under the
latter denomination also the case in which the attracting set is a smooth surface (and
could therefore be said to be an Anosov system). The possible fractality of the closure
of the attractor or its smoothness play no role in the following.

Suppose that thereversiblemechanical system under consideration verifies Axiom
C (a stronger notion than Axiom B, and a kind of “global hyperbolicity” condition as
discussed in Sect. 2). Suppose that the attracting pole�+ = clos(C) is not the whole
phase spaceC. Can one then conclude that the fluctuation theorem of [GC1] holds? or
at least some modification of it?

We “answer” this in the affirmative by noting that the global time reversal mapi,
a priori assumed to exist, induces on the pole�+ = clos(C) of the system a natural
“smooth” (i.e.Hölder continuous) mapi∗ which verifies:

i∗S = S−1i∗, (i∗)2 = 1. (3.1)
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In fact since the map ˜ı commutes withS and maps the attracting pole�+ onto the
repelling pole�− we can seti∗ = ı̃ i and define a map of�± into themselves verifying:

i∗S = ı̃ i S = ı̃ S−1 i = S−1 i∗. (3.2)

Hencei∗ is a time reversal on the future attracting set.Note thati∗ is not the restriction
of i to the future attracting set. This map will be thelocal time reversal. One should
stress that since ˜ı is defined only on�± alsoi∗ hasonly a meaningas a map of such
sets onto themselves.

Its existence immediately implies the validity of a fluctuation theorem ([GC1, GC2,
G3]) for systems that are globally reversible and chaotic in the sense that they verify
Axiom C (and hence verify the zeroth law and have an Axiom A attracting set), with
the only difference that the theorem applies to the phase space contraction that occur on
�+ rather than to the phase space contraction occurring in the whole phase spaceC (see
Sect. 6, (b), for a discussion). Moreover it implies also that the chaotic hypothesis can be
conceptually simplified. Curiously enough this does not even require a modification of
its formulation, but it allows for a broader intrepretation of it as the word “Anosov” can
be essentially replaced by “reversible Axiom A attracting set” and this covers explicitly
the cases in which the attracting set is not dense on phase space.

It is important to note here that the existence ofi∗ is not trivial: becausei∗ cannot
be(unlessC = �+, i.e.unless the future pole of the system is the whole phase space so
that the system is actually an Anosov system) the restriction to�+ of the time reversal
mapi, as one would naively surmise.

In fact reversible systems with Axiom A attractors usually have attractorsC+ and
C− for the forward motion and for the backward motions which aredistinct, [S1], in
the sense that�+ ∩ �− ≡ clos(C+) ∩ clos(C−) = ∅. In such cases the time reversali
maps�+ into �− and viceversa. Therefore although the global time reversali has the
propertySi = iS−1 it does not leave invariant the attracting basic set�+ = clos(C+).

The mapi∗ is aneffective time reversalacting on the closure of the attractor�+ =
clos(C+) for the future motion. Its existence could be expected on philosophical grounds:
if a system is reversible there should be no way of knowing whether one is moving on
thefuture pole�+ or on thepastpole�−. In particular we should be able to see that the
motion is reversible without ever even knowing about the existence of the past attractor
C−. Hence we expect that there is a “local time reversal” i∗ on both the future and the
past attractors: and the problem is to find a way to construct, at least in principle,i∗.

The reader will notice the analogy between the above picture and the spontaneous
symmetry breaking: when the attractor dimension decreases (because some Lyapunov
exponent changes sign as a parameter changes) the time reversal symmetry is no longer
valid, but some other symmetry survives which still has the effect of changing the sign
to time: a well known example is the breaking ofT -symmetry in relativistic quantum
mechanics, with theTCP -symmetry remaining valid.

In Sect. 4 we present a model in whichi∗ can be constructed and provides the
paradigm of a reversible Axiom C system. In Sect. 5 we discuss the meaning in symbolic
dynamics of the mapi∗. On the mathematical side there are various points that would
require closer investigation. But the discussion seems to indicate that the scenario for
the construction ofi∗ should work rather generally, as we think it is quite naturally
suggested by the results of the experiment in [BGG].
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4. An Example

We give here an example in whichi∗, the local time reversal, arising in the applications
can be easily constructed. The example illustrates what we think is a typical situation.
The poles�±, closures of an attractorC+ and respectively of a repellerC−, will be two
compact regular surfaces, identical in the sense that they will be mapped into each other
by the time reversali defined below.

If x is a point inM∗ = �+ = clos(C+) the generic point of the phase space will be
determined by a pair (x, z), wherex ∈ M∗ andz is a set of transversal coordinates that
tell us how far we are from the attractor. The coordinatez takes two well defined values
on�+ and�− that we can denotez+ andz− respectively.

The coordinatex identifies a point on the compact manifoldM∗ on which a reversible
transitive Anosov mapS∗ acts (see [G3]). And the mapS on phase space is defined by:

S(x, z) = (S∗x, S̃z), (4.1)

whereS̃ is a map acting on thez coordinate (marking a point on a compact manifold)
which is an evolution leading from an unstable fixed pointz− to a stable fixed point
z+. For instancez could consist of a pair of coordinatesv, w with v2 + w2 = 1 (i.e.z
is a point on a circle) and an evolution ofv, w could be governed by the equation
v̇ = −αv, ẇ = E − αw with α = Ew. If we setS̃z to be the time 1 evolution (under
the latter differential equations) ofz = (v, w) we see that such evolution sendsv → 0
andw → ±1 ast → ±∞ and the latter are non marginal fixed points forS̃.

Thus if we setS(x, z) = (S∗x, S̃z) we see that our system is hyperbolic on the basic
sets�± = M∗ ×{z±} and the future pole�+ = clos(C+) is the set of points (x, z+) with
x ∈ M∗; while the past pole�− = clos(C−) is the set of points (x, z−) with x ∈ M∗.

Clearly the two poles are mapped into each other by the mapi(x, z±) = (i∗x, z∓).
But on each attractor a “local time reversal” acts: namely the mapi∗(x, z±) = (i∗x, z±).

The system is “chaotic” as it has an Axiom A attracting set with closure consisting
of the points having the form (x, z+) for the motion towards the future and a different
Axiom A attracting set with closure consisting of the points having the form (x, z−) for
the motion towards the past. In fact the dynamical systems (�+, S) and (�−, S) obtained
by restrictingS to the future or past attracting sets are Anosov systems because�± are
regular manifolds.

We may think that in the reversible cases the situation is always the above: namely
there is an “irrelevant” set of coordinatesz that describes the departure from the future
and past attractors. The future and past attractors are copies (via the global time reversal
i) of each other and on each of them is defined a mapi∗ which inverts the time arrow,
leaving the attractor invariant: such map will be naturally called thelocal time reversal.

In the above case the mapi∗ and the coordinates (x, z) are “obvious”. The problem
is to see that they are defined quite generally under the only assumption that the system
is reversible and has unique future and unique past attractors that verify the Axiom A.
This is a problem that is naturally solved in general when the system verifies the Axiom
C of Sect. 2 (see Sect. 3, (3.1) above).

In the following section we shall describe the interpretation ofi∗ in terms of symbolic
dynamics when the system verifies Axiom C: as one may expect the construction is
simple but it is deeply related to the properties of hyperbolic systems such as their
Markov partitions.
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5. Local Time Reversal and Markov Partitions

In this section we discuss the properties of the mapi∗ and its relation with the Markov
partitions and the symbolic dynamics.

We assume the reader is familiar with the notion of Markov partition: in any event
the results of this paper logically follow those of [GC1, GC2 and G2, G3] and we can
expect that only readers familiar with those papers can have any interest in the present
one.

In [GC1] we mention that a transitive Anosov reversible system admits a Markov
partitionP = {Qσ}, which is invariant under time reversal:iP = P. This means that
for every elementQ ∈ P one can find an elementQ′ ∈ P such thatiQ = Q′.

If the dynamical system only has a transitive Axiom A attracting set we can still
construct a Markov partitionP = iP but it will not have a transitive transition matrix.
The transition matrix is in fact defined by settingTσ,σ′ = 1 if SQσ ∩ int(Qσ′ ) 6= ∅ (here
int(Q) are the interior points ofQ relativelyto the closure of the attractor) andTσ,σ′ = 0
otherwise. And transitivity means that there is a powerk of T such thatT k

σ,σ′ > 0 for
all σ, σ′ (see comments after thechaotic hypothesisSect. 1 and footnote 2).

The lack of transitivity in the above sense is simply due to the fact that the Markov
partitionP really splits into two transitive Markov partitions, one, denotedP+, paving
the closure�+ = clos(C+) of the future attractor and one, denotedP−, paving the
closure�− = clos(C−) of the past attractorC−. And of course there is no possibility of
a transition from one to the other under the action ofS as the two areS-invariant sets.

But for Axiom C systems the Markov partition can be built in a special way that
takes into account more deeply the global time reversal symmetry of the system. Let in
factO be a fixed point ofS on�+ (if no fixed point existsO can, for the purposes of the
following discussion, be replaced by a point on one of the periodic orbits on�+; recall
that by the Axiom A property the periodic orbits are dense on�±).

We shall assume, for simplicity, that�+ (hence�−) are smooth surfaces: then we
consider the stable manifold ofO. The latter is dense on�+ because of the assumed
transitivity of the attractor and it has a part that is not contained on the attracting set
(because we are supposing that the attractor isnotdense in phase space).

If n0 is the dimension of the pole�+ andns is the dimension of the part of the
stable manifoldW s

O lying on �+ then the dimension of the stable manifold will be
ns + n for somen ≥ 1. The manifoldW s

O will intersect the pole�−: otherwise it
would lead to another repelling basic set, violating the assumption that there are only
two poles (i.e.only one attractor for the future motion and one for the backward motion
as expressed by the zeroth law above, see 3) in the definition of Axiom C).

The pole�− has (by the time reversal symmetry) the same dimensionn0 of the pole
�+ and its intersection withW

s

O will be ans-dimensional manifold in�−, an unstable
manifold for the mapS−1, dense on�−. Likewise we can consider the pointiO ∈ �−
and perform the same construction by using the unstable manifoldWu

iO = iW s
O of iO. It

will have a part of dimensionnu = ns lying on�− and its dimension will benu +n. The
manifoldsW s

O andWu
iO intersect densely on�± and each intersection pointx ∈ �+ is

on an-dimensional manifold which has one point ˜ıx ∈ �− on�−.
It is clear that the densely defined map ˜ı of �+ ←→�− commutes withS and it can

be extended by continuity to a map of�+ to �−. If P+ is a Markov partition of�+
then ı̃P+ = P− is a Markov partition of�−. This is just another way of looking at the
construction of the map ˜ı, hence ofi∗, see (3.2).

This also shows that we can establish a natural correspondenceσ ←→ σ̃ between
labels of elements ofP such thatQσ̃ = ı̃Qσ. Note that ifQσ ∈ P± thenQσ̃ ∈ P∓.
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Note that the mapi∗ has a very simple and natural symbolic dynamics interpretation.
Given an allowed sequenceσ = {σj} we set σ̃ = {σ̃−j}; sinceTσ,σ′ = 1 means
SQσ ∩ int(Qσ′ ) 6= ∅, we deduce that it means alsoi SQσ ∩ i int(Qσ′ ) 6= ∅, hence
S−1iQσ∩i int(Qσ′ ) 6= ∅. So thati int(Qσ)∩S i Qσ′ 6= ∅, hencei∗Qσ∩S i∗ int(Qσ′ ) 6= ∅:

Tσ,σ′ = 1←→Qσ̃ ∩ Sint(Qσ̃′ ) 6= ∅, (5.1)

i.e.Tσ,σ′ = 1 is equivalent toTσ̃′,σ̃ = 1.
This means that ifσ = {σj} is an allowed sequence of symbols for a pointx on the

pole�+ (i.e. it is thehistoryon P of a pointx ∈ �+ in the sense thatSjx ∈ Qσj
for

all j) thenalso σ̃ = {σ̃−j} is an allowed sequence andi∗x is the (unique) point on the
pole�− that has{σ̃−j} as the history underS.

6. Markov Partitions, Coarse Graining and Trajectory Segments. Extended
Liouville Measure

a) We first discuss the notion of coarse graining, making precise some ideas that were
advanced in [G1]. We show that Anosov systems with Axiom A attracting sets admit, in
spite of the chaoticity of the motions that they describe, a rather natural decomposition
of phase space into cells so that the time evolution can be naturally represented as acells
permutationand the SRB distribution can be naturally interpreted as the distribution that
givesequal weight to each of the cells.

This may look surprising and contradictory with the property of hyperbolicity and
chaoticity of the system. Therefore it is a particularly interesting (rather elementary) fea-
ture of the SRB distribution which makes it even more analogous to the microcanonical
distribution in equilibrium.

Imagine thatP is a Markov partition for a transitive Axiom A attracting set. We use
it to set up a symbolic dynamic description of the attractor.

Let T be large andPT = ∨T
2

j=− T
2
SjP. Then it is well known, [S1,R1] (see also

[G2]), that we can represent the SRB distribution as a limit of probability distributions
obtained by assigning to the elementsQ ∈ PT a weight:

3−1
e,T (xQ), (6.1)

where3e,T (x) is the expansion rate (i.e. the modulus of the jacobian determinant) of
the mapST as a map of the unstable manifold ofS−T/2x to that ofST/2x, andxQ is a
(suitable, see [GC2, G3]) point inQ.

Then we can imagine to partition eachQ ∈ PT into boxes so that the number of
boxes, that we callcells, inQ is proportional to (6.1). In this way we find a representation
for the SRB distribution in which each cell of phase space hasthe same weight. The SRB
distribution thus appears as the uniform distribution on the attracting set (thus partitioned)
and the time evolution can be rather faithfully represented simply as a permutation of
the cells, in spite of the hyperbolicity.

This also shows that one has to be careful in saying that “it is obvious that the
SRB distribution is obtained by attributing the weights (6.1) to points on the attractor”,
sometimes erroneously called the “trajectory segment method”: this is right only if the
points are identified with the cells of a Markov partitionPT , refinement of a fixed Markov
partition. This means that (6.1) is correct only if a suitable coarse graining of the phase
space is made, and incorrect otherwise.
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If the points are chosen differently then the weight to give to each may well bevery
different, as in the latter case in which it isequalfor all cells, no matter what the value of
3−1

e,T is in each of them. And in some sense the latter representation is the most natural
one, and it realizes in general the Boltzmann idea that all points in phase space are
equivalent and the dynamics is just a one cycle permutation of the cells, [G2].

One can say that if the system admits an Axiom A attracting set then it is possible to
define a coarse graining of phase space such that the dynamics iseventuallyjust a one
cycle cell permutation (even thoughthe evolution may be non volume preserving): the
SRB distribution appears then as theuniform distributionon the relevant phase space
part (i.e. the attracting set). In other words the chaotic hypothesis can be regarded as
a natural version of the original viewpoint of Boltzmann, [G1], on time evolution and
ergodicity.

In general the attracting set will supporttwostationary distributions: one, coinciding
with µ+, which describes the statistics of the data that are chosen randomlyon the
attracting setwith a distribution proportional to the area elements of the set itself,and
a second onedescribing the statistics of the same data evolving backward in time. The
latter statistics can be denotedµ∗

+ and it isdifferentfrom the statistics of the data that
are chosen randomly with distribution proportional to the full phase space volume (the
latter is in fact concentrated “elsewhere”, on the set obtained from the attracting set by
the global time reversal).

A representation of the above dynamical properties in terms of “coarse grain” cells
is also easy to set up.

We can imagine to partitioneachQ ∈ PT into boxes of type + and boxes of type−
so that the number of boxes of type + inQ is proportional to3−1

e,T (xQ) and the number
of boxes of type− in Q is proportional to3c,T (xQ), where this is the modulus of the
jacobian determinant ofST restricted to part of the stable manifold ofS on the attracting
set, regarded (locally) as a submanifold of the attracting set (that we are supposing to be
a manifold).

One can define the forward evolution on the attracting set as a one cycle permutation
of the + cells and the backward evolution as a one cycle permutation of the− cells. The
local time reversali∗ can now be represented as a one to one transformation of the +
cells into the− cells.

The “wandering” points could also be represented as cells of a third type, but they
are not interesting for the description of the statistical properties of the motions on the
attracting set. The representation of the dynamics in terms of two “compenetrated” sets
of coarse grain cells gives a clear idea of how it is possible that the forward and backward
evolutions have different statistics related by the same time reversal operationi∗ that is
the basis of the proof of the fluctuation theorem.

b) Consider an Axiom C system. Then we can define a local time reversali∗ on the
future pole. This means that a fluctuation theorem holds for the statistics of the Liouville
distributionµ0 onC. The formulation of the fluctuation theorem is unchanged provided
one defines the entropy production rate as the contraction of the surface area on the
attracting set. This is to be expected to be a rather difficult quantity to evaluate in concrete
cases because we cannot expect to have a precise knowledge of the geometric structure of
the attracting set. In this respect one can remark that the system may have other properties
that nevertheless allow us to establish a relationship between the contraction rate of the
Liouville measure (directly accessible from the measurement of the divergence of the
equations of motion) and the contraction rate of the surface measureon the attracting
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set: an interesting instance of this has been found in [BGG], Sect. 6,(ii) , where the extra
property used was thepairing rule that held in that case, (see [ECM1, DM]).

In general on the pole�+ one can define a probability distributionµ∗
0 that is the

natural extension of the Liouville distribution in the equilibrium case and for which
the fluctuation theorem holds in the same form that it has in the Anosov case. It is the
probability distribution that is defined in the symbolic dynamics representation by the
Gibbs distribution, [D, LR, R2], with non translationally invariant potentialgiven by
the formal energy function:

H( σ ) =
−1∑

k=−∞
h−(ϑk σ ) +

∞∑
k=0

h+(ϑk σ ), (6.2)

where σ is the symbolic sequence corresponding to a pointx on �+ evaluated on a
Markov partitionP, see Sect. 5;ϑ is the shift of the sequenceσ ; and we have set:

h−( σ ) = − log3∗
s(X( σ )), h+( σ ) = log3u(X( σ )), (6.3)

and3∗
s, 3u are the jacobian determinants of the mapS restrictedto the intersections of

the stable or, respectively, unstable manifolds with�+.
In the Anosov case (6.2) defines a distribution equivalent to the ordinary Liouville

distribution, see [G3, G2]. In the Axiom C case it defines a distribution on�+ which is
absolutely continuous with respect to the surface area on�+ when the poles are smooth
manifolds (because in such a case the system (�+, S) is a Anosov system). But if the
pole�+ is just an Axiom A attracting set which is not a smooth manifold then3∗

s is not

properly defined as a jacobian determinant (because the intersection
^

W s
x = W s

x ∩ �+ is
not a manifold). Nevertheless itcan be definedby usingi∗ via:

3∗
s(x) = 3−1

u (i∗x), (6.4)

and this is our proposal for a natural extension of the definition of the Liouville measure
on the attracting basic set�+. It is a distribution that may have several further properties
that it seems worth investigating.

c) Finally, with reference to Sect. 1 above, we note that in a system like the one studied in
[BGG] it is possible that while a forcing parameter grows the Lyapunov spectrum changes
nature because some exponents initially positive continuously evolve into negative ones
as the forcing increases. Everytime one “positive” exponent “becomes” negative the
dimension of the future pole diminishes (usually by 2 units when the pairing rule is
verified, see [BGG]). At this “bifurcation” the future pole splits into two basic sets, one
will be the new pole and the other will be itsi∗ image. Of course the above analysis
implies that there will be a new local time reversali∗∗ on the new future pole. Thei∗
image of the future pole, however, willnot be the past pole: one can easily see that the
latter is more stable than thei–image of the future pole: hence the past pole will be the
full time reversal of the future pole, no matter how many intermediate bifurcations took
place.

The picture in terms of diagrams, see [Sm] p. 754, is quite suggestive and is that
aftern = 0, 1, . . . “positive” Lyapunov exponents have “become” negative the diagram
of the system consists of 2n points totally ordered starting from the past pole and going
straight down to the future pole. During the evolution of the bifurcationsn + 1 time
reversals are definedi∗0 ≡ i, i∗1, . . . , i

∗
n and thekth time reversali∗k leaves invariant the

set of nodes in the diagram with labels 1, 2, . . . , 2n−k, k = 0, . . ..
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